
ERROR CORRECTION VIA SMOOTHED L0-NORM RECOVERY

Saman Ashkiani, Massoud Babaie-Zadeh∗

Department of Electrical Engineering, Sharif
University of technology, Tehran, Iran

sa.ashkiani@gmail.com
mbzadeh@sharif.edu

Christian Jutten

GIPSA-LAB
and Institut Universitaire de France

Grenoble, France
christian.jutten@inpg.fr

ABSTRACT

Channel coding has been considered as a classical approach
to overcome corruptions occurring in some elements of input
signal which may lead to loss of some information. Proper
redundancies are added to the input signal to improve the ca-
pability of detecting or even correcting the corrupted signal.
A similar scenario may happen dealing with real-field num-
bers rather than finite-fields. This paper considers a way to
reconstruct an exact version of a corrupted signal by using
an encoded signal with proper number of redundancies. The
proposed algorithm uses Graduated Non-Convexity method
beside using a smoothed function instead of �0-norm to cor-
rect all the corrupted elements. Simulations show that our
proposed algorithm substantially improves the probability of
exact recovery in comparison to previous algorithms.

Index Terms— Real-field coding, Compressed Sensing,
Sparse Signal Processing.

1. INTRODUCTION

In transmission of a digital signal through a communication
channel, the classic approach to overcome probable noise
contaminations is encoding the main signal at the transmitter
and decoding at the receiver. In this paper we consider real-
field coding [1] (in contrast to finite-field coding), in which
the signal to be encoded can have any real value, i.e. the input
signal s∗ ∈ R

n. This input signal is encoded linearly by a
m × n matrix, A, where throughout this article we assume
m > n. Then the transmitter sends As∗ through the channel
and the receiver receives:

x = As∗ + e∗ (1)

where e∗ ∈ R
m is an error vector and x ∈ R

m is the corrupted
received signal. Now the main question is that: can we recon-
struct a clean version of the input signal by knowing x andA?
The answer is no in general cases. But if only a small fraction
of As∗ is corrupted (i.e., e∗ is a sparse vector) the input signal
can be recovered exactly by using a proper recovery scheme.

∗This work has been partially funded by Iran Telecom Research Center
(ITRC).

As A is a tall matrix (i.e., m > n), inspired by the classical
method which is used in coding theory, one can use the left
annihilator of A (i.e., the matrix B ∈ R

(m−n)×m such that
BA = 0 which is also known as the parity check matrix in
coding theory) to find an estimation of e∗ as follows:

min
e

‖e‖0 s.t. Be = Bx � r. (2)

This minimization can be solved by utilizing algorithms
which are proposed to find the sparsest solution of the un-
derdetermined system of linear equations in (2) (e.g., Basis
Pursuit (BP) [2] and Smoothed �0 (SL0) [3]). Then by using
the pseudo-inverse of A, the input signal can be recovered.
Nonetheless, this method may have some disadvantages.
Firstly, the recovery is done in two steps: Finding an es-
timation of e∗ and then solving an overdetermined system
of linear equations by using the preceded estimation. The
problem is that, any error occurring in the process of finding
e∗ would propagate to the next step. This problem would
be intensified by using less strict algorithms for solving (2).
Furthermore, there may exist situations where the constraint
in (2) grows in size, hence it makes the minimization difficult.
Generally speaking, we would prefer eliminating constraints
in optimization problems, if possible.
Candès et al. [1] introduced an equivalent method which

does not have the above problems. Consequently, the recov-
ery is achieved by solving the following unconstrained mini-
mization and only in a single step :

min
s

‖x− As‖0. (3)

However, �0-norm is not a continuous function, so finding the
solution of (3) needs to do a combinatorial search which be-
comes intractable as signal’s dimension grows. By this reason
one can prefer to minimize �1-norm instead, since it results in
a convex optimization problem. In [1] an algorithm is pro-
posed (i.e., �1-norm recovery) in which, �0-norms in (2) and
(3) are replaced by �1-norm. However, using �1-norm has
some consequences. In fact, for underdetermined system of
linear equations in (2), an extra condition on the sparsity of
e is required for leading to the unique sparsest solution [4] in
(3). By using �1-norm a tighter condition should hold, which
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may deprive us from an exact recovery for special cases, es-
pecially cases where there are a large number of corruptions.
In this paper we propose a new algorithm for decoding

a real-field encoded signal, inspired from the idea of SL0
[3], and we name it Smoothed �0-norm recovery, in which
the non-continuous �0-norm in (3) is replaced by a proper
smoothed cost function. By using our algorithm, we can avoid
the mentioned problems in solving a constrained minimiza-
tion in (2). Moreover, significant improvement is achieved
without affecting the order of complexity in comparison with
�1-norm recovery, in the sense that a larger number of cor-
ruptions can be tolerated for reconstruction. However, with
a little degradation in the performance (still superior to the
�1-norm), highly faster recovery time can be obtained. In ad-
dition, contrary to SL0 [3], our method needs to solve an un-
constrained minimization problem, so it does not have all the
complexities which was forced by using a gradient projection
approach in implementation of SL0. Hence it is heuristically
expected that Smoothed �0-norm recovery be less likely to be
trapped in local minima in comparison with SL0 applied on
(2).
This paper is organized as follows. In Section 2, we re-

view some basic materials which are required in the rest of
the paper. In section 3, we propose our algorithm and state
some details about its performance. In section 4, we compare
Smoothed �0-norm recoverywith �1-norm recovery algorithm
in their ability to recover corrupted encoded signals.

2. PRELIMINARIES

2.1. Uniqueness of the recovery

In general, it is not possible to exactly recover all corrupted
encoded signals. In fact, e∗ should be sparse enough in or-
der to enable us to perform the reconstruction by solving (3).
Candès et al. [1] showed that �1-norm versions of (2) and (3)
are equivalent. By a similar line of reasoning it can easily
be shown that this equivalency exists in the case of �0-norm
(i.e., solving (3) and (2) are equivalent, which is in fact a well-
known result in coding theory). Consequently, reconstruction
by utilizing (3) would lead to a unique solution as far as the
underdetermined system of linear equations in (2) possesses
the unique sparsest solution.

2.2. Smoothed �0-norm

In [3] it is suggested to use a smoothed function to approxi-
mate �0-normwith the nice property to be continuous and also
differentiable. In this paper, Gaussian smoothing function is
used. Consequently, for any y ∈ R

m we replace the �0-norm
of y by:

‖y‖0 = m− lim
σ→0

m∑
i=1

exp (− y2
i

2σ2
) (4)

2.3. Graduated Non-Convexity

Graduated Non-Convexity (GNC) [5] is a deterministic mini-
mization algorithm for finding the global minimum of a non-
convex, unconstrained and continuous cost function like (4).
Suppose we want to minimize F (s ;σ) where F : Rn → R,
s is an n-dimensional real signal and σ is a real parameter.
Our goal is to minimize F (s ;σ) for a small σ (say σtarget). To
achieve this goal and as an initial step, σ0 is set large enough
to make F (s ;σ0) strictly convex. Hence we can find the
minimum value of the convex cost function by a simple lo-
cal minimization algorithm (e.g., steepest descent) regardless
of the initial value for s. The gained minimizer sσ0

at this step
is set as an initial value for the next step to find sσ1

, where
σ1 < σ0. As σ is decreased, F (s ;σ) becomes non-convex
and local minima may occur. At each step i, the minimum
of F (s ;σi) is used as a starting point to locate the minimum
for the next (smaller) σi+1 , using a steepest descent approach
(i.e., for each i, σi+1 < σi, which ends at the final value of
σtarget). Since the value of σi+1 has only slightly decreased,
we hope that the minimizer of F (s ;σi+1) is not too far from
the minimizer for the previous (larger) σi, and hence we hope
not to get trapped into a local minimum. It is also important
to note that the GNC approach is a heuristic method which
cannot provide a mathematical guarantee to find the global
minimizer in the general case. But by decreasing σ slowly
enough, we can achieve good results, as it is experimentally
shown in results of Section 4.

3. SMOOTHED �0-NORM RECOVERY

3.1. The main idea

The main objective of this article is to find the sparsest solu-
tion of (3) by using a proper smoothed cost function like (4)
instead of the �0-norm. We define our cost function as:

F (s ;σ) � m−
m∑
i=1

exp (− (xi − ais)2
2σ2

) (5)

where ai denotes the i-th row of A. The objective minimiza-
tion argument becomes:

min
s

F (s ;σ) (6)

for σ = σtarget where σtarget is very small. The function in (6)
is non-convex, hence we are facing a continuous and differen-
tiable function with lots of local minima. By using GNC idea
we try to find an approximate solution for global minimum
of (6), which we expect to be a proper solution for (3), our
original problem. Initially, as will be explained in the next
section, the algorithm starts from a very large σ, for which
the global minimum of (6) can be calculated. Then, the re-
covery is done using two nested iterations. The internal loop
is a simple steepest descent method for minimizing F (s ;σ)
for a fixed σ. In the external loop and based on the previous
statements about GNC, σ is decreased gradually in each step.
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• Input: Coding matrix A, corrupted entries x and σtarget
• output: smin
• Initialization:

1. s(0) = (ATA)−1AT x
2. e(0) = x− As(0)
3. Set σ0 > k‖x − A(ATA)−1AT x‖∞, where k is a
controlling parameter.

4. Constant parameters κ and μ0.
5. i = 0

• while σi > σtarget do
1. if i > 0: σi ← κσi−1

2. minimize F (s ;σi) (steepest descent method)
- s← s(i)
- For l = 1, . . . , L

(a) z←
[
e1 exp(−

e
2

1

2σ2

i

, . . . , em exp(−
e
2

m

2σ2

i

)
]

(b) s← s− μ0AT z
(c) e← x− As

3. i← i+ 1
4. s(i) ← s

• return: smin ← s(i)

Fig. 1. Smoothed �0-norm recovery algorithm.

We repeat previous actions and at each step the minimizer s
is set as an initial value for the next step until the σtarget is
reached. The final algorithm is detailed in pseudocode form
in Fig. 1.

3.2. Initialization

In order to use GNC effectively, we have to choose a suffi-
ciently large σ0, i.e. theoretically infinity, and an appropriate
s(0), where the superscript denote the iteration number, so we
can use steepest descent to find an approximate global mini-
mum of (6). By setting∇F (s) = 0 we have:

AT

[
e1

(
exp (− e21

2σ2
)

)
, . . . , em

(
exp (− e2

m

2σ2
)

)]T
= 0.

(7)
Now, by having σ → ∞:

AT e = 0 =⇒ AT (x−As) = 0 =⇒ s = (ATA)−1AT x. (8)

So, initially we choose s(0) = (ATA)−1AT x. Now, we want
to choose a practical σ0 for our simulations which acts like
infinity. Regarding to the fact that we want our cost function
to be convex near s(0), it is necessary that ∇F 2(s(0)) be pos-
itive definite. It is easy to show that this leads to σ > |e(0)

i
|,

∀i = 1, . . . ,m, where e(0)
i
is the i-th component of e(0) �

x− As(0). Moreover, by choosing 3 to 5 times of this thresh-
old, we can also be assured that exp (−e

(0)
i

/(2σ2
0)) ≈ 1 and

acts as if σ → ∞.

3.3. Further remarks about the algorithm

In this part some important remarks about the algorithm of
Fig. 1 are stated for further clarifications.

1. In theory, we should have σtarget → 0, but for our algorith-
mic implementation we should choose a practical small σtarget
as a stopping criterion for our iterative algorithm. The smaller
σtarget we choose, the better quality we will have in recovery.

2. As it was stated before, it is very important to decrease
σ in a proper manner in order not to be trapped in a wrong
local minimum. The decrease of σ toward σtarget is controlled
by a decrease factor 0 < κ < 1. However κ can control the
balance between the quality of the recovery on one hand and
computational load on the other hand. A too fast decrease
in σ can also result in a wrong local minimum and lack of
convergence.

3. Steepest descent method is chosen as a minimization
method in our algorithm. However, the internal loop can be
repeated for a fixed and small number of times (L). In other
words by decreasing σ gradually, it is not necessary to wait
until final convergence of the steepest descent, we only need
to be in the vicinity of the global minimum. This choice have
a significant effect on the speed of the proposed algorithm.

4. In the steepest descent method the iteration form is
s ← s − μ∇F (s ;σ). In our algorithm μ should be de-
creasing in a harmony with σ, i.e. for smaller values of σ,
F (s ;σ) would change more and hence smaller step sizes
should be chosen. It is shown in [3] that μσ = μ0σ

2 would
be a proper step size as a function of σ. Note that in Fig. 1
we have just written μ0, and σ2 disappears: this is due to the
definition z � σ2∇F (s ;σ) which leads to cancellation of σ2

in the updating term.

4. SIMULATION RESULTS

This section is dedicated to numerical results obtained from
our recovery algorithm in comparison with �1-norm recovery
which was previously proposed in [1]. Suppose x andA in (1)
are given. The main objective of this part will be finding the
breakpoint in the fraction of sparsity of the noise vector (i.e., ρ
where ‖e∗‖0 = ρm) in which each algorithm fails to recover
the input signal (i.e., fails to decode properly). We define ex-
act recovery as a recovery under which more than 40dB in re-
construction SNR (defined as 10 log10

(‖s∗‖22/(‖s∗ − s‖22)))
is achieved. The simulation results are based on finding the
average rate of exact recovery which is calculated over 200
trials. Entries of the coding matrix A and the input signal s∗
are independent random values with a Gaussian distribution
of zero mean and unit variance. Each column of A is divided
by

√
m to be normalized. For generating a sparse error vec-

tor e∗, at first a random support with specified fraction of m
(i.e. the parameter ρ defines the sparsity level as well as the
corruption rate) is chosen at each trial. Then elements within
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Fig. 2. Average rate of exact decoding for the case ofm = 2n
and n = 100. Smoothed �0-norm recovery’s parameters are
set as: σtarget = 0.0001, κ = 0.82, L = 3 and μ0 = 2.
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Fig. 3. Average rate of exact decoding for the case ofm = 4n
and n = 100. Smoothed �0-norm recovery’s parameters are
set as: σtarget = 0.0001, κ = 0.87, L = 3 and μ0 = 2.

the previous support are chosen randomly and independently
with a Gaussian distribution with zero mean and unit variance
(i.e., we expect elements of e∗ and As∗ to have the same or-
der of energy). Now by having x = As∗ + e∗, the recovered
version s and s∗ are compared. Simulations are run for two
different scenarios of m = 2n and m = 4n. Average rate of
exact recovery (under previously stated definition) is plotted
for both scenarios in Fig. 2 and Fig. 3, respectively. �1-norm
recovery is done by using �1-MAGIC1 package. As it is seen
in these figures, in both cases, our proposed method provides
better recovery rate, even with higher fraction of corruptions.
In the case of m = 2n, �1-norm recovery succeeds as long
as corruption fraction does not exceed about ρ = 0.15 while
Smoothed �0-norm recovery can survive until about ρ = 0.20.
In the case of m = 4n, breakdown for �1-norm recovery oc-

1For �1-MAGIC, we have used MATLAB code available at
http://www.acm.caltech.edu/l1magic/

curs at ρ = 0.35while for Smoothed �0-norm recovery it hap-
pens at about ρ = 0.5. It is also important to note that utilizing
Smoothed �0-norm recovery does not impose more complex-
ity in its implementation. In fact, in our algorithm (similar to
SL0), we have parameters κ an σtarget that determine a trade-
off between quality and speed (for example closer κ to 1 re-
sults in better quality, but lower speed). Figures 2 and 3 have
been plotted for a set of parameters of Smoothed �0-recovery
for which the simulation times of both algorithms are approx-
imately equal (0.019s for m = 2n and 0.054s for m = 4n).
Alternatively, by choosing other parameters with our algo-
rithm, we could gain a better speed at similar qualities (not
plotted here due to limited space).

5. CONCLUSION

In this article, we proposed an algorithm to recover the ex-
act input signal from a corrupted version of the input signal
after being encoded by a tall coding matrix. The algorithm
aims at solving (3) by using a proper GNC algorithm and by
replacing the �0-norm by a smoothed function. The overall
performance of the algorithm is significantly better than �1-
norm recovery and tolerates larger amount of corruptions. As
it was mentioned, there is no general statement which guaran-
tees the GNC approach to converge. However, Mohimani et
al. [6] has recently proposed a convergence analysis for SL0.
So it may be possible to derive a similar convergence analysis
for this algorithm, too.
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