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ABSTRACT

Independent Component Analysis (ICA) can be used to
decompose functional Magnetic Resonance Imaging (fMRI)
data into a set of statistically independent images which
are likely to be the sources of fMRI data. After applying
ICA, a set of independent components are produced, and
then, a “meaningful” subset from these components must be
identified, because a large majority of components are non-
interesting. So, interpreting the components is an important
and also difficult task. In this paper, we propose a criterion
based on the entropy of time courses to automatically select
the components of interest. This method does not require to
know the stimulus pattern of the experiment.

Index Terms— tMRI, ICA, Entropy, Activation detection

1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) is one of
the imaging techniques that are used to study human brain
function and neurological disease diagnosis [1]. Popular
techniques in fMRI utilize the blood oxygenation level de-
pendent (BOLD) contrast, which is based on the differing
magnetic properties of oxygenated (diamagnetic) and de-
oxygenated (paramagnetic) blood [1]. In fact, when brain
neurons are activated due to the neural activity, a localized
change in blood flow and oxygenation is resulted. As a result
of this change, MR decay parameter is changed. Advantages
of fMRI over other functional imaging modalities such as
Electro Encephalography (EEG), Magneto Encephalography
(MEG) and Positron Emission Tomography (PET) include:
being non-invasive, having better spatial resolution than other
modalities and acquiring images in short time [2].

In order to analyze fMRI data, hypothesis-driven or data-
driven methods can be used [3]. In univariate hypothesis-
driven methods, simple approaches are used to produce
maps of task-related activations with estimates of their level
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of significance. In contrast, multivariate data-driven tech-
niques compute suitable statistical models in order to separate
“meaningful” activation [3].

Among data-driven techniques, Independent Compo-
nent Analysis (ICA) provides a powerful method for the
exploratory analysis of fMRI data. ICA can be used to
decompose an image sequence into a set of images or de-
compose it into a corresponding set of time-varying image
amplitudes. Spatial ICA (sICA) finds a set of mutually in-
dependent component (IC) images and a corresponding set
of unconstrained time courses, whereas temporal ICA (tICA)
finds a set of IC time courses and a corresponding set of
unconstrained images [4]. In general, fMRI data can be cate-
gorized into signals of interest and signals not of interest. The
signals of interest include task-related, function related, and
transiently task-related. The signals not of interest include
physiology-related, motion-related, and scanner related [2].

Result of researches show [4] that the measured fMRI data
is a mixture of a few interest and non-interest sources, and by
analyzing this data by ICA, it can be decomposed into a set
of statistically independent, non-Gaussian signals or images
which are likely to be the sources of fMRI data.

In this work, we first use ICA on fMRI data for detecting
active regions in brain, without a priori knowledge of neu-
ral stimulus. We use spatial ICA to find a set of mutually
independent component (IC) images and a corresponding set
of unconstrained time courses. Then, a “meaningful” subset
from the component set must be identified, because a large
majority of components are non-interesting. Many criteria
such as correlation method [4] and oscillating index [5] have
already been used for determining the “meaningful” compo-
nent maps. In this paper, we propose a criterion based on the
estimation of the entropies of time courses corresponding to
component maps, to select automatically the components of
interest. Up to our best knowledge, entropy criterion has not
already been used in determining “meaningful” components
after applying ICA for analyzing fMRI data, and we show
the results of this proposed method in Section 5. It should
also be noted that the correlation method can only be used for
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datasets for which the stimulus pattern of the experiment is
known a priori, however. our method does not require this a
priori information.

The paper is organized as follows. Basics of using ICA for
fMRI is discussed in Section 2. In Section 3, we explain our
proposed method for determining the components of interest.
Section 4 describes the details of the simulations. Finally,
in Section 5, we present the results of applying the proposed
method to an fMRI dataset.

2. REVIEW OF BASICS OF USING ICA FOR FMRI
ANALYSIS

The aim of analyzing fMRI data by ICA is to factor the data
matrix into a product of a set of time courses and a set of
spatial patterns [2]. Fistly, to produce the observation ma-
trix, each image that has been acquired in each time point is
converted into a one dimensional row signal vector, z ;(i =
1,...,m), where i is the index of each time point, and m is
the total number of time points. The length of the signal vec-
tor, v, is equal to the number of voxels per frame. The signal
x,; is considered as a linear combination of the independent
components, ¢;(j = 1,...,n), that is:

Xig =Y My-Cj (k=1,...,v), ey

j=1

where Xy, is the k™ voxel of the ™ observed image, M ij de-
notes the (i, j)™ element of the estimated mixing matrix and
C. stands for the k™ voxel of the j* estimated component.
So, the entire image data can be expressed as X = M - C
or C = W - X, where X is the m x v measured data ma-
trix, M is the m x n mixing (linear combination) matrix, and
C is the n x v component matrix. The n x m weight ma-
trix, W (also called unmixing matrix), is the pseudo-inverse
of M. Both of the weight matrix and the component matrix
can be obtained by iteratively updating the elements of W
such that the target components ¢; can meet some criteria (as
independent as possible to each other). The raw vector ¢; is
then reformed into a two dimensional image to construct the
component map. Those maps are fixed over time, while the
relative contribution of each map changes with a unique asso-
ciated time course (column of the mixing matrix, M).

3. ENTROPY BASED CRITERION FOR FINDING
MEANINGFUL COMPONENTS

After applying ICA on fMRI data and finding a set of inde-
pendent components, a “meaningful” subset of the compo-
nent set must be identified, because a large majority of com-
ponents are non-interesting. In this section, we propose a cri-
terion based on an estimation of the entropies of time courses
corresponding to component maps, to select automatically the
components of interest.
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It should be noted that the ‘" column of the estimated
mixing matrix in spatial ICA demonstrates the time course
corresponding to the i*" component map. We note now
that the time course of the components of interest change
smoother than the time course of noise components, and
hence, the components of interest have smaller entropies. So
we propose to use entropy for detecting the “meaningful”
components. Indeed, we calculate the entropy of each time
course corresponding to component maps, and we choose
the components with smaller entropies as the components of
interest.

However, since time courses are sequences in time, cal-
culating their entropies requires some attention. In effect, for
calculating Shannon entropy of a signal, one should not ne-
glect the dependence of successive samples. Hence, to model
this dependency, we model the time samples as a first order
Markov chain. To be more clear, we recall here some results
from [6, Chapter 6].

According to [6], if a source is of order M, its uncer-
tainty can be expressed as the difference of the uncertainty of
M + 1 successive symbols and that of M successive symbols.
In general, the uncertainty H(X1,...,X,) of n successive
symbols produced by a source is sometimes referred to as the
“n-gram” uncertainty of the source (the terms “unigram” and
“digram” are used for n = 1 and n = 2, respectively). Thus
the uncertainty of a source of order M is the difference of its
“(M + 1)-gram” and “M -gram” uncertainties [6].

Let J; and J> denote unigram and digram respectively.
Estimating J; is like the estimation of entropy where the
sequence was independent and identically-distributed (i.i.d).
That is, for estimating J;, we calculate the probability of
each symbol of the sequence as there were i.i.d, and we use
the Shannon formula. Similarly, for estimating J», we first
calculate the probability of each two adjacent points as where
any pair of successive points were independent from the other
pairs. In other words, if each time course is a quantized signal
with p possible levels (a1, as,...,a,), we can estimate .J;

and .J, from:
o
Ty ==Y plai)logp(as), )
i=1
o
Jo ==Y plaia;) log plaia;), 3)
ij=1

where p(a;) is the probability of occurrence of each symbol
a; and p(a;a;) is the probability of occurrence of each pair
(a;,a;). Hence, modeling the time courses as Markov chains
of first order, we estimate their entropies by:

H=1Jy ] )

Finally, the time courses with smaller entropies are detected
as active components, and the others as inactive components.
The number of time courses with smaller entropies which are



chosen as active is equal to number of trials in the fMRI task
(which is a priori known from the recording procedure).

4. DETAILS OF SIMULATIONS

Before applying ICA for analyzing fMRI data, the number
of independent components (ICs), n, must be determined.
The exact number of ICs is always unknown in practice, but
it should not be more than the number of measured signals
(n < m). We estimated the number of ICs by using the MDL
criterion. For our case, MDL has the form as [7]:

ﬁ NG
MDL(k) = —0.5(m — k) X v x In A
(mlka) ) E Ai
i=k+1
+0.5[1 +m.k — %(k — 1)} x Inwv 5)

where k is the number of ICs (sources), m is the total num-
ber of scans, v is the number of voxels per frame, and A;
denotes the 7 largest eigenvalue of the covariance matrix,
XXT™. The estimation of the number of ICs is determined as
the value of k& € {1, ..., m} for which MDL(k) is minimized.
Then, after determining the optimum number of ICs, ICA will
be used with this number of components, and a set of inde-
pendent spatial components will be produced. We employ
FastICA and infomax algorithms in our work. After obtaining
the components, in order to determine the “meaningful” com-
ponents, we use the entropy criterion which was illustrated in
Section 3.

5. RESULTS AND COMPARISON

For evaluation of the proposed method, we used a real fMRI
dataset!. This dataset contains two trials which are repeated
periodically. Each period included 55 seconds which stimu-
lus is elongated for 15 seconds and rest mode is elongated for
40 seconds. This pattern is repeated 4 times in an imaging
process. The task starts with trial 1, and trial 2 has the same
pattern of trial 1, but it occurs with 20 seconds latency. 119
scans (time points) were acquired during the imaging process
[8]. Results of analyzing this dataset by SPM software? are
available at the address of the data set. Since for analyzing
data by SPM, a priori knowledge about stimulus pattern of the
experiment and the Hemodynamic Response Function (HRF)
signal are needed, the results obtained by SPM can be used as
areference for comparing the results of our proposed method.
By applying MDL criterion, the number of components re-
duced from 119 to 80 components. After applying ICA for
fMRI data, 80 components and 80 corresponding time courses
were achieved. We estimated the entropies of all time courses
and selected two of them with smaller entropies. Figure 1

lwww.ece.unm.edu/~vcalhoun/courses/fMRI

Spring09/fmricourse.htm
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shows the detected active component maps by SPM and the
proposed method. Figures 2 and 3 show the time course cor-
responding to active component maps. In these figures, we
have also plotted the reference functions of trial 1 and trial 2.
Reference functions were obtained by analyzing data by SPM
and we used them to compare the estimated time courses by
our method with the original reference functions. It can be
seen that the estimated time courses correlate strongly with
the reference functions of the two trials.

To find and display voxels contributing significantly to the
“active” component map (find active regions), the map values
were scored to z-scores [4]. This solved the amplitude ambi-
guity problem of ICA components, because images with zero
mean and unit variance were achieved. Voxels whose absolute
z-scores are greater than a threshold can be considered to be
“active” voxels for that component. We set a primitive thresh-
old (difference of maximum and minimum value of z-scores
divided by two). We swept the threshold in a range from 0.7
to 1.4 times of a primitive threshold and plot receiver oper-
ating characteristic (ROC) curve for that range. ROC curve
plots true-positive rate (TPR) versus false positive rate (FPR).
When applying ROC curve to fMRI, TPR implies the ratio
of the number of detected voxels as activated among truly
activated voxels to the total number of truly activated brain
voxels and FPR indicates the ratio of the number of detected
voxels as activated among truly non-activated brain voxels to
the total number of truly non-activated brain voxels. In this
paper, we use active regions which were obtained by SPM as
truly activated brain voxels. Figure 4 shows ROC curve for
the detected active components. It also shows the comparison
of performance two ICA algorithms. As it is clear from this
figure, active regions can be detected accurately. The higher
area under the ROC curve shows the better performance.

(a) (b)

() (d)

Fig. 1. (a), (b): First and second active component maps es-
timated by SPM software. (c), (d): First and second active
component maps estimated by proposed method.
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Fig. 2. Time course corresponding to the first detected active
component and reference function of trial 1.

time course of active component map

—#— reference function of trial 2

L L L L L
0 20 40 60 80 100 120

Fig. 3. Time course corresponding to the second detected ac-
tive component and reference function of trial 2.

6. CONCLUSIONS

ICA has the capability to separate the fMRI data into inter-
est and non-interest sources (image maps or time course sig-
nals) which present qualitative information about the active
regions. After applying ICA, in order to automatically select
the components of interest, a criterion based on the entropies
of time courses was proposed. ROC curve showed that this
method can detect the active regions of “meaningful” compo-
nents accurately and consistent with our expectation. Further
work can include the use of this proposed method for more
real fMRI datasets and evaluate the results. It is also of in-
terest to examine other ICA algorithms and compare their re-
sults.
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Fig. 4. ROC curve for the detected active components.
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