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Current adaptive networks have several challenges in processing various data types, including medical signals, 
audio signals, telecommunication signals, etc. Researchers have introduced different methods to solve these 
challenges. However, these methods still show limitations in the face of certain data types. This paper aims 
to suggest a new framework using an adaptive filtering approach in a novel concept named hyper-network, in 
which, a set of hyper-nodes interact with each other, each of which can be a unique adaptive network. The 
proposed adaptive filtering framework can be based on the least means square (LMS) networks and lead to 
increased accuracy compared to existing techniques. We performed a theoretical analysis on the convergence of 
the mean and mean square for the proposed framework. Furthermore, we performed experiments to compare it 
with multiple other approaches suggested in the field, aiming to assess their effectiveness. The obtained results 
provide strong evidence for the effectiveness of our suggested framework and highlight its potential.

1. Introduction

Adaptive filters are extensively used in widespread applications 
across different domains such as system identification [1], improving 
speech quality [2], eliminating acoustic echoes or acoustic echo cancel-

lation (AEC) [3], noise removal [4], channel equalization [5], etc. To 
achieve higher accuracy and speed in estimating the target parameter, 
new generations of adaptive methods were introduced that combined a 
set of filters in a network. In these methods, the concept of node, edge 
and network were introduced under the idea of a graph, which was a 
mechanism for the interaction of filters.

Distributed adaptive estimation poses an appealing and demand-

ing challenge, enabling a network of interconnected nodes to carry 
out predetermined tasks based on streaming measurements. These tasks 
may include parameter estimation. While centralized strategies may 
leverage information gathered from the entire network, mostly, dis-

tributed strategies offer greater resilience in solving inference problems 
autonomously and collaboratively [6].

Recently, the focus of research on distributed estimation problems 
has been on situations where the networks are used to calculate the 
single target vector collectively [7]. Different strategies have been sug-

gested to process data sequentially across networks, such as consensus 
strategies [8–15], incremental strategies [16–20], and diffusion strate-

gies [21–23]. Diffusion strategies are particularly appealing since they 
offer broader stability ranges and improved adaptation performance 
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when constant step-sizes allow continuous learning [13]. Consequently, 
this article concentrates on this category of strategies. These strategies 
aim to estimate a shared parameter vector through the minimization of a 
global criterion that merges neighborhood cost functions. Nodes interact 
locally by cooperating solely with their neighbors, without exchanging 
any global information. As a result, the networks leverage spatial and 
temporal diversity within the data, leading to powerful learning and 
tracking capabilities [13,24]. The adaptive networks’ performance has 
been widely investigated in the literature across various scenarios, in-

cluding imperfect communication and model non-stationarities [25,26]. 
Additionally, more general cost functions and data models have been 
considered within this framework [24,27–30], by including additional 
regularizers [31–33], or extending its use to other scenarios [34–37].

Previous studies on LMS propagation strategies have operated under 
the working hypothesis that nodes collaborate to obtain a single target 
vector. These types of problems are referred to as single-task problems. 
Although, numerous topics of interest involve multiple optimal parame-

ter vectors that must be inferred simultaneously and jointly [38–40]. In 
the field of distributed estimation, that is the emphasis of this research, 
there are numerous scenarios where agents are exposed to measuring 
data derived from distinct models or sensing data that fluctuates in the 
spatial domain. Multi-task problems arise when multiple optimal param-

eter vectors need to be simultaneously estimated. These are common in 
a variety of fields. For example, multi-channel data, such as EEG signals, 
audio signals obtained from microphone arrays, and telecommunication 
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signals received from antenna arrays, contain data from numerous chan-

nels, sources, or sensors within the environment.

In our article, we suggest a novel cooperation framework based on 
the hyper-network concept, which is inspired by cooperation between 
networks (and not only nodes), and in this new concept, we have col-

laborative networks. In other words, it can be imagined that we have a 
network of hyper-nodes, where each hyper-node consists of an internal 
network. Each internal network can have its unique strategy and inter-

act and cooperate towards the overall goal or a part of the goal of the 
more extensive network. This image will be more similar to the nesting 
system in nature. We assess the effectiveness of our suggested frame-

work using simulation trials and offer a theoretical examination of the 
convergence of our approach, which can use the diffusion least mean 
square (DLMS) in all or part of its hyper-nodes, for example.

The key findings of this research are outlined below:

• An adaptive filter-based hyper-network framework has been devel-

oped, which offers superior efficacy in filtering multi-channel data.

• We have conducted theoretical investigations into the mean and 
mean square behaviors of the suggested framework.

• A variety simulations were conducted to evaluate the precision of 
the suggested framework on various types of multi-channel data.

In summary, the proposed algorithm is described in section two. The 
third part presents how well the proposed framework performs in the-

ory when certain simplifications are taken into account. Furthermore, 
we provide numerical simulations in the fourth section, comparing the 
algorithm’s performance to traditional algorithms in a filtering environ-

ment. Lastly, in the fifth section, we conclude our findings in the article.

Notations: We will utilize the following notation conventions, in this 
paper: 
- We denote vectors and Matrices by bold letters, like u𝑖,𝑘(𝑛). 
- Scalars are represented by small letters such as 𝑑(𝑛). 
- The notation (.)𝑇 denotes the transpose for the matrix and vector. 
- The expectation operator is denoted by the symbol E[.].

2. Proposed framework

Ensuring precise filtering of samples poses a significant challenge 
when dealing with various data sets. The advent of adaptive filters has 
revolutionized data processing by employing filters with dynamically 
updated coefficients over time. Moreover, integrating adaptive struc-

tures within networks has enabled the processing of larger data sets 
at increased speed and accuracy. In line with the evolution of this ap-

proach, we aim to introduce a concept termed a hyper-network, serving 
as a comprehensive framework for data filtering. Within this innovative 
framework, each hyper-network comprises interconnected hyper-nodes, 
each possessing a unique structure aligned with the specified goals for 
processing a given data set. These hyper-nodes can be likened to net-

works as described in existing literature within the field. Not only does 
this new hyper-network encompass all previously identified network 
types, but it also can generate novel designs wherein diverse networks 
interact with one another. The proposed adaptive framework, which 
can be constructed using various cooperative strategies (such as based 
on Least Mean Square (LMS)), provides greater accuracy compared to 
current techniques. In the maturity of the proposed method theory, we 
can use any loss function in our optimization problem, such as least 
mean square (LMS), correntropy, Huber, Log-cosh, etc. But in this ar-

ticle, only for the sake of simplicity and for a better understanding of 
the optimization problem, we used the LMS loss function, which led to 
nodes with the LMS optimization problem. Also, nodes are assumed to 
be dependent across the hyper-network. Based on the descriptions, it 
is evident that single-task networks, multi-task networks, and clustered 
multi-task networks [41] are all special cases of the proposed hyper-

networks. If all hyper-nodes utilize the same strategy, such as DLMS, 
and all are single-task, with the hyper-network also being single-task, 

then the hyper-network will have equivalent performance to a standard 
single-task DLMS network. Additionally, when all hyper-nodes use the 
same strategy, for example, DLMS and all are single-task, but the hyper-

network is multi-task, then the hyper-network can perform similarly to 
a standard clustered multi-task DLMS network. These two cases repre-

sent the most straightforward scenarios for the proposed hyper-network. 
Our proposed hyper-network has copied its nature from real-world net-

works among many animals, plants, parasites, bacteria, etc., where it is 
a place full of nested sets of collaborators. In general, these networks are 
nested up to several layers (even to infinity), but given the limitations 
of our work in theory and simulation, the goal is to simplify the prob-

lem solving. Accordingly, this nesting is considered in only two layers, 
which are: One layer related to the network within each hyper-node, 
and the other related to the hyper-network. In the following, we con-

ducted a theoretical analysis of the mean and mean square convergence 
of the proposed framework. Also, we examined this framework and its 
operational mechanisms.

2.1. Hyper-network model

In the proposed method, it can be claimed that we are facing a 
hyper-network in which a set of several networks interact with each 
other. This interaction is of two types: an internal interaction (int-int) 
between the nodes of each network, and an external interaction (ext-

int) between networks. For a better understanding of this issue, Fig. 1
shows an example of this hyper-network. According to this figure, a 
hyper-network consists of a set of hyper-nodes, each hyper-node be-

ing a unique network with internal interactions. Also, a hyper-node 
has external interactions with other hyper-nodes in its neighborhood. 
Therefore, an inner neighborhood (int-nei) and an outer neighborhood 
(out-nei) will be defined corresponding to these definitions. Also, for 
these neighborhoods, two cooperation weights are defined: inner coop-

eration weights (for inner interactions) and outer cooperation weights 
(for outer interactions), respectively. We assume that 𝑖-th hyper-node 
has 𝑁𝑖 nodes, and the hyper-network has 𝑁𝑇 as total nodes, i.e., ∑𝐶

𝑖=1 𝑁𝑖 =𝑁𝑇 , in which 𝐶 is the total number of hyper-nodes. As seen 
in Fig. 1, for internal node 𝑘 of hyper-node 𝑖, there are a unique de-

sired signal 𝑑𝑖,𝑘(𝑛) and an input signal u𝑖,𝑘(𝑛) in time 𝑛. 𝑑𝑖,𝑘(𝑛) is scalar 
and u𝑖,𝑘(𝑛) is 𝑀 × 1 vector with a positive definite (PD) covariance ma-

trix 𝑹𝑢,𝑖,𝑘 = 𝐸{u𝑖,𝑘(𝑛)u𝑇
𝑖,𝑘
(𝑛)} > 0, which is correlated with 𝑑𝑖,𝑘(𝑛). The 

𝑀 ×1 input vector 𝒖𝑖,𝑘(𝑛) = [𝑢𝑖,𝑘(𝑛), 𝑢𝑖,𝑘(𝑛−1), ..., 𝑢𝑖,𝑘(𝑛−𝑀 +1)]𝑇 con-

sisting of the recent 𝑀 samples of the signal 𝑢𝑖,𝑘(𝑛), and 𝜽∗𝑖,𝑘 ∈𝑅𝑀×1 is 
an 𝑀 × 1 optimal solution for unknown target vector of the 𝑘-th node 
of 𝑖-th hyper-node i.e., 𝜽𝑖,𝑘 = [𝜃0,𝑖,𝑘, 𝜃1,𝑖,𝑘, ..., 𝜃𝑀−1,𝑖,𝑘]𝑇 . In the general 
case, the desired signal has the following form:

𝑑𝑖,𝑘(𝑛) = 𝒖𝑇𝑖,𝑘(𝑛)𝜽
∗
𝑖,𝑘 + 𝜂𝑖,𝑘(𝑛), (1)

where, 𝜂𝑖,𝑘(𝑛) is an additive noise with 𝜎2
𝜂𝑖,𝑘

variance and zero-mean 
which is independent of 𝒖𝑖,𝑘(𝑛). If we assume that each hyper-node is 
based on single-task to achieve a target parameter across its network 
(i.e., we have {𝜽1, ...,𝜽𝑖, ...,𝜽𝐶} instead of {𝜽1, ...,𝜽𝑁𝑇

}), we have:

𝜽∗𝑖,𝑘 = 𝜽
∗
𝑖 , ∀𝑘 ∈ {1, ...,𝑁𝑖}. (2)

According to this, although each hyper-node is single-task, each one has 
a different task from the others, which means that the hyper-network 
is multi-task and it has the signal model as 𝑑𝑖,𝑘(𝑛) = 𝒖𝑇𝑖,𝑘(𝑛)𝜽

∗
𝑖 + 𝜂𝑖,𝑘(𝑛). 

Additionally, the general form of the error at the 𝑖, 𝑘-th node for (1) is 
defined as:

𝑒𝑖,𝑘(𝑛) = 𝑑𝑖,𝑘(𝑛) − 𝑦𝑖,𝑘(𝑛) = 𝑑𝑖,𝑘(𝑛) − 𝒖𝑇𝑖,𝑘(𝑛)𝜽𝑖,𝑘(𝑛) (3)

Here, 𝜽𝑖,𝑘(𝑛) represents an estimate of the optimal value 𝜽∗𝑖,𝑘 at iteration 
𝑛.
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Fig. 1. The overall proposed framework. 

2.2. Problem formulation

First, let’s stack all the target vectors of all the nodes in the en-

tire hyper-network and display it with a new notation like this: 𝜽 =
{𝜽1, ...,𝜽𝑁𝑇

} = {𝜽1,1, ...,𝜽1,𝑁1
,𝜽2,1, ...,𝜽2,𝑁2

, ...,𝜽𝐶,1, ...,𝜽𝐶,𝑁𝐶
,}. Second, 

let us define a cost function 𝐽𝐻𝑦𝑝𝑒𝑟−𝑛𝑒𝑡 for hyper-network consisting of 
the weighted set of 𝐶 global cast function 𝐽𝐻𝑦𝑝𝑒𝑟−𝑛𝑜𝑑

𝑖 corresponding to 
𝑖-th hyper-node, which can be formulated as follows:

𝐽𝐻𝑦𝑝𝑒𝑟−𝑛𝑒𝑡(𝜽) =
𝐶∑
𝑖=1 

𝑏𝑖𝐽
𝐻𝑦𝑝𝑒𝑟−𝑛𝑜𝑑
𝑖 =

𝐶∑
𝑖=1 

𝑏𝑖

𝑁𝑖∑
𝑘=1

𝐽𝑖,𝑘(𝜽𝑖,𝑘) (4)

where 𝐽𝐻𝑦𝑝𝑒𝑟−𝑛𝑜𝑑
𝑖 and 𝑏𝑖 are, respectively, the cost function of the 𝑖-

th hyper-node and the combination weight of 𝐽𝐻𝑦𝑝𝑒𝑟−𝑛𝑜𝑑
𝑖 with non-

negative scalar values. Each of these hyper-nodes can manage their 
network interactions with a unique approach according to the defini-

tion of 𝐽𝑖,𝑘(𝜽𝑖,𝑘), which is the cost function of the 𝑘-th node of the 
𝑖-th Hyper-node. Imagine a simple hyper-network, depicted in Fig. 1, 
composed of a group of hyper-nodes, each supporting various interac-

tion strategies corresponding to the number of hyper-nodes present in 
the hyper-network. For example, as drawn in this figure, there are five 
hyper-nodes, and according to this number, it can be said that a max-

imum of five different strategies can be used in the hyper-network (as 
many hyper-nodes as possible). These strategies can be different types 
suggested in the literature, for example, single-task adaptation-then-

combination (ATC) DLMS (ATC-DLMS), single-task combination-then-

adaptation (CTA) DLMS (CTA-DLMS), multi-task ATC-DLMS, multi-task 
CTA-DLMS, diffusion recursive least squares (DRLS), and so on. For the 
sake of simplicity, let’s examine DLMS for every hyper-node in this con-

text. Therefore using (1) the above equation is:

{𝜽∗} = arg min 
{𝜽𝑖,𝑘}

𝐽𝐻𝑦𝑝𝑒𝑟−𝑛𝑒𝑡(𝜽)

= arg min 
{𝜽𝑖,𝑘}

𝐶∑
𝑖=1 

𝑏𝑖

𝑁𝑖∑
𝑘=1

𝐽𝑖,𝑘(𝜽𝑖,𝑘) = arg min 
{𝜽𝑖,𝑘}

𝐶∑
𝑖=1 

𝑏𝑖

𝑁𝑖∑
𝑘=1

𝐸|𝑑𝑖,𝑘(𝑛) − 𝒖𝑇𝑖,𝑘(𝑛)𝜽𝑖,𝑘|2
(5)

We are trying to solve this general form of the optimization prob-

lem of the proposed framework, for which various iterative solution 
strategies can be proposed. In (5), we assumed for simplicity that all 
hyper-nodes are based on the diffusion strategy. Then, we obtained the 

hyper-network optimization problem using the DLMS concept. There-

fore, two solution strategies can be used for this, i.e., ATC and CTA 
[42,43,40]. As mentioned in these references, these two iterative solu-

tion methods are similar, but in CTA, the step of aggregation is carried 
out before the step of adaptation. We used the ATC diffusion strategy 
for our problem:

𝝍 𝑖,𝑘(𝑛) = 𝜽𝑖,𝑘(𝑛− 1) − 𝜇𝑖,𝑘

∑
𝑙∈𝑁𝑖,𝑘

▿̂𝜽𝑇
𝑖,𝑙,𝑘

𝐽𝑖,𝑙,𝑘(𝜽𝑖,𝑙,𝑘(𝑛− 1))

𝜽𝑖,𝑘(𝑛) =
∑

𝑙∈𝑁𝑖,𝑘

𝑎𝑖,𝑙,𝑘𝝍 𝑖,𝑙(𝑛),
(6)

where ▿ denotes the gradient operation and ▿̂𝜽𝑇
𝑖,𝑙,𝑘

is the approximation 

for the true gradient vector ▿𝜽𝑇
𝑖,𝑙,𝑘

with respect to 𝜽𝑇
𝑖,𝑙,𝑘. For equation (5), 

we obtain ▿̂𝜽𝑇
𝑖,𝑙,𝑘

𝐽𝑖,𝑙,𝑘(𝜽𝑖,𝑙,𝑘(𝑛 − 1)) = −2𝒖𝑖,𝑙,𝑘[𝑑𝑖,𝑙,𝑘(𝑛) − 𝒖𝑇𝑖,𝑙,𝑘(𝑛)𝜽𝑖,𝑙,𝑘(𝑛 −
1)]. In addition, 𝜇𝑖,𝑘 is a step-size for each node within each hyper-node 
and can be assumed to be constant or variable. The combination coef-

ficients 𝑎𝑖,𝑙,𝑘 have the non-negative scalar values which consists of 𝐶
matrices. The conditions below are valid for each coefficient:

𝑁𝑖,𝑘∑
𝑙=1 

𝑎𝑖,𝑙,𝑘 = 1, 𝑎𝑛𝑑 𝑎𝑖,𝑙,𝑘 = 0 𝑖𝑓 𝑙 ∉𝑁𝑖,𝑘, (7)

where 𝑁𝑖,𝑘 is the neighborhood of the 𝑘-th node in the 𝑖-th hyper-node. 
𝑎𝑖,𝑙,𝑘 can be updated at any step based on solving an optimization prob-

lem, however, we assumed here that it is a positive free variable that is 
chosen by the user. With the notation in (5), we can obtain the following 
ATC strategy to solve this problem:

𝝍 𝑖,𝑘(𝑛) = 𝜽𝑖,𝑘(𝑛− 1) + 2𝜇𝑖,𝑘

∑
𝑙∈𝑁𝑖,𝑘

𝒖𝑖,𝑙,𝑘(𝑛)
[
𝑑𝑖,𝑙,𝑘(𝑛) − 𝒖𝑇𝑖,𝑙,𝑘(𝑛)𝜽𝑖,𝑙,𝑘(𝑛− 1)

]
𝜽𝑖,𝑘(𝑛) =

∑
𝑙∈𝑁𝑖,𝑘

𝑎𝑖,𝑙,𝑘𝝍 𝑖,𝑙(𝑛).

(8)

Here, the ATC and CTA strategies of the proposed framework are sum-

marized in Algorithms 1 and 2. We focused on the ATC diffusion multi-

task LMS algorithm over each hyper-node and also the ATC diffusion 
multi-task LMS algorithm throughout the hyper-network. In the rest of 
this section and the following sections, this assumption is used. 
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Algorithm 1 Diffusion LMS for multitask hyper-networks using ATC strategy.

Input: 𝒖𝑖,𝑘(𝑛), 𝑑𝑖,𝑘(𝑛), 𝑖 = 0, ..., 𝐶, 𝑘 = 1, ...,𝑁𝑖

Output: 𝜽𝑖,𝑘(𝑛)
1 Initialize 𝜽𝑖,𝑘(0) = 0
2 for each instant of time, 𝑛≥ 0 do

3 for each hyper-agent 𝑖 = 1, ..., 𝐶 do

4 start with 𝜽𝑖,𝑘(0) = 0 for all 𝑘 over hyper-node 𝑖 and repeat

5 
⎧⎪⎨⎪⎩
𝝍 𝑖,𝑘(𝑛) = 𝜽𝑖,𝑘(𝑛− 1) + 2𝜇𝑖,𝑘

∑
𝑙∈𝑁𝑖,𝑘

𝒖𝑖,𝑙,𝑘(𝑛)
[
𝑑𝑖,𝑙,𝑘(𝑛) − 𝒖𝑇

𝑖,𝑙,𝑘
(𝑛)𝜽𝑖,𝑙,𝑘(𝑛− 1)

]
𝜽𝑖,𝑘(𝑛) =

∑
𝑙∈𝑁𝑖,𝑘

𝑎𝑖,𝑙,𝑘𝝍 𝑖,𝑙(𝑛)

6 end

7 end

Algorithm 2 Diffusion LMS for multitask hyper-networks using CTA strategy.

Input: 𝒖𝑖,𝑘(𝑛), 𝑑𝑖,𝑘(𝑛), 𝑖 = 0, ..., 𝐶, 𝑘 = 1, ...,𝑁𝑖

Output: 𝜽𝑖,𝑘(𝑛)
1 Initialize 𝜽𝑖,𝑘(0) = 0
2 for each instant of time, 𝑛≥ 0 do

3 for each hyper-agent 𝑖 = 1, ..., 𝐶 do

4 start with 𝜽𝑖,𝑘(0) = 0 for all 𝑘 over hyper-node 𝑖 and repeat

5 
⎧⎪⎨⎪⎩
𝝍 𝑖,𝑘(𝑛− 1) =

∑
𝑙∈𝑁𝑖,𝑘

𝑎𝑖,𝑙,𝑘𝜽𝑖,𝑘(𝑛− 1)

𝜽𝑖,𝑘(𝑛) =𝝍 𝑖,𝑘(𝑛− 1) + 2𝜇𝑖,𝑘

∑
𝑙∈𝑁𝑖,𝑘

𝒖𝑖,𝑙,𝑘(𝑛)
[
𝑑𝑖,𝑙,𝑘(𝑛) − 𝒖𝑇

𝑖,𝑙,𝑘
(𝑛)𝝍 𝑖,𝑙,𝑘(𝑛− 1)

]
6 end

7 end

2.3. Performance analysis

This section discusses the evaluation of the suggested method in re-

lation to mean and mean square errors. The efficiency analysis of the 
proposed algorithm for the ATC model is addressed, and a similar anal-

ysis for the CTA strategy can also be performed, albeit it is not discussed 
here. Also, in this section and the experiments section, we focus on the 
signal model presented in (1), i.e., 𝑑𝑖,𝑘(𝑛) = 𝒖𝑇𝑖,𝑘(𝑛)𝜽

∗
𝑖,𝑘 + 𝜂𝑖,𝑘(𝑛). Before 

we commence, let’s establish the following two assumptions:

Assumption 1. All input signals u𝑖,𝑘(𝑛) are temporally stationary, white, 
real-valued scalars, and zero-mean with the covariance matrix of 𝑹𝑢𝑖,𝑘

=
𝐸{u𝑖,𝑘(𝑛)u𝑇

𝑖,𝑘
(𝑛)}.

Assumption 2. All input signals u𝑖,𝑘(𝑛) are generated by spatially and 
temporally independent Gaussian sources, also are independent of ad-

ditive noise 𝜂𝑖,𝑘(𝑛) ∈𝑅 with variance 𝜎2
𝜂𝑖,𝑘

.

As nodes and hyper-nodes share data, their current update is in-

fluenced using the weighted average obtained for previous estimates. 
Thus, studying the performance of the entire network would be benefi-

cial in calculating this inter-hyper-node and inter-node dependency. To 
progress toward this objective, the introduction of new variables is nec-

essary. The proposed algorithm for the 𝑘-th node in the 𝑖-th hyper-node 
in the ATC strategy can be articulated as follows:

𝑘 ∈ [1, ...,𝑁𝑖] ∶

{
𝝍 𝑖,𝑘(𝑛) = 𝜽𝑖,𝑘(𝑛− 1) + 𝜇′

𝑖,𝑘

∑
𝑙∈𝑁𝑖,𝑘

𝒖𝑖,𝑙,𝑘(𝑛)
[
𝑒𝑖,𝑙,𝑘(𝑛)

]
𝜽𝑖,𝑘(𝑛) =

∑
𝑙∈𝑁𝑖,𝑘

𝑎𝑖,𝑙,𝑘𝝍 𝑖,𝑙(𝑛)

(9)

Also, in this equation, a new step-size is defined, which is equal to 𝜇′
𝑖,𝑘

=
2𝜇𝑖,𝑘. It is necessary to define some new variables in which local forms 
are rewritten as global variables. This operation is done by stacking local 
vectors and also by using block matrices as follows:

𝚯𝑛 = 𝑐𝑜𝑙{𝜽1(𝑛), ...,𝜽𝑁𝑇
(𝑛)}𝑀𝑁𝑇 ×1, (10)

𝚽𝑛 = 𝑐𝑜𝑙{𝝍1(𝑛), ...,𝝍𝑁𝑇
(𝑛)}𝑀𝑁𝑇 ×1, (11)

𝑼 𝑛 = 𝑑𝑖𝑎𝑔{𝒖1(𝑛), ...,𝒖𝑁𝑇
(𝑛)}𝑁𝑇 ×𝑀𝑁𝑇

, (12)

𝚼 = 𝑑𝑖𝑎𝑔{𝜇′
1, ..., 𝜇

′
𝑁𝑇

}𝑀𝑁𝑇 ×𝑀𝑁𝑇
, (13)

𝑫𝑛 = 𝑐𝑜𝑙{𝑑1(𝑛), ..., 𝑑𝑁𝑇
(𝑛)}𝑁𝑇 ×1, (14)

𝑽 𝑛 = 𝑐𝑜𝑙{𝜂1(𝑛), ..., 𝜂𝑁𝑇
(𝑛)}𝑁𝑇 ×1, (15)

where 𝑐𝑜𝑙{.} operator stacks its vector arguments. Also, 𝑑𝑖𝑎𝑔{.} is an 
operator that arranges its input argument in the form of a block diag-

onal matrix. According to the definitions provided above, a new set of 
equations is formulated to represent the entire hyper-network. To start 
with, the relationship between the measurements is as follows:

𝑫𝑛 =𝑼 𝑛𝚯∗ + 𝑽 𝑛, (16)

where, 𝚯∗=𝑰𝜽∗ and 𝑰 is a matrix in form of 𝑰=𝑐𝑜𝑙{𝑰𝑀, ...,𝑰𝑀}𝑀𝑁𝑇 ×𝑀 . 
Therefore, 𝚯∗ is one vector with 𝑀𝑁𝑇 ×1 dimension denoted the opti-

mal value of 𝚯. Then, the update equations for the entire hyper-network 
are rewritten as follows:

𝑗 ∈ [1, ...,𝑁𝑇 ] ∶
⎧⎪⎨⎪⎩
𝚽𝑛 =𝚯𝑛−1 +𝚼𝑼𝑇

𝑛 (𝑫𝑛 −𝑼 𝑛𝚯𝑛−1)
𝚼 = 𝜇𝑖,𝑘𝛀
𝛀 = [2𝑰𝑀, ...,2𝑰𝑀 ]
𝚯𝑛 =𝑩𝚽𝑛

, (17)

where, 𝑩 = 𝑨⊗ 𝑰𝑚 is one matrix with 𝑀𝑁𝑇 × 𝑀𝑁𝑇 dimension and 
⊗ is Kronecker product. Also, 𝑨 is the weighted matrix with 𝑁𝑇 ×𝑁𝑇

dimension where {𝑨}𝓁,𝑘 = 𝑎𝓁,𝑘. Mean and mean square analysis of the 
proposed method are performed using the above equation (17). First, 
the target parameter error vector for node 𝑘 in hyper-node 𝑖 is defined 
as follows:

�̃�𝑖,𝑘(𝑛) = 𝜽∗𝑖,𝑘 − 𝜽𝑖,𝑘(𝑛) (18)

Note 1. In mean analysis, we try to obtain a bound for the step-size, 
which guarantees convergence in the average, i.e., 0 < 𝜇𝑖,𝑘 < 𝑈𝐵, where 
𝑈𝐵 denote the upper bound.

The target parameter error vector for the entire hyper-network is 
equal to:

�̃�𝑛 =𝚯∗ −𝚯𝑛 (19)

Since 𝑩𝚯∗ =𝚯∗, the target parameter error vector for the entire hyper-

network can be rewritten in terms of other matrices:
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𝑗 ∈ [1, ...,𝑁𝑇 ] ∶ �̃�𝑛 =𝚯∗ −𝚯𝑛 =𝚯∗ −𝑩𝚽𝑛

=𝚯∗ −𝑩
[
𝚯𝑛−1 +𝚼𝑼𝑇

𝑛 (𝑫𝑛 −𝑼 𝑛𝚯𝑛−1)
]

=𝐵�̃�𝑛−1 −𝑩
[
𝚼𝑼𝑇

𝑛 (𝑫𝑛 −𝑼 𝑛𝚯𝑛−1)
]

=𝑩�̃�𝑛−1 −𝑩
[
𝚼𝑼𝑇

𝑛 (𝑼 𝑛𝚯∗ + 𝑽 𝑛 −𝑼 𝑛𝚯𝑛−1)
]

=𝑩�̃�𝑛−1 −𝑩
[
𝚼𝑼𝑇

𝑛 (𝑼 𝑛�̃�𝑛−1 + 𝑽 𝑛)
]

=𝑩
[
𝑰𝑀𝑁𝑇

−𝚼𝑼𝑇
𝑛𝑼 𝑛

]
�̃�𝑛−1 −𝑩𝚼𝑼𝑇

𝑛 𝑽 𝑛

(20)

In the following, this equation in (20) is used for mean and mean square 
analysis.

2.3.1. Mean behavior

To check the stability and convergence for the mean of the global 
error vector in the proposed method, it is necessary to obtain the math-

ematical expectation of the global error vector in relation (20).

Note 2. In the mean square analysis, an expression of the transient state 
and steady state for mean square deviation (MSD) is obtained.

The MSD for node 𝑘, hyper-node 𝑖, as well as for the whole hyper-

network is as follows:

𝑀𝑆𝐷𝑖,𝑘 =𝐸
[‖‖�̃�𝑖,𝑘(𝑛)‖‖2] =𝐸

[‖‖𝜽∗𝑖 − 𝜽𝑖,𝑘(𝑛)‖‖2] , (21)

𝑀𝑆𝐷𝑖 =
1 
𝑁𝑖

𝑁𝑖∑
𝑘=1

𝑀𝑆𝐷𝑘; (22)

𝑀𝑆𝐷𝐻𝑦−𝑛𝑒𝑡 =
1 
𝐶

𝐶∑
𝑖=1 

𝑀𝑆𝐷𝑖. (23)

Note 3. Matrix 𝚼 is assumed to be independent of the input signal ma-

trix 𝑼 𝑛.

As a result, we will have:

𝑗 ∈ [1, ...,𝑁𝑇 ] ∶ 𝐸
[
𝚼𝑼𝑇

𝑛𝑼 𝑛

]
≅𝐸 [𝚼]𝐸

[
𝑼𝑇

𝑛𝑼 𝑛

]
=𝐸 [𝚼]𝑹𝑈 (24)

where 𝑹𝑈 =𝐸
[
𝑼𝑇

𝑛𝑼 𝑛

]
is the auto-correlation matrix for the input sig-

nal matrix 𝑼 𝑛.

By taking 𝐸 [.] from the sides of (20), we will have:

𝐸
[
�̃�𝑛

]
=𝑩

[
𝑰𝑀𝑁𝑇

−𝐸 [𝚼]𝑹𝑢

]
𝐸
[
�̃�𝑛−1

]
−𝑩𝐸 [𝚼]𝐸

[
𝑼𝑇

𝑛

]
𝐸
[
𝑽 𝑛

]
(25)

Using assumption 2, the mathematical expectation of the second term 
on the right side in the above relation (25) is zero. Therefore, we have:

𝐸
[
�̃�𝑛

]
=𝑩

[
𝑰𝑚𝑁 −𝐸 [𝚼]𝑹𝑢

]
𝐸
[
�̃�𝑛−1

]
(26)

In the above equation, to ensure the convergence of the mean error 
vector, the following must be satisfied:||||𝜆max

(
𝑩
[
𝑰𝑀𝑁𝑇

−𝐸 [𝚼]𝑹𝑢

])|||| = ||𝜆max (𝑩𝒁)|| < 1 (27)

where 𝒁 =
[
𝑰𝑀𝑁𝑇

−𝐸 [𝚼]𝑹𝑢

]
. Also, 𝜆max (.) is the maximum eigen-

value operation. That means the spectra of 𝑩𝒁 matrix must be inside the 
unit circle. This issue originates from Lyapunov stability, which states 
that a matrix is stable if all its eigenvalues lie within the unit circle. Us-

ing the inequality ‖𝑩𝒁‖2 ≤ ‖𝑩‖2‖𝒁‖2, the fact that 𝒁 is a Hermitian 
matrix, and 𝑩 =𝑨⊗ 𝑰𝑀 , the above equation (27) can be rewritten as 
follows:

||𝜆max (𝑩𝒁)|| ≤ ‖𝑨‖2 ||𝜆max (𝒁)|| (28)

Since ‖𝑨‖2 = 1, for non-cooperative designs we have 𝑩 = 𝑰𝑀𝑁𝑇
. So 

based on this, the recent equations are rewritten as follows:

||𝜆max (𝑩𝒁)|| ≤ ||𝜆max (𝒁)|| (29)

Based on this, it can be said that cooperation plans can improve the 
stability of the system. Therefore, the algorithm is stable if:

lim
𝑁𝑇 →∞

𝑁𝑇∏
𝑛=0 

[
𝑰𝑀𝑁𝑇

−𝐸
[
𝜇𝑖,𝑘

]
𝑹𝑢𝑖,𝑘

]
→ 0 (30)

This is established if the average step-size is in the following bound:

0 < 𝐸
[
𝜇𝑖,𝑘

]
<

2 

𝜆max

(
𝑹𝑢𝑖,𝑘

) (31)

To obtain step-size bands, we will continue:

0 < 𝜇𝑖,𝑘 <
2 

𝜆max

(
𝑹𝑢𝑖,𝑘

) (32)

So, the proposed method is stable when the step-size for each node is in 
the bands (32).

Note 4. The proposed algorithm with ATC strategy has convergence 
condition 0 < 𝜇𝑖,𝑘 < 2 

𝜆max
(
𝑹𝑢𝑖,𝑘

) .

2.3.2. Mean square behavior

Here, the performance of the mean square for the proposed method is 
investigated. For this purpose, it is necessary first to obtain the weighted 
norm of equation (20) and then calculate its expectation. In other words, 
to analyze the mean square efficiency, 𝐸

[‖‖�̃�𝑛
‖‖𝚺2

]
should be evaluated 

using the equation (20), where 𝚺 is a positive definite Hermitian matrix. 
In this section, the equations are thoroughly investigated for the entire 
hyper-network. So we will have:

𝑗 ∈ [1, ...,𝑁𝑇 ] ∶ 𝐸
[‖‖�̃�𝑛

‖‖2Σ]
=𝐸

[‖‖‖‖𝑩 [
𝑰𝑀𝑁𝑇

−𝚼𝑼𝑇
𝑛𝑼 𝑛

]
�̃�𝑛−1 −𝑩𝚼𝑼𝑇

𝑛 𝑽 𝑛

‖‖‖‖𝚺2

]
=𝐸

[‖‖�̃�𝑛−1‖‖2𝑩𝑇 𝚺𝑩

]
−𝐸

[‖‖�̃�𝑛−1‖‖2𝑩𝑇 𝚺𝚪𝑛𝑼𝑛

]
−𝐸

[‖‖�̃�𝑛−1‖‖2𝑼𝑇
𝑛 𝚪

𝑇
𝑛 𝚺𝑩

]
+𝐸

[‖‖�̃�𝑛−1‖‖2𝑼𝑇
𝑛 𝚪

𝑇
𝑛 𝚺𝚪𝑛𝑼𝑛

]
+𝐸

[
𝑽 𝑇

𝑛 𝚪
𝑇
𝑛 𝚺𝚪𝑛𝑽 𝑛

]
=𝐸

[‖‖�̃�𝑛−1‖‖2�̃�]+𝐸
[
𝑽 𝑇

𝑛 𝚪
𝑇
𝑛 𝚺𝚪𝑛𝑽 𝑛

]
(33)

where in (33), 𝚪𝑛 =𝑩𝚼𝑼𝑇
𝑛 . Also, in this, we have:

�̃� =𝑩𝑇𝚺𝑩 −𝑩𝑇𝚺𝑩𝚼𝑼𝑇
𝑛𝑼 𝑛 −𝑼𝑇

𝑛𝑼 𝑛𝚼𝑇𝑩𝑇𝚺𝑩

+𝑼𝑇
𝑛𝑼 𝑛𝚼𝑇𝑩𝑇𝚺𝑩𝚼𝑼𝑇

𝑛𝑼 𝑛

=𝑩𝑇𝚺𝑩 −𝑩𝑇𝚺𝚪𝑛𝑼 𝑛 −𝑼𝑇
𝑛 𝚪

𝑇
𝑛 𝚺𝑩 +𝑼𝑇

𝑛 𝚪
𝑇
𝑛 𝚺𝚪𝑛𝑼 𝑛

(34)

which, according to the assumption of independence of data and apply-

ing the 𝐸[.] operator, we obtained:

𝐸
[
�̃�
]
=𝑩𝑇𝚺𝑩 −𝑩𝑇𝚺𝐸

[
𝚪𝑛𝑼 𝑛

]
−𝐸

[
𝑼𝑇

𝑛 𝚪
𝑇
𝑛

]
𝚺𝑩

+𝐸
[
𝑼𝑇

𝑛 𝚪
𝑇
𝑛

]
𝚺𝐸

[
𝚪𝑛𝑼 𝑛

]
=𝑩𝑇𝚺𝑩 −𝑩𝑇𝚺𝑩𝐸 [𝚼]𝐸

[
𝑼𝑇

𝑛𝑼 𝑛

]
−𝐸

[
𝑼𝑇

𝑛𝑼 𝑛

]
𝐸 [𝚼]𝑩𝑇𝚺𝑩

+𝐸
[
𝑼𝑇

𝑛 𝚪
𝑇
𝑛

]
𝚺𝐸

[
𝚪𝑛𝑼 𝑛

]
(35)

To simplify the equation, we will use 𝐸
[
�̃�
]
= 𝚺′ in the following. Ac-

cording to assumption 1, the auto-covariance matrix can be decomposed 
as follows:

𝑹𝑈 =𝐸
[
𝑼 𝑛𝑼

𝑇
𝑛

]
=𝑸𝚲𝑸𝑇 (36)

where the diagonal matrix 𝚲 is containing the eigenvalues of the whole 
hyper-network, and 𝑸 is a matrix including the eigenvectors associated 
with these eigenvalues. By employing this decomposition, we can spec-

ify: �̄�𝑛 =𝑸𝑇 �̃�𝑛, �̄� 𝑛 =𝑼 𝑛𝑸, �̄� =𝑸𝑇𝑩𝑸, �̄� =𝑸𝑇𝚺𝑸, �̄�′ =𝑸𝑇𝚺′𝑸, and 
�̄� =𝑸𝑇𝚼𝑸 = 𝚼. It is also assumed that the input signals at each node 
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Fig. 2. First scenario all hyper-nodes are non-cooperative: a) Connection matrix and b) Hyper-network topology used in simulations of proposed method. 

are independent of each other and the step-size matrix 𝚼 is diagonal. 
Thus, it doesn’t change because 𝑸𝑇𝑸 = 𝑰 . Using these, we can write:

𝐸
[‖‖�̃�𝑛

‖‖2�̄�] =𝐸
[‖‖�̃�𝑛−1‖‖2�̄�′

]
+𝐸

[
𝑽 𝑇

𝑛 �̄�
𝑇
𝑛 𝚺�̄�𝑛𝑽 𝑛

]
(37)

where,

�̄�′ = �̄�𝑇 �̄��̄� − �̄�𝑇 �̄��̄�𝐸 [𝚼]𝐸
[
�̄�

𝑇
𝑛 �̄� 𝑛

]
−𝐸

[
�̄�

𝑇
𝑛 �̄� 𝑛

]
𝐸 [𝚼] �̄�𝑇 �̄��̄�

+𝐸
[
�̄�

𝑇
𝑛 �̄�

𝑇
𝑛

]
𝚺𝐸

[
�̄�𝑛�̄� 𝑛

]
(38)

which, we have �̄�𝑛 = �̄�𝚼�̄�
𝑇
𝑛 . It is obvious that 𝐸

[
�̄�

𝑇
𝑛 �̄� 𝑛

]
= 𝚲. Utiliz-

ing the 𝑏𝑣𝑒𝑐{.} operator, we can define �̄� = 𝑏𝑣𝑒𝑐
{
�̄�
}

, which 𝑏𝑣𝑒𝑐 {.}
organizes the matrix into smaller block components and then uses the 
𝑣𝑒𝑐 {.} operator to each of these parts. The covariance matrix of noise 
for the whole hyper-network, i.e., 𝑹𝑉 = 𝚲𝑉 ⊙ 𝑰𝑀 , is a block-diagonal 
matrix, ⊙ represents the block Kroniker multiplication, and 𝚲𝑉 is a di-

agonal matrix related to the noise variance for the entire hyper-network. 
Therefore, the second term from the right side of the (37) is equal to:

𝐸
[
𝑽 𝑇

𝑛 �̄�
𝑇
𝑛 𝚺�̄�𝑛𝑽 𝑛

]
=ℵ𝑇

𝑛 �̄� (39)

where ℵ𝑇
𝑛 = 𝑏𝑣𝑒𝑐{𝑹𝑣𝐸

[
𝚼2]𝚲}. From (38), the fourth-order moment, 

i.e., term 𝐸
[
�̄�

𝑇
𝑛 �̄�

𝑇
𝑛

]
𝚺𝐸

[
�̄�𝑛�̄� 𝑛

]
, remains to be calculated. By the as-

sumption that the step-size and the operator ⊙ are independent, we 
have:

𝑏𝑣𝑒𝑐{𝐸[�̄�𝑇
𝑛 �̄�

𝑇
𝑛 𝚺�̄� 𝑛�̄�𝑛]} =𝐸[𝚼𝑛 ⊙𝚼𝑛]𝑺(𝑩𝑇 ⊙𝑩𝑇 )�̄� (40)

where,

𝑺 = 𝑑𝑖𝑎𝑔
{
𝑺1, ...,𝑺𝑗 , ...,𝑺𝑁𝑇

}
,

⇒ 𝑺𝑗 = 𝑑𝑖𝑎𝑔
{
𝚲1 ⊗𝚲𝑗 , ...,𝝀𝑗𝝀

𝑇
𝑗 + 2𝚲𝑗 ⊗𝚲𝑗 , ...,𝚲𝑁𝑇

⊗𝚲𝑗

} (41)

where 𝚲𝑗 describes the diagonal matrix of eigenvalues and 𝝀𝑗 is the 
vector of eigenvalues for node 𝑗 (in the hyper-network with total node 
𝑁𝑇 where these nodes are the sum of the nodes in all hyper-nodes). In 
(40) 𝐸[𝚼𝑛 ⊙𝚼𝑛] is obtained as:

(𝐸[𝚼𝑛 ⊙𝚼𝑛])𝑗𝑗
=𝐸

[
𝑑𝑖𝑎𝑔

{
𝜇𝑗𝑰𝑀 ⊗𝜇1𝑰𝑴 , ..., 𝜇𝑗𝑰𝑀 ⊗𝜇𝑗𝑰𝑀, ..., 𝜇𝑗𝑰𝑀 ⊗ 𝜇𝑁𝑇

𝑰𝑀

}]
(42)

=𝐸
[
𝑑𝑖𝑎𝑔

{
𝜇𝑗𝜇1𝑰𝑀2 , ..., 𝜇𝑗

2𝑰𝑀2 , ..., 𝜇𝑗𝜇𝑁𝑇
𝑰𝑀2

}]

= 𝑑𝑖𝑎𝑔
{
𝐸
[
𝜇𝑗

]
𝐸
[
𝜇1

]
𝑰𝑀2 , ...,𝐸

[
𝜇𝑗

]
𝐸
[
𝜇𝑁𝑇

]
𝑰𝑀2

}
Then, by applying the operator 𝑏𝑣𝑒𝑐{.} to the weighted matrix �̄�′ using 
the relation �̄� = 𝑏𝑣𝑒𝑐

{
�̄�′}, we can get the original �̄�′ (using 𝑏𝑣𝑒𝑐

{
�̄�
}
=

�̄�′).

𝑏𝑣𝑒𝑐
{
�̄�′} = �̄�

= [𝑰𝑀2𝑁2
𝑇
− (𝑰𝑀𝑁𝑇

⊙𝚲𝐸[𝚼]) − (𝚲𝐸[𝚼]⊙ 𝑰𝑀𝑁𝑇
)]

+𝐸[𝚼⊙𝚼] ×𝑺(𝑩𝑇 ⊙𝑩𝑇 ) × �̄� = 𝑭 𝑛�̄�

(43)

where,

𝑭 𝑛 = [𝑰𝑀2𝑁2
𝑇
− (𝑰𝑀𝑁𝑇

⊙𝚲𝐸[𝚼]) − (𝚲𝐸[𝚼]⊙ 𝑰𝑀𝑁𝑇
)]

+𝐸[𝚼⊙𝚼] ×𝑺(𝑩𝑇 ⊙𝑩𝑇 )
(44)

Then, (37) is rewritten as follows:

𝐸
[‖‖�̃�𝑛

‖‖2�̄�] =𝐸
[‖‖�̃�𝑛−1‖‖2𝑭 𝑛 �̄�

]
+ℵ𝑇

𝑛 �̄� (45)

This equation in (45) defines the transient behavior of the proposed 
hyper-network. Although this does not clearly describe the performance 
of the proposed framework, in fact, according to this equation, it can be 
said that the stability of the proposed framework depends on the sta-

bility of the weighting matrix 𝑭 𝑛, which is different in each iteration. 
However, according to equation (44), the stability is also dependent on 
the stability of the diagonal matrix of the motion step 𝚼. According to 
the mean square stability analysis in the previous subsection, the stabil-

ity of (45) is guaranteed when (32) holds. Therefore, the relation (32)

is sufficient for the convergence of the mean and mean square in the 
whole hyper-network.

3. Simulation results

This section presents findings from simulations that confirm the ef-

fectiveness of the new framework and the theoretical findings. Initially, 
all nodes had their parameter vectors 𝜽𝑖,𝑘(0) set to zero. The simulated 
curves resulted from averaging data over 1000 runs, which validated 
consistency with the theoretical results. 

3.1. Model specification

As shown in Figs. 2 and 3, we designed two particular scenarios: the 
first scenario is a hyper-network with non-collaborating hyper-nodes, 
the second scenario is a hyper-network with cooperating hyper-nodes, 
which are respectively seen in these two figures. This issue is realized 
by defining the matrix of combination coefficients according to what is 
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Fig. 3. Second scenario the hyper-nodes are cooperative: a) Connection matrix and b) Hyper-network topology used in simulations of proposed method. 

Table 1
The considered values for the combination coefficient matrix consist of 𝑎𝑖,𝑙,𝑘.

Values Scenario 1 Scenario 2 
Num. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 
5 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
6 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
7 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 
8 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
9 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 
11 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 
12 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 0 
17 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 
18 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

shown in part a) of Figs. 2 and 3 and also in Table 1. Specifically, in 
these scenarios, we have four hyper-nodes, where nodes 1 to 3 form the 
first hyper-node, nodes 4 to 9 constitute the second hyper-node, nodes 
10 to 18 make up the third hyper-node, and nodes 19 and 20 belong to 
the fourth hyper-node. In other words, for 𝐶 = 4, we can say that:

𝑁𝑖 =
⎧⎪⎨⎪⎩

𝑁1 = 3, 𝑘 ∈ {1 ∶ 3}
𝑁2 = 6, 𝑘 ∈ {4 ∶ 9}

𝑁3 = 9, 𝑘 ∈ {10 ∶ 18}
𝑁4 = 2, 𝑘 ∈ {19 ∶ 20}

(46)

The synthetic input signal for regression denoted as 𝒖𝑖,𝑘(𝑛), com-

prised random 𝑀×1 vectors with a mean of zero in which 𝑀 is assumed 
to be 2 and 4 (whose value is mentioned in each simulation). In Fig. 4, 
for the case where 𝑀 = 2, a 2 × 1 vector of the input signal 𝒖𝑖,𝑘(𝑛) is 
generated for 1000 time iterations. For better display, it is drawn as a 
2000 × 1 vector for all nodes in the hyper-network. In this figure, you 
can see four sub-figures, which correspond to the input signals of hyper-

nodes 1 to 4, respectively. In addition, the desired signals 𝑑𝑖,𝑘(𝑛) of these 
hyper-nodes are plotted in Fig. 5. The proposed hyper-network updates 
the weights in such a way that after filtering the input signal, the simi-

larity between the desired and input signals is maximized. These vectors 
were generated using a Gaussian distribution with covariance matrices 

𝑹𝑢,𝑖,𝑘 = 𝜎2
𝑢,𝑖,𝑘

𝑰𝑀 . The background noises, 𝜂𝑖,𝑘(𝑛), were independent and 
identically distributed Gaussian random variables with zero mean and 
were not correlated with any other signals. The variances, 𝜎2

𝑢,𝑖,𝑘
and 

𝜎2
𝜂𝑖,𝑘

, are shown in Fig. 6. In one part of our simulations for 𝑀 = 2, the 
optimal values of target parameter vectors 𝜃∗𝑖 to be estimated are set as:

𝜽∗𝑖 =
⎧⎪⎨⎪⎩
𝜽∗1 = [0.25 − 0.30]𝑇
𝜽∗2 = [0.50 − 0.40]𝑇
𝜽∗3 = [0.30 − 0.35]𝑇
𝜽∗4 = [−0.55 0.45]𝑇

(47)

where 𝜽∗𝑖 is the target of all the nodes inside the 𝑖-th hyper-node. In 
another part of the simulations, we gave 𝑀 different values; for exam-

ple, we assumed 𝑀 = 8, and the corresponding weight vector has the 
following values:

𝜽∗𝑖 =⎧⎪⎨⎪⎩
𝜽∗1= [0.25 − 0.40 0.10 − 0.30 − 0.35 − 0.45 − 0.10 − 0.30]𝑇
𝜽∗2 = [0.50 0.70 − 0.10 − 0.40 0.70 0.10 0.60 − 0.20]𝑇
𝜽∗3 = [0.30 0.10 − 0.70 − 0.35 0.30 − 0.10 0.70 − 0.40]𝑇
𝜽∗4= [−0.55 − 0.90 − 0.10 0.45 − 0.55 − 0.90 − 0.10 0.45]𝑇

(48)
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Fig. 4. The generated input signals 𝑢𝑖,𝑘(𝑛) for all nodes displayed for 4 hyper-nodes individually. 

Fig. 5. The generated desired signals 𝑑𝑖,𝑘(𝑛) for all nodes displayed for 4 hyper-nodes individually. 

The two parameter vector estimation algorithms were taken into ac-

count to compare with our proposed method: 1) non-cooperative LMS 
algorithm, 2) conventional DLMS with a fixed combination matrix 𝑨
that is constant in time, and 3) the proposed hyper-network. To assess 

the algorithms’ performance, we randomly generated a set of sample 
signals {𝒖𝑖,𝑘(𝑛), 𝑑𝑖,𝑘(𝑛)} and created the dataset, and carried out a pre-

liminary evaluation. The algorithms were programmed in Matlab and 
executed on a computer with an Intel Core i7-12700H CPU. The step 
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Fig. 6. The variances of the input signal and noise for each node are assumed to remain constant over time but can vary between different nodes. 

Fig. 7. The effect of the step-size values 𝜇𝑖,𝑘 over convergence in terms of a) MSD and b) MSE curves for the proposed method. 

size 𝜇𝑖.𝑘 was fixed at 0.01 for every node. Also, in our simulations, we 
used two criteria, i.e., mean square deviation (MSD) and mean square 
error (MSE), which are:

𝑀𝑆𝐷𝐻𝑦𝑝𝑒𝑟−𝑛𝑒𝑡 = 1 
𝑁𝑇

𝑁𝑇∑
𝑘=1

𝑀𝑆𝐷𝑘 (49)

where 𝑀𝑆𝐷𝑘 =𝐸||𝜽𝑖,𝑘 − 𝜽∗𝑖 ||2 is according to 𝑘-th node. And for next, 
we have:

𝑀𝑆𝐸𝐻𝑦𝑝𝑒𝑟−𝑛𝑒𝑡 = 1 
𝑁𝑇

𝑁𝑇∑
𝑘=1

𝑀𝑆𝐸𝑘 (50)

where 𝑀𝑆𝐸𝑘 =𝐸||𝑑𝑖,𝑘(𝑛) − 𝒖𝑖,𝑘(𝑛)𝜽𝑖,𝑘||2.

To assess how the parameters influence the performance of the pro-

posed framework, we designed two experiments, the outputs of which 
are shown in Figs. 7 and 8. At first, we examined the effect of step-size 
𝜇𝑖,𝑘 on the speed of convergence in terms of MSD and MSE. As can be 
seen in Fig. 7 a), in the case where the value of this parameter is con-

sidered the most significant value (i.e., 0.8), the MSD converges faster; 
however, it can be seen that this convergence is accompanied by an error 
and leads to a specified number of convergence has not occurred. As the 
value of this parameter decreased, although the convergence occurred 
slower, the MSD curves became stable. We also checked the values less 
than 0.01 for 𝜇𝑖,𝑘, but because the performance of the suggested frame-

work was not good in those values, we considered them unnecessary. 

Based on these evaluations, the best MSD convergence occurs at 0.01. 
Based on this, we set the step-size in this value in the continuation of 
the tests.

Also, as shown in Fig. 7 b), the larger values of step-size destroy the 
convergence condition, and the MSE diagram of other values considered 
converge to almost the same values. In the next test, we investigated 
the effect of the target parameter vector size on the convergence of the 
proposed framework in terms of MSD and MSE. In this experiment, we 
evaluated three vectors with dimensions 2 × 1, 3 × 1, and 8 × 1. We can 
see that when the size of the parameter vector is smaller, convergence 
occurs sooner, and the graph converges with a smaller amount of error 
for both MSD and MSE. For this purpose, in other tests, we considered 
the vector size of the target parameter to be 2 × 1.

We assess how well our method works by measuring its MSD. We 
set the value of 𝑀 to 2 for a hyper-network consisting of 20 nodes 
distributed across four hyper-nodes. The parameters of other compared 
algorithms remain unchanged from those used in our simulations. The 
convergence curves illustrating the MSD are presented in Fig. 9. It is ev-

ident that our proposed method performs favorably in this assessment 
compared with non-cooperative LMS, conventional DLMS, Multitask 
DLMS [44], and Group DLMS [45]. 

Fig. 10 shows the effect of different noise powers on the convergence 
speed of the new framework, which is displayed in terms of MSD and 
MSE criteria. To obtain these graphs, the noise power was considered 
equal to 𝜎2

𝜂𝑖,𝑘
= [0,0.01,0.05,0.1,0.2,0.5,1]. In this simulation, the target 
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Fig. 8. The effect of the 𝑀 values (the size of parameter vector) over convergence in terms of a) MSD and b) MSE curves for the proposed method. 

Fig. 9. Convergence curves in terms of MSD for the proposed method and other 
compared methods.

parameter vector 𝜽∗𝑖 is considered equal to what is given in equation 
(48). Also, the movement step is set to 𝜇𝑖.𝑘 = 0.01. In both sets of curves, 
it can be seen that with the increase of noise variance, the speed of 
convergence decreases and also the curves converge to higher values 
of MSD and MSE. Also, the noise effect of the values obtained for 𝜽𝑖

in (48), in different iterations, is shown in Fig. 11. Each row of this 
figure corresponds to one hyper-node and each column corresponds to 
one variance of the noise. In this figure, the effect of 4 different levels 
of noise power 𝜎2

𝜂𝑖,𝑘
= [0,0.05,0.5,1] on the values obtained for 𝜽𝑖 over 

time and its convergence to optimal values is shown. As can be seen, for 
example, in hyper-node 1, with the increase of noise power, the values 
obtained for 𝜽𝑖 are associated with distortions compared to the optimal 
value 𝜽∗𝑖 . However, over time, these distortions decrease, and the curve 
converges to the optimal value 𝜽∗𝑖 . Optimum values are displayed in 
each figure with parallel black lines.

We then compared the computational complexity of the proposed 
method with the LMS and DLMS methods and summarized the results in 
Table 2. It can be seen that the proposed method for each internal node 
of each hyper node has 𝑀(|𝑁𝑖,𝑘|) multiplications and 𝑀(|𝑁𝑖,𝑘| − 1)
additions.

4. Conclusion

Accurately adaptive processing is a significant challenge when deal-

ing with various types of data, such as medical signals for diagnosing 

Table 2
Computational complexity for the proposed algorithms 
and other conventional algorithms.

Methods Adders number Multipliers number 
LMS 2𝑀 2𝑀
DLMS 𝑀(|𝑁𝑘|− 1) 𝑀(|𝑁𝑘|)
Proposed Method 𝑀(|𝑁𝑖,𝑘|− 1) 𝑀(|𝑁𝑖,𝑘|)

diseases, audio signals for categorizing audio sources, and telecommu-

nication signals for separating transmitters. Different approaches have 
been proposed by researchers to tackle this issue, but these adaptive net-

works still have their limitations in accurately processing certain types 
of data. This study proposes a new framework that uses an adaptive 
nature based on the new hyper-network concept. The proposed frame-

work takes a network-based approach using filters, resulting in higher 
accuracy than existing techniques. Additionally, the mean and mean 
square convergence of the proposed framework have been analyzed 
theoretically. To assess the performance of the proposed framework, ex-

periments were conducted and compared to several compared methods 
in the field. The obtained results affirm the effectiveness of the proposed 
framework and highlight its potential when dealing with various types 
of data. One of the future applications for the proposed hyper-network is 
the processing of multi-channel signals such as multi-channel EEG data, 
audio signal obtained from a set of microphones, etc.
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Fig. 10. The impact of varying noise power on the convergence of the proposed method, based on the MSD and MSE. 

Fig. 11. The effect of different power of noise on the 𝜽𝑖 for the new framework. 
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