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ABSTRACT

We introduce a new approach for sparse decomposition,
based on a geometrical interpretation of sparsity. By sparse
decomposition we mean finding sufficiently sparse solutions
of underdetermined linear systems of equations. This will be
discussed in the context of Blind Source Separation (BSS).
Our problem is then underdetermined BSS where there are
fewer mixtures than sources. The proposed algorithm is
based on minimizing a family of quadratic forms, each mea-
suring the distance of the solution set of the system to one of
the coordinate subspaces (i.e. coordinate axes, planes, etc.).
The performance of the method is then compared to the min-
imal 1-norm solution, obtained using the linear programming
(LP). It is observed that the proposed algorithm, in its sim-
plest form, performs nearly as well as LP, provided that the
average number of active sources at each time instant is less
than unity. The computational efficiency of this simple form
is much higher than LP. For less sparse sources, performance
gains over LP may be obtained at the cost of increased com-
plexity which will slow the algorithm at higher dimensions.
This suggests that LP is still the algorithm of choice for high-
dimensional moderately-sparse problems. The advantage of
our algorithm is to provide a trade-of between complexity
and performance.

1. INTRODUCTION

Sparse decomposition which may be viewed as an attempt to
uniquely identify arelevantsolution of an underdetermined
system of linear equations, has become a subject of interest
in recent years. It is well-known that an underdetermined
system (if consistent) has infinitely many solutions, and ad-
ditional constraints should be imposed if we are to arrive at
a unique solution. Sparsity is one such condition which is
usually sufficient for the purpose. It also leads to a highly
desirable solution from a practical point of view. In fact, in
many situations, a sparse solution corresponds to anefficient
representation of data as a linear combination of some col-
lection of predetermined elements.

To be more specific, we pursue the problem in the context
of a concrete example, namely the BSS problem. The objec-
tive of BSS is to recover a number ofm (unknown) sources
form n (known) mixtures when little or no information is
available about the nature of sources or mixtures. We will
consider the linear (noise-free) model, i.e.x(t) = As(t), in
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which s(t) andx(t) are respectively,m× 1 andn× 1 vec-
tors representing sources and mixtures, andA is then×m
mixing matrix. The number of samples available will be de-
noted byN, i.e. t = 1, . . . , N. We also assume the so-called
instantaneoussituation in which no time structure is consid-
ered and each source sample is recovered only based on the
corresponding mixture sample. Thus, the model we actually
deal with is

x = As
Although the identification of the mixing matrix is an es-
sential part of the BSS solution, we shall assumeA to be
estimated by other means (refer to [7] and [1] forcluster-
ing-based methods, and to [2] for a potential-function-based
approach). In fact, we will neglect any estimation errors and
considerA to be exactly known a priori. Our main interest is
then in cases wheren < m, i.e. fewer mixtures than sources,
where the mere knowledge ofA is not sufficient for source
separation. This is where the (added) assumption of spar-
sity helps in uniquely identifying the sources. Many natural
sources exhibit sparsity or may be converted to sparse sig-
nals by use of, for example, wavelet-related transforms1. We
will use the BSS terminology and notation in all subsequent
discussions, although the results are relatively context-free.

The sparsity ofs is usually measured by its so-calledl0

norm, i.e. the number of its non-zero elements. Obtaining
the sparsest solution by minimizing thel0 norm is nearly in-
tractable since it requires combinatorial search with a com-
plexity growing exponentially withm. It is also prone to er-
rors when dealing with noisy data. It has been found, first
empirically [3] and then theoretically [5],[6] that in almost
all cases the problem may be solved by minimizing thel1

norm instead. In fact, it is shown that for most (large) under-
determined systems, if there is a sufficiently sparse solution,
it will be the unique solution of the optimization problem :
“minimize ‖s‖1 subject tox = As” – see [4] for a detailed
proof. This is a very interesting result, since the solution of
the latter may be obtained by efficient linear programming
(LP) algorithms.

In a more BSS-oriented approach, the minimall1 norm
solution may also be obtained as the MAP estimator of
source vector under Laplace prior. For the discussion of the
minimal l1 norm solution in the context of BSS, and its per-
formance analysis, consult [2], [7] and [8].

In this paper, we will introduce a method for sparse de-
composition based on minimizing cost functions of the form

1In terms of a more common terminology, we may sparsely respresent
the signal as a linear combination ofatomsfrom a properdictionary. This
is motivated by viewing the linear system asx = ∑i aisi where{ai}, the
columns ofA, are considered atoms or elements defining a signal dictionary.



sTWs over a family of weight matrices. We will then pro-
vide simulation results comparing the performance of the
proposed method and that obtained by minimizingl1 norm
(i.e. the LP method).

2. MINIMIZING sTWs OVER A FAMILY OF
WEIGHT MATRICES

2.1 Motivation

The idea behind the method is based on a geometrical in-
terpretation of the sparsity. Consider the elements of thes
vector, denoted by{si}, to be i.i.d. random variables, each
being negligible with probability 1−π1. In other words,π1
� 1 is the probability that eachsi assumes a considerable
value. This simple model may be used to roughly charac-
terize many sparse sources. Examining the sample distribu-
tion of s, which is obtained by plotting in thes-space a large
number of samples obtained from the source distribution, it
appears that the points tend to concentrate first around the
origin, then along the coordinate axes, then across the coor-
dinate planes, etc. This is because for the most usual cases,
the corresponding probabilities are respectively ordered ac-
cording to

(1−π1)
m>
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m
1

)
π1(1−π1)

m−1 >
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m
2

)
π
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The situation is depicted in Fig.1 for the case ofm= 3,
n= 2. Also plotted in the figure is the solution set ofx = As,
for a typical (full rank)A and a fixedx. In this special case
(m = 3,n = 2), for a fixedx, the equationx = As identi-
fies a line in the 3-dimensionals-space. Consequently, when
we are looking fors for a fixedx, every point on this line
satisfiesx = As (however, we are looking for a sparses).
The search for the sparse solution may now be viewed as
finding a point on this line which is closest to the (sample)
distribution ofs. It is intuitively pleasing that by selecting a
point (onx = As) which is closest to the coordinate axes (of
thes-space), we may reproduce the original source distribu-
tion with reasonable accuracy. This means that we preserve
salient features of the distribution, while neglecting unim-
portant details. For example, the method clearly produces
erroneous results for points around the origin, but the exact
locations of these points are of minor importance.

For the above special case ofm= 3 andn = 2, the dis-
tance of every point tos1 axis iss2

2 + s2
3, the distance tos2

axis iss2
1 + s2

3, and the distance tos3 axis iss2
1 + s2

2. Conse-
quently, for this special case, the criterion for selecting the
nearest point to the axes is stated as

minimize
all i 6= j

(s2
i +s2

j ) subject to x = As.

A more general objective function, readily applicable in
higher dimensions, issTWs, with W being anm×mweight
matrix. Our primary interest is in diagonal weight matrices
with “zero or one” diagonal entries. For example the family
of m×mdiagonal matrices with exactlym−1 ones and a sin-
gle zero on the diagonal, would measure the distances from
the coordinate axes. In general we wish to minimize the cost
function over an entire family of weight matrices(W ), hence
the criterion

minimize
W∈W

minimize
x=As

sTWs.

Figure 1: Geometrical interpretation of the method form=
3, n= 2 – The solution set ofx = As is shown as the oblique
line. The sparsest solution is obtained as the point on this line
which is closest to the coordinate axes (marked by a circle).
The minimall1 norm solution is also marked with a triangle.

2.2 Solution to the general case

It is well-known that if the systemx = As is consistent, i.e.
it has at least one solution, then its minimall2 norm solution
is given by the so-called pseudo-inverse ofA multiplied by
x. In other words, the solution of the optimization problem

minimizesTs = ‖s‖2
2 subject to x = As (1)

may be written ass0 = AT(AAT)−1x. It is then straight-
forward to show that ifsTs is replaced bysTWs, in
which the weight matrixW is (strictly) positive defi-
nite, (and hence non-singular) the solution would bes′0 =
W−1AT(AW−1AT)−1x.

As may be inferred from the previous discussion, we are
mainly interested in situations where the weight matrix issin-
gular (e.g. diagonal matrices with some zeros on its main di-
agonal), for which the above argument fails. In particular we
shall obtain explicit formulas for the case where the weight
matrix is diagonal with its firstm− p diagonal entries being
unity and the rest being zero,

W =
(
Im−p O
O Op

)
. (2)

Partitioning theA matrix and thes vector accordingly, we
obtain

A = [Ã Â], s = [s̃T ŝT]T

whereÃ, Â, s̃, andŝ aren×(m− p), n× p, (m− p)×1, and
p×1, respectively. We impose the following restriction on
p : 1≤ p≤ min{m−n,n}. Now, the optimization problem
may be reformulated as

minimize‖s̃‖2
2 subject to x− Âŝ = Ãs̃. (3)

Note that the cost function does not depend on ˆs. Comparing
(3) and (1), we see that the two problems are essentially the
same after making the following associations : ˜s↔ s, (x−
Âŝ)↔ x, Ã↔A. The solution for ˜s of the latter may then
be stated, in terms of the parameter ˆs, using the usual pseudo-
inverse

s̃0 = ÃT(ÃÃT)−1(x− Âŝ). (4)



Figure 2: SNR (in dB) versus source index for Experiment 1 (m= 7, n= 4) – (left) noise-free:σn = 0.001, (middle) low-noise
: σn = 0.01, (right) high-noise :σn = 0.1.

To simplify further equations, we introduceP , (ÃÃT)−1.
Rewriting (4), we get

s̃0 = ÃTPx− (ÃTPÂ)ŝ , c−Bŝ.

With the restriction imposed onp, B , ÃTPÂ would be a
tall (or square) matrix. Hence, ˆs, in general, cannot be se-
lected to make ˜s0 vanish. Instead, we may again use the cor-
responding pseudo-inverse to choose the ˆs which minimizes
s̃0, i.e.

ŝopt = (BTB)−1BTc = (ÂTPÂ)−1ÂTPx.

To summarize, the solution ofx = As which minimizes
sTWs, with W given by (2) may be written as{

ŝopt = (ÂTPÂ)−1ÂTPx

s̃opt = ÃTP(x− Âŝopt)
. (5)

Note that the solution is still linear inx. The minimum value
of the cost function would be∥∥s̃opt

∥∥2
2 = (x− Âŝopt)

TP(x− Âŝopt).

To obtain the sparsest solution, the cost function will then
be minimized over (at least) the entire family of diagonal
weight matrices having exactly m− p unity and p zero di-
agonal entries. This family will be denoted byWp. The opti-
mization is carried by the enumeration of all the

(m
p

)
possible

cases. Some directions for the choice ofp will be given in
the next section when discussing simulation results. Empir-
ical results suggest that in most cases, the algorithm attains
its best performance forp≈m−n. There may also be situa-
tions where minimizing over more than one family provides
better results.

3. SIMULATION RESULTS

In this section simulation results regarding the performance
of the proposed method will be examined. We will use the
“minimal l1 norm” solution2 as a benchmark for comparison.
Also the SNR3 associated with each source, computed over

2Since the minimuml1 norm solution is obtained by Linear Program-
ming, we may use the term ‘LP method’ when refering to it.

3By SNR, we mean the quantity
(
∑t s2

i (t)
)
/∑t(si(t)− ŝi(t))

2whereŝi(.)
is the estimatedi-th source.

the entire range of samples, will be used as the main perfor-
mance measure. Although it may be argued that the SNR
is not a suitable measure when dealing with sparse signals,
it may still be used to make rough comparisons. The simu-
lations are performed usingsynthetically generatedsources.
Each source is independently obtained from a source density
which is modelled as a Gaussian mixture, i.e. the sum of
weighted Gaussian densities. To be specific, each source is
derived from aN (0,1) density with probabilityπ1 and from
a N (0,σ2

n) with probability 1−π1. The value ofσn is usu-
ally much less than unity and it is mainly used to model noisy
perturbations over the zero samples. The value ofπ1, the
probability that each source has a considerable value, is taken
to be 0.05 (except for the third experiment). Each source is
also normalized to unit-energy (over time) before the mixing
matrix is applied. The mixing matrix is constructed column-
wise by drawingm, n×1 vectors from a uniform distribution
on the unit sphereSn−1 in Rn.

The performance of the algorithm is now illustrated by
summarizing the results of three experiments, examining the
behavior of the method in noisy environments and for high
dimensional problems. Complexity issues will also be ad-
dressed along the way.

3.1 Experiment 1 – Effect of noise

For the first experiment, we takem= 7 andn = 4. In Fig. 2,
the SNRs obtained by the method are illustrated for dif-
ferent values ofp (= 1,2,3) and different levels of noise
(σn = 0.001, 0.01, 0.1). Recall thatp defines the number
of diagonal zeros for the family of weight matrices (i.e.Wp)
over which the minimization is carried. The figures depict a
typical behavior, not the average (or the worst case) one, i.e.
we have tried to illustrate the most frequent behavior for each
setting.

It is seen that the highest performance is due top = 3
for the (relatively) noiseless case, while increasing the noise
causesp= 2, and thenp= 1 to take the place ofp= 3. More
experiments show that in low noise situations the choicep =
m−n is indeed a good one. The figure shows that for such
low noise scenarios, the proposed method performs relatively
better than LP. Also note that for all the three noise levels, the
algorithm withp= 1 produces results nearly as good as those
of the LP (this is not usually the case for higher dimensions).
As we will see, thep = 1 case has the added advantage of
being computationally less complex than LP.



3.2 Experiment 2 - Complexity

In this experiment , we first takem= 50, n = 30 and a rel-
atively low-noise environment(σn = 0.01) to study the per-
formance of the algorithm in higher dimensions. Fig. 3 illus-
trates the results. The SNRs produced by the algorithm are
shown for three values ofp (= 1,2,3). We observe that pro-
gressively better results (toward that of LP) are obtained as
we increasep, but the progress is slow. Implementing the al-
gorithm for values ofp greater than 3 is highly impractical in
this case (i.e. atm= 50), due the computational complexity.
We surmise that further increase ofp would produce SNRs
near (or even better) than those of LP.

The reason why the performance withp = 1,2 is not sat-
isfactory may intuitively be explained in terms of the mixture
model we used. The model suggests that the expected num-
ber of active sources ism· π1. This is the expected value
of the binomial distribution generating the hidden variables
which decide whether or not each source has a considerable
value. In this experiment, we havem·π1 = 50×0.05= 2.5,
suggesting that, on the average, more than two sources are
active at each instant of time. This means that the sample
source distribution tends to concentrate around those sub-
spaces ofR50 which have dimensions greater than two. Thus,
we may get better results if we try to minimize the distance
of x = As to such subspaces by takingp > 2.

The above argument also shows that in determining the
performance of the algorithm both theproblem dimension
and thedegree of sparsityof the sources should be taken into
account. In particular,m· π1 may be considered an impor-
tant parameter. For example, as long as this quantity is kept
(much) below unity, we expect the algorithm withp = 1 to
perform well no matter what the dimension of the problem
is – more on this will be said in the context of the third ex-
periment. The argument also suggests that, in general, we
should takep at least equal tom· π1 (or of its order). In-
creasing the problem dimension, while keeping the sparsity
of the sources (i.e.π1) fixed, will then increase the required
value ofp (& m·π1). In other words,the required complexity
of the algorithm will grow very fast with problem dimension
(for fixed sparsity).

In order to obtain an intuition for how complex the algo-
rithm may get whenp is increased, we have plotted the rel-
ative computational time (with respect to LP) as a function
of the problem dimension. Fig. 4 illustrates the results for
p = 1,2,3. The quantity used to measurerelative complexity
is

∆T(m) = log10
computational time of an algorithm atm

computational time of LP atm
.

(6)

With this definition, the complexity of LP would be zero
at all dimensions. We will fix the mixture-to-source ratio at
0.6, i.e. n = 0.6m. The number of sources (m) will then be
taken as a measure of the problem dimension.

The figure clearly shows that the complexity of the pro-
posed algorithm withp = 1, is about an order of magni-
tude less than that of LP. The relative complexity even de-
creases as the dimension is increased.It is then highly de-
sirable to use the algorithm with p= 1 instead of LP, when-
ever the performances are comparable. This is the case for
low-dimensional or highly sparse problems. For other val-
ues ofp, although the complexity of the algorithm may be

Figure 3: SNR (in dB) versus source index for Experiment 2
– m= 50, n = 30.

Figure 4: Relative complexity versus dimension for Experi-
ment 2 – Relative complexity is a logarithmic measure based
on computational time ratios, defined in (6) . It clearly shows
the efficiency ofp = 1 case and the exponential growth of
complexity (with respect to LP) for higher values ofp.

less than LP for lower dimensions, it eventually increases
beyond that of LP. Forp = 2, the relative complexity still re-
mains below zero for the range of dimensions illustrated (i.e.
m= 7, . . . , 30). Thep = 3 case, however, quickly grows in
complexity. This exponential growth suggests that forhigh-
dimensional or moderately sparse problems(where a large
value ofp is required for a comparable performance), LP is
the preferred algorithm.

3.3 Experiment 3 – Sparsity and Dimension

In this experiment, we investigate the combined effect of
sparsity and dimension on the performance of the proposed
algorithm. ExaminingSNR patternsof Fig. 5 provides a good
insight. In these plots, the horizontal and vertical axes repre-
sent, respectively,m (a measure of problem dimension) and
π1 (a measure of sparsity). The values ofaverage SNR per
sourceare mapped to shades of gray. In other words, each
tile represents the average SNR obtained at a specific dimen-
sion and a sparsity level. A lighter color represent a higher
SNR. White areas of each image then correspond to situa-
tions where the algorithm performs the best.

In all the plots, regions of high SNR tend to concentrate
more across the left edge of the image which corresponds to
high levels of sparsity. This is what to be expected. Note,
however, that the general behavior of LP is different from
that of the proposed algorithm. For a fixed level of sparsity,



Figure 5: Average SNR patterns for Experiment 3 – The horizontal and vertical axes are respectivelym(the number of sources)
andπ1 (a measure of sparsity). SNR (in dB) is mapped to shades of gray. The mixture-to-source ratio is kept atn/m= 0.6.
From left to right : the proposed algorithm withp = 1, p = 2, p = 3, and LP.

performance of LP gets better as the dimension is increased
(i.e. high SNR regions tend to be around the upper left corner
of the image). In fact, as mentioned in the introduction, it has
been shown that if sparsity is high enough, LP will eventu-
ally find the exact solution (almost surely).The performance
of the proposed algorithm is, however, maximized around a
specific dimension, for a fixed sparsity level. This is in accor-
dance with the heuristics provided in the previous experiment
which suggests that the quantitym·π1 is what determines the
performance. Note, in particular, that if constant-SNR curves
where to be plotted, they would be similar to constant-(m·π1)
curves.

In general, high-SNR regions of the algorithm are around
the lower-left corner of the image for lower values ofp and
will gradually shift toward the upper-left corner (where LP
performs the best) asp is increased. This again suggests
that LP is not the best choice for all problems. With the
proper choice ofp we may obtain better results for a prob-
lem located in a specific region of the sparsity-dimension
plane. This is specially the case for low-dimensional prob-
lems where the required value ofp is usually small, leading
to a reasonable complexity.

4. CONCLUDING REMARKS

We have shown that by viewing sparse decomposition as
finding the solution which is nearest to the source (sample)
distribution, a simple method of decomposition may be de-
vised. In general, it is based on finding a solution ofx = As
which minimizes the quadratic formsTWs, over a family of
weight matrices(Wp). The family is taken to be that of diag-
onal matrices withzero or onediagonal entries. The solution
for minimization overx = As may be obtained in closed
form, while optimization overWp is done via combinatorial
search.

It was observed that the algorithm withp = 1 provides
a fast and efficient alternative for LP, in low-dimensional or
highly sparse problems. For higher dimensions or for mod-
erately sparse sources, LP is a more effective choice which
combines a good performance with a reasonable complexity.
The proposed algorithm with higher values ofp fills the gap
between these two extremes in the sparsity-dimension plane.
It provides a trade-off between performance and complexity
through the proper choice ofp.

The algorithm presented can be improved if more effi-
cient methods are used to search inWp-domain. One sug-

gestion is the use of EM algorithm to implement the MAP
estimator of sources under a Gaussian mixture prior. The
E-step would then lead to a quadratic cost function similar
to what presented here, but with weights determined by the
posterior distribution of the hidden variables obtained at the
previous iteration. Another approach is to somehow detect
which sources are active and use the information to construct
the appropriate weight matrix. This will eliminate the search
in Wp-domain. An estimation of the number of active sources
would also be helpful in deciding a proper value for thep
parameter. Recent results on estimation, detection, and clas-
sification based on mixture models may be of use here.
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