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ABSTRACT

In this paper, we suggest to use a steepest descent algorithm

for learning a parametric dictionary in which the structure or

atom functions are known in advance. The structure of the

atoms allows us to find a steepest descent direction of param-

eters instead of the steepest descent direction of the dictio-

nary itself. We also use a thresholded version of Smoothed-

�0 (SL0) algorithm for sparse representation step in our pro-

posed method. Our simulation results show that using atom

structure similar to the Gabor functions and learning the pa-

rameters of these Gabor-like atoms yield better representa-

tions of our noisy speech signal than non parametric dictio-

nary learning methods like K-SVD, in terms of mean square

error of sparse representations.

Index Terms— Dictionary learning, Sparse representa-

tion, parametric dictionary, Sparse Component Analysis.

1. INTRODUCTION

Sparse representation of signals has found a wide range of

applications in signal processing in recent years including

Sparse Component Analysis (SCA) [1] and Compressed

Sensing [2]. In these applications, the existence of a proper

dictionary in which the signals have sparse representations is

a preliminary necessity. It means that there should be a dictio-

nary in advance, such that the expansion of the signal based

on the columns of the dictionary (called atoms) is sparse.

To choose a dictionary in these applications, one way is

to use some predefined analytically constructed dictionaries,

e.g., Wavelet Packets (WP) and Discrete Cosine Transform

(DCT) in special class of signals such as images, speeches or

biomedical signals. They should be designed analytically for

each class of signals. This approach could be nominated as

dictionary design. The dictionary design can be performed

by extensive research on generative model of signals. So, in
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this method an extreme effort should be done for modeling

the signals of interest.

The other way which is more general is to learn a dictio-

nary based on a set of training signals. This approach is called

dictionary learning (Refer to [3], [4], [5], [6] and a more re-

cent paper [7]). In dictionary learning, we want to find a dic-

tionary such that the representations of all training signals in

that dictionary are sparse. Consider the following model:

Y = DX + E (1)

where all the training signals are collected in a signal matrix

Y = [y1, y2, ..., yN ] and all the sparse coefficients are col-

lected in a coefficient matrix X = [x1, x2, ..., xN ] and N is

the number of training signals. D is an n × m overcomplete

dictionary (m > n) which is to be learned from the training

signals Y. m is the number of atoms and n is the length of the

signals. E can be considered as approximation errors.

In dictionary learning methods, there is no information

about the dictionaries except some mild constraints such as

unit Frobenius norm of the dictionary or unit norm of columns

of the dictionary. But, in some applications, the dictionaries

for representations may have some known structures. In [8],

a Toeplitz structure has been suggested for compressed sens-

ing applications. In addition, [9] suggested a sparse structure

for dictionary in sparse representations. Moreover, recently a

parametric dictionary design is proposed for sparse modeling

of signals [10]. Parametric dictionary design or parametric

dictionary learning assumes a known parametric model for

atoms. Then, it tries to find better parameters for atoms based

on some criteria. It has the advantage of dictionary learn-

ing methods which is yielding to better and more adaptive

representations of signals. It also gains the benefits of dic-

tionary design approaches which are the simplicity and bet-

ter matches to the structure of a special class of signals. An

important advantage of parametric dictionary learning is that

only the parameters of an atom (it is less than 5 parameters in

typical applications) should be stored instead of all the sam-

ples of the atom. So, it is very well suited to the applications

with large matrix dimensions.

In addition to precise modeling of our signals, we can use
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experimental experience to select a proper parametric dictio-

nary for our applications. For example, it is found that Ga-

bor atoms work sufficiently well, and have fewer adverse ef-

fects in reconstruction of speech signals compared to other

dictionaries [11]. The parametric dictionary learning meth-

ods uses this prior knowledge to select the atom functions

properly. But, they also tries to even more improve the per-

formance of representation by learning their parameters. In

contrast, [10] uses a Gammatone function1 for reconstruc-

tion of audio signals. It proposes an algorithm similar to

alternating-minimization for reducing a cost function which

is derived from the coherence of the dictionary. It shows the

superior performance of the designed dictionary over the ini-

tial Gammatone dictionary in representing the audio signals.

In contrast, in this paper, we use the same criterion as dictio-

nary learning methods which is the total Mean Square Error

(MSE). We examine Gabor-like atom functions for represent-

ing a sample speech signal. We not only show the superior

performance of the proposed algorithm over the initial dic-

tionary in terms of reducing MSE, but also over the K-SVD

algorithm [12] and THresholded Smoothed-�0(THSL0) dic-

tionary learning algorithm proposed in [13].

2. PROBLEM FORMULATION FOR LEARNING A
GENERAL PARAMETRIC DICTIONARY

Suppose that we have a dictionary D = [d1|d2|...|dm] which

the structure or atom functions are known in advance. Each

atom dk is determined completely by P deterministic param-

eters collected in a parameter vector vk = [v1k, v2k, ..., vPk]T

where vik is the i’th parameter of the k’th atom. We call this

dictionary as a parametric dictionary. In parallel to this origi-

nal n × m parametric dictionary, a P × m parameter dictio-

nary can be defined as V = [v1|v2|...|vm]. This parameter

dictionary V has much fewer rows than the original paramet-

ric dictionary D because P is the degree of freedom of each

atom while n is the length of the signals or atoms. So, in

parametric dictionary learning, we need only to update the

parameter matrix instead of the dictionary itself. It reduces

the complexity of the algorithm by a large factor equal to n
P .

In addition, reducing the number of free variables, decreases

the dimensionality of the corresponding optimization prob-

lem and hence the larger dimension problems can be solved

simpler and more efficient.

In parametric dictionary learning, various criteria may be

used for updating or learning parameters. The first measure

which is used in [10] is the nearness of the dictionary to an

Equiangular Tight Frame (ETF) which has the minimum co-

herence. But, in this paper, similar to the classical dictio-

nary learning algorithms such as K-SVD [12], we use the total

1The generative function for a Gammatone dictionary is defined as g(t) =

(t − u)γ−1 exp(−2πbB(t − u))cos(2π(t − u)f) where B = f
Q

+ bmin

for some Q and bmin, u and f are time and frequency shifts, γ and b control

the rise time and the width of the atoms in the time domain, respectively [10].

MSE of the representation as a measure to update the param-

eters. The total MSE is defined as:

MSE =
1
N

F (D) =
1
N

‖Y − DX‖2
2 =

1
N

N∑

r=1

‖yr − Dxr‖2
2

(2)

where this cost function is explicitly dependent on the dic-

tionary matrix and is implicitly dependent on the parameter

matrix. To explore the implicit relation of the cost function

to parameters, we need to know the deterministic function of

atoms with respect to the parameters. To do so, we define the

atom elements as dtk = g(vk, t) where t stands for the time

index. One of such atom functions are Gabor-like functions2

which is defined as:

gGab(s, u, f, t) = exp(−π(
t − u

s
)2) cos(2π(t − u)f) (3)

where u and f are time and frequency shifts and s is the scale

factor.

3. STEEPEST DESCENT ALGORITHM FOR
LEARNING THE PARAMETERS

Most dictionary learning algorithms use two step iterative

techniques to solve their problems. In the first step, they

use a sparse representation algorithm to determine the sparse

coefficients based on knowing the dictionary. In the second

step, they update the dictionary based on some criteria such

as maximizing a likelihood probability or minimizing a cost

function. In the sparse representation step of our algorithm,

we use a THSL0 algorithm [13]. In this paper, the threshold-

ing is done on the number of active atoms and a fixed number

K of the largest absolute values of coefficients are chosen

after performing an Smoothed-�0 (SL0) algorithm [14]. For

dictionary update, we suggest to use steepest descent method

for reducing the MSE cost function defined in (2) on the

parameter space instead of the admissible dictionary space.

The steepest descent update formula for the i’th parameter

of the k’th atom (vik) is as follows:

vik ← vik − μ
∂F (D)
∂vik

(4)

where μ is a small step size. Using (2), we have
∂F (D)
∂vik

=
∑N

r=1
∂

∂vik
‖yr−Dxr‖2

2. We have ‖yr−Dxr‖2
2 = −2yT

r Dxr+
xT

r DT Dxi + yT
r yr. So, the partial derivative will be decom-

posed into two terms as follows:

∂

∂vik
‖yr − Dxr‖2

2 =
∂

∂vik
(−2yT

r Dxr) +
∂

∂vik
(xT

r DT Dxr)

(5)

2Note that each of the atoms are in the form of (3), a Gabor atom. How-

ever, since in the final dictionary, the values of u, s and f for different atoms

will be learned from the data, and do not follow a specific structure (e.g.,

uniform distance), the final dictionary is different from a classical Gabor dic-

tionary, and hence throughout the paper, we use the term ‘Gabor-like’ atoms

and dictionary.
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The first derivative term ∂
∂vik

(−2yT
r Dxr) is equal to:

∂

∂vik
(trace(−2yT

r Dxr)) =
∂

∂vik
(trace(−2xryT

r D))

=
∂

∂vik

m∑

j=1

n∑

l=1

ajldlj =
m∑

j=1

n∑

l=1

ajl
∂

∂vik
dlj (6)

where A = [ajl] � −2xryT
r . Since vik is the parameter of

k’th atom, we have ∂
∂vik

dlj = 0 for j �= k. Hence, we have:

∂

∂vik
(−2yT

r Dxr) =
n∑

l=1

akl
∂dlk

∂vik
= ak(Δk)i (7)

where ak is the k’th row of matrix A and (Δk)i is the i’th
column of matrix (Δk)n×P = [(Δk)li] � ∂dlk

∂vik
.

Similarly, the second derivative term ∂
∂vik

(xT
r DT Dxr) is

equal to:

∂

∂vik
(trace(xT

r DT Dxr)) =
∂

∂vik
(trace(xrxT

r DT D))

=
∂

∂vik
(trace(XG)) (8)

where X � xrxT
r and G � DT D. Since only the elements

of k’th row or k’th column of matrix G depend on the k’th

column of matrix D and hence depend to the parameter vik,

we only write these terms for calculating the above partial

derivative. Hence, we have:

∂

∂vik
(trace(XG)) =

∑

l �=k

∂

∂vik
(XlkGkl)+

m∑

j=1

∂

∂vik
(XkjGjk)

(9)

Since both the matrices X and G are symmetric, we can write

the above formula as follows:

∂

∂vik
(trace(XG)) = 2

∑

l �=k

Xlk
∂Gkl

∂vik
+ Xkk

∂Gkk

∂vik
(10)

where the first term of (10) is equal to:

2
∑

l �=k

Xlk

n∑

j=1

djl
∂djk

∂vik
= 2

n∑

j=1

∂djk

∂vik

∑

l �=k

Xlkdjl (11)

Similarly, the second term of (10) is as follows:

Xkk
∂

∂vik

n∑

j=1

d2
jk = 2Xkk

n∑

j=1

(
∂djk

∂vik
)djk (12)

Hence, from (10), (11), (12) and (8), we can write:

∂

∂vik
(xT

r DT Dxr) = 2
n∑

j=1

∂djk

∂vik

m∑

l=1

Xlkdjl =

2
n∑

j=1

∂djk

∂vik
(DX)jk = 2

n∑

j=1

(Δk)ji(DX)jk (13)

Now, from (13), (7), (5) and some simple matrix algebra, we

have:

∂

∂vik
‖yr − Dxr‖2

2 = [ΔT
k (AT + 2DX)]ik (14)

and if we replace A = −2xryT
r and X = xrxT

r , the above

formula is equal to:

∂

∂vik
‖yr − Dxr‖2

2 = [2ΔT
k (Dxr − yr)x

T
r )]ik (15)

and finally summing all the above terms on all the training

signals, the final formula for steepest descent is derived from

(4). The final formula in vector format is as follows:

vk ← vk − η(ΔT
k R)k (16)

where vk is the k’th parameter vector, (ΔT
k R)k is the k’th

column of ΔT
k R and R �

∑N
r=1(Dxr − yr)xT

r .

4. EXPERIMENTS

In this section, we investigate our proposed parametric dic-

tionary learning method in representing a noisy speech sig-

nal. The noisy speech signal is divided into N blocks. Each

block has a length of n. So, training signals are obtained from

different segments of a speech signal. Then, these training

signals learn a parametric dictionary. We used Gabor-like

atom functions defined in (3) for our parametric dictionary.

We compared our algorithm with K-SVD algorithm [12] and

THSL0 dictionary learning algorithm [13]. For comparison,

we repeated our experiment for 20 times and report the aver-

age of logarithmic MSE of each algorithm. So, the compari-

son measure is as follows:

MSEave =
1
20

20∑

h=1

10 log(
1
N

N∑

r=1

‖yr − Dxr‖2
2) (17)

where h is the index of the experiment.

In our experiments, for initialization, we used a semi ran-

dom dictionary matrix with Gabor-like atom functions. The

parameter u which is the time shifts are selected linearly to

cover the entire length of the signal. But, we selected param-

eters f and s randomly. For speech signals, we used approxi-

mately 5.5 seconds of a speech signal with 44100 samples per

second.

In the first experiment, the number of nonzero coefficients

K is varied. The length of the signal is chosen as n = 30.

The number of atoms are selected as m = 50 and K is varied

between 15 to 27. The results of averaged MSE in terms of the

number of nonzero coefficients are shown in Fig. 1. It can be

seen that our algorithm has the best result. THSL0 dictionary

learning method has also better results than K-SVD.
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Fig. 1. The MSE for various algorithms versus number of non zero coeffi-

cients K. The parameters are m = 50, n = 30. 20 iterations are used for

all algorithms.
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Fig. 2. The MSE for various algorithms versus number of iterations. The

parameters are m = 50, n = 30, K = 25 and N = 400.

In the second experiment, we the number of nonzero co-

efficients are K = 25. Then, we depicted the averaged MSE

with respect to iteration in Fig. 2. It is shown that the rate of

convergence of our algorithm is higher than K-SVD.

5. CONCLUSION

In this paper, we proposed a steepest descent algorithm for

a general parametric dictionary which the structure of atom

functions are known in advance. We also used a THSL0 algo-

rithm in the sparse representation step of our algorithm which

is an efficient while fast method. Experimentally, our pro-

posed algorithm for Gabor-like atom functions outperforms

K-SVD and THSL0 dictionary learning algorithms in repre-

senting a noisy speech signal in terms of MSE.
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