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Cepstrum Analysis

. J

In this chapter, a tutorial review of the cepstrum method is provided.
While details of the power and complex cepstra are discussed. extensive
derivations of the formulae are given elsewhere [1-7]. In addition to
cepstrum signal processing, topics for review include biomedical applica-
tions in the areas of electrocardiogram (ECG) and heart sound signal
analyses [1-7] and speech signal processing [2].

Previolls studies suggest that cepstrum analysis is well suited to data
which consist of wavelets [I]. This is true even if the shapes of the wave-
lets are not known prior to analysis. For instance, the power cepstrum
was successfully applied in radar analysis, where the arrival time of the
main wavelet was determined by reducing interference [4]. and in marine
exploration, where source depth was determined and the ocean bottom
was mapped [4]. Considerable emphasis is given in this chapter to cep-
strum applications in medicine, i,ncJuding diastolic heart sound analysis
for the detection of coronary artery disease. ECG pattern classification
[ 10,13], and speech signal decomposition for theoretical as well as band-
width compression application purposes [2].

The cepstrum method serves as an alternative approach to linear pre-
diction in that it does not make any assumption regarding the characteris-
tics of the data sequence. Bogert el al. [I] developed the cepstrum ap-
proach to find echo arrival times in a composite signal by decomposing
the nonadditive constituents. The term cepstrum represents the power
spectrum; it is defined as a function of pseudo-time, I, the spectral ripple
frequency or quefrency. The cepstrum terms defined by Bogert et al. are

113
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summarized below (I.4J:

frequency quefrency
spectrum cepstrum
phase saphe
amplitude gamnitmle
filtering liftering
harmonic rahmonic
period repiod

Throughout the chapter. both terms are used so as not to confuse readers.

6.1 The Cepstra

Cepstrum analysis is concerned with the deconvolution of two signal
types: the fundamental (basic) wavelet and a train of impulses (excitation
function) [1.4J.The composite signal can be represented in terms of
power. complex, or phase cepstra. In this chapter. emphasis is placed on
the power and complex cepstra. Readers interested in phase cepstra are
referred to [1.3.4J.

6.2 The Power Cepstrum

The power cepstrum was first described and used by Bogert C'tal. [I] in
1963. The purpose of the study was to determine echo arrival times in a
composite signal since the delayed echoes appear as ripples in the loga-
rithmic spectrum of the input data sequence X(II). In practice. the power
cepstrum is an effective tool provided that the frequencies of the basic
wavelet and excitation function do not overlap.

The power cepstrum of the signal is defined as the square of inverse z-
transform of the logarithm of the magnitude squared of the z-transform of
the data sequence, which can be written as

Xl'c(lIT)= (z.I{log!X(ZW})2 (6.1)

Xpc(lIT) = C~j £ log!X(z)j2z,,-1dZr. (6.2)
where X(,) represents the ,-transform of the data sequence X(IIT). Let us
assume that the data sequence consists of two convoluted sequences
Y(IIT) and v(nT). which represent the basic wavelet and excitation func-
tion. respectively. The data sequence X(IIT) can be written as

x(nT) = )'(nT) * V(IIT). (6.3)

6.2 The Power Cepstrum 115

This equation can then be written as the multiplication of the Fourier
transform of the two sequences.

IX(z)/z= !Y(zW '!V(z)!2. «(j.4)

Upon taking the logarithm of both sides of the equation. we obtain

~ .l~gIX(zW= logl Y(zW + log!V(z)!2. (6.5)
To further elaborate on the power spectrum analysis, let us assume that

the excitation function (signal) is given as

venT) = S(IIT) + cS(IIT - noT). (6.6)

where S(n) denotes the unit impulse function in a sampled data sequence.
On the basis of this equation. Eq. (6.4) can be further written as

(6.7)

By taking the logarithm of both sides of this equation and substituting
z = ejw,we expand Eq. (6.5) as

10glX(ejldW = logl Y(ejwW + 10g(1 + c2 + 2c cos(wnoT» (6.8)

(
2c

)= log!Y(ejo,W + log(l + c2) + log 1 + ~ cos(CJJf/oT).
(6.9)

The details of these derivations are described elsewhere [3]. It is obvious
from Eq. (6.9) that the logarithm of the magnitude squared of the z-
transform of the data sequence xC,,) will have sinusoidal components
(ripples). The amplitudes and frequencies of these ripples correspond to
the amplitude c of the excitation function and the time delay, 110T.

By taking the inverse z-transform of Eq. (6.9). the data sequence x(nT)
can now be expressed in terms of its components. 11is assumed that the
power cepstra of these components are additive, each corresponding to
different frequency bands,

(6.10)

;1;

where YPCis the power cepstrum of the basic wavelet. and Vpcis the power
cepstrum of the excitation signal.

Note that in the above equation the cross-product term was neglected
Ifttie data sequences yPCand Vpchave different frequency ranges, they can
be easily obtained by filtering in the pseudo-frequency domain.

In summary, after taking the inverse z-transform and obtaining the
power cepstrum, the peaks produced by the excitation function can be
identified at the quefrencies (delays) of nT. Assuming that vpc(nT) is an'"
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impulse function, the peaks of the power cepstrum can be detected if the
loglY(z)i2 is quefrency limited to less than 110T and the ripples of the
loglY(Z)12havea period(repoid)less than (110T)-I.

While power cepstrum methods have been successfully applied to
biomedical signals including the ECG and diastolic heart sounds, the
methods are limited by their failure to maintain the phase information-
required for precise recovery of analyzed signals.

form

V(IIT) = 8nT + e8(IIT - noT).

By taking the z-transformand substitutingz = ejw,we have

V(z) = V(ejw7)= I + ce-~"oT

(6.16)

(6.17)

and

6.3 The Complex Cepstrum
X(ejwT) = Y(ejwT)( I + ee-jw"oT).

Taking the logarithm of both sides of Eq. (6.18),

log X(ejwT)= log Y(eiwT)+ log(l + ce-jwnoT).

(6.18)

The complex cepstrum is an outgrowth of homomorphicsystem theory
developed by Oppenheim [2]. Although the power cepstrum can be used
for detecting echoes, it cannot be used for wavelet recovery since the
phase information is lost [2-5]. The complex cepstrum of a data sequence
can be defined as the inverse z-transform of the complex logarithm of the
z-transform of the data sequence as follows,

X(IIT) = _21. f. 10g(X(z»zn-1 dz,
7TJ c

(6.19)

Where c < I, the wavelet component dominates and the data sequence
exhibits minimum phase characteristics. This is most evident when Eq.
(6.19) is expanded to the form

(6.11)

2

log X(eiwT) = log Y(eiwT)+ ce-jwnoT- ~ e-v.-""T. . . (6.20)

where .i(IIT) represents the complex cepstrum and X(z) representsthe z-
transform of the data sequence x(nT).

Let us assume that the input sequence is the convolution of two se-
quences as follows,

Finally, the complex cepstrum of the data sequence x(n) is obtained by
taking the inverse z-transform of Eq. (6.20),

X(z) = Y(z) V(z).

The logarithm of Eq. (6.13) is written as

X(z) = log X(z) = log Y(z) + log V(z).

(6.13)

c2
x(nT) = y(nT) + c8(nT - noT) - 2" 8(nT - 2noT). . . (6.21)

It is evident in Eq. (6.21) that the complex cepstrum includes the com-
plex cepstrum of the wavelet as well as ripples of the excitation function
at the positive frequencies (noT). The amplitudes and frequencies of the
ripples correspond to the amplitudes and delays of the excitation function
v(noT).

For the case c > I, where the data sequence exhibits maximum phase
characteristics, Eq. (6.19) can be further written as

10g(X(ejwT» = loge Y(eiwT» - jwnoT + log e + ! ejw""T + . . '. (6.22)e

X(IIT) = Y(IIT) '" V(IIT). (6.12)

where Y(IIT) represents the basic wavelet and V(IIT) represents the excita-
tion function. This can be written in the z-domain as

(6.14)

The complex cepstrum can then be estimated by the inverse z-transform
of this equation,

X(IIT) = j(IIT) + R(IIT), (6.15)
Prior to filtering, the term -jwnoT in the above equation should be ex-
tracted in order for the excitation function to show maximum phase char-
acteristics, which requires negative ripple frequencies. Note that the am-
plitudes of the ripples have been attenuated in Eq. (6.22)by the term lie.
The complex cepstrum can then be written as

where l(nT) represents the complex cepstrum of composite signal X(II),
y(nT) representsthe complexcepstrumof the waveletcomponent,and
venT) represents the complex cepstrum of the excitation component.

In an effort to account for the presence of the excitation functipn in the
complex cepstra. we assume that the excitation function venT) is of the

I
1(nT) = y(nT) + (log c)B(nT) + - B(nT + 2noT) + . . . (6.23)c
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After filtering, the linear phase term -jwllnT should be included again in
order to recover the excitation function [3].

The basic wavelet Y(IIn can be recovered by lowpass filtering the com-
plex cepstrum and taking the inverse z-transform of the resultant se-
quence. Note that for elTective wavelet recovery it is essential that the
frequencies of the wavelet and the excitation function do not overlap. If
necessary, the excitation function can also be recovered by first highpass
filtering the complex spectra and then taking the inverse z-transform of
the resultant signal.

The recovery process requires that the filtered complex cepstrum be
z-transformed, exponentiated, and inverse z-transformed. The Y(IIn and
u(IIn sequences can be restored since the necessary phase information
has been retained. rigures 6.1a and 6.1b show the overall cepstrum
(homomorphic deconvolution) wavelet recovery system. Figure 6.lc
shows the typical filters utilized: short pass (lowpass), longpass
(highpass), and notch. These filters are defined in the pseudo-frequency
domain and are analogous to lowpass, highpass, and notch filters in the
frequency domain.

In summary, the complex cepstrum contains the phase information and
therefore allows reconstruction of the composite signal. The power cep-
strum can be calculated from the complex cepstrum as follows,

xpc(IIn = (.«IIn + J( -IIT»2, (6.24)

where Xpc(IIT) represents the power cepstrum and J(IIT) represents the
complex cepstrum.

a

Liller

Complex
exponentiation

b e '(r C.. I ~ ~"r ( f >8 \ ""' J - c r f' ( j ~rj(V))
Power cepstrum

[~(n) + ~(_n))2

1 log'2

1\

Ro X(k) IInverse
OFT
(time

1m X(k) Ishared)

~(n)

6.3.1 Phase Unwrapping

Calculation of the complex cepstrum is however complicated by the
fact that it is multi valued. Where computers and commercial software are
employed to compute the imaginary part of the complex cepstrum, the
principal value is given as [4,6J

-1r :5 argIX(z)1 :5 1r. (6.25)

The term argIX(z)l, representing the imaginary part of the complex cep-
strum, has discontinuities at multiples of 21rradians. Since the function is
discontinuous, calculation of the 10gIX(z)1is inappropriate. Consequently,
the imaginary part of the 10g(X(z» must be continuous, periodic, and thus
analytical in some annular region of the z-plane in order to perform the z-
transformation of the 10g(X(z». Another important requirement is that the
imaginary part of the 10g(X(z» must be an odd function of w since the

no n n no 2no n

Shortpass Longpass Notch

Fig. 6.1. Overall wavelet recovery system, also known as homomorphic de-
convolution (filtering) or cepstrum system. The DFT is performed by an FFT
algorithm. xR(n) denotes the recovered wavelet. The input sequence is windowed
and then appended with zeros. (a) Simplified block diagram. (b) More detailed
block diagram which can be used to process data in real time. (c) Typical lifters for
the single-echo, minimum phase (c < I) case where peaks occur at no and multi-
ples thereof. (The notch lifter is sometimes called a comb lifter.) [From Childers
et al. [4]].

1\

Forward Ro (k) Exponentiate Inverse
Filter xR(n) OFT OFT IxR(n)
(Iiller) (time (time

shared) shared)

C
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complex cepstrum of a real function should be real. Therefore, un-.
wrapped phase is required for calculation of the complex cepstrum.

Several approaches for computation of unwrapped phase values are
available [4J. However, only two of them are discussed here. The first is
based on the fact that the phase is sampled at a very high frequency. This
sampling rate is required so that the phase never changes more than 7T
between samples. As shown in Fig. 6.2, the correction term, c(k), can be
added if the phase difference between samples of the module 27Tphase
sequence P(k) exceeds 7T,

{

C(k - 1) - 27T

c(k) = c(k - I) + 27T

c(k - l)

where c(O) = O.

if P(k) - P(k - 1) > 7T

if P(k - I) - P(k) > 7T

Alternatively, the phase can be unwrapped by an adaptive numerical
integration procedure proposed by Tribolet [6]. This approach combines
information regarding the phase derivative and the principal value of the
phase. For each frequency, a set of permissible phase values is'defined by
adding integer multiples of 27Tto the principal value of the phase. One of
these values may be selected as the unwrapped phase with the help of a
phase estimate. This phase estimate is formed by adaptive numerical
integration of the phase derivative within a given step interval. The step
interval is updated until the phase estimate approaches the permissible
phase values [6].

A new approach based on finite length cepstrum modeling was pro-
posed by Nadeu, details of which appear in Ref. [7].

otherwise,

It . .
6.3.2 Phase Unwrapping Using Adaptive Numerical Integration

The Fourier transform of the data sequence x(n) is given as

X(z) = XR(z) + jX. = IX(z)leljarglXllllI, (6.26)

where XR(z) represents the real part of X(z); X1(z)represents the imagi-
nary part of X(z), IX(z)1 represents the magnitude of the X(z), and
arg[X(z)] represents the phase of the X(z). The logarithm of the Fourier
transform of the data sequence x(n) is written as

X(z) = log X(z) = 10g/X(z)1 + j arg[X(z)]. (6.27)

The derivative of X(z) may be found by assuming that Eq. (6.27) has a
valid Fourier transform,

5X(z) _ 5 log X(z) _ dX(z)/5w
~ - 5w - X(z)

(6.28)

a

. .

-It

b
2Jt "'t ....

o

The derivative of arg[X(z)] is obtained from

5 arg[X(z)] _ XR(z)X;(z) - X.(z)XR(z)
5w - IX(z)j2

(6.29)

where the first derivative notation represents 5/5w. Finally, the derivative
of X(z) is written as

X'(z) = XR(Z) + X;(z) = -jFT{nx(n)}. (6.30)

It is evident then that the phase arg[X(z)] can be defined as the integration
of the derivative arg'[X(z)] as follows [6],

arg[X(z)] = f: arg'[X(ei'l)] dry, (6.31)
Fig. 6.2. Phase unwrapping. (a) Phase modulo 217. (b) C(k), the correction
sequence. (c) Unwrapped phase. [From Childers et al. [4]].
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based on the initial condition arg[X(ejO») = O. The phase function exhibit-
ing these properties is called the "nwrapped pllase function. On the basis
of these properties. it is apparent that the unwrapped phase function is a
continuous function and can also be defined as an odd function when the

phase derivative of the mean is equal to zero. Otherwise. the linear phase
component caused by the derivative of the arg[X(z») should be omitted
before phase unwrapping.

To calculate the unwrapped phase function. the principal value of the
phase is calculated at each frequency \I't. The limited phase value can
then be found from the summation of the principal value and the correc-
tion factor 27TI(wd,

arg[X(z»)+ 27TI(wd, (6.32)

where arg[X(z») represents the principal value at the given frequency II'k
and I is an integer value.

arg[X(ej ») = arg[X(ej »)+ 27TI(wd. (6.33)

The correction factor I(wd at a given frequency Wt can be estimated
where arg[X(ejll"») represents the unwrapped phase function at frequency
Il't by applying trapezoidal numerical integration to the phase derivative.
The current value of the phase estimate can be calculated by utilizing the
previous estimate of the phase v,alue.

Slt'/, I. '

arglX(e~.'1 = arglX(t' i.".,)I + Io1t - Io1t I2

x [arg'[X(eiW, .») + arg'[X(ei'..)]]. (6.34)

Equation (6.34) improves as the step increment.~w = Wt - Wt..,becomes
small. . '

Slep 2. The correction factor I(wd at Wt can,be a~sumed to be con-
sistent if it falls into a predetermined range of 'one of the acceptable
correction factors 27TI(Wk) at Wk,

lafg[X(ej...») - arg[X(ejlo"»)+ 21TI(Wk)1< THR < 7T. (6.35)

The resultant I(wd can be used in Eq. (6.33) to form the unwrapped
phase at II't. The unwrapped phase at II't+I will be estimated using the
recently unwrapped phase at Wk.
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This process continues until all the unwrapped phase values have
been determined.

6.4 Uiomcdical Applications of
Cepstrum Analysis

6.4.1 Analysis of the ECG Signal Using the Cepstmm Technique

The analysis of ECG signals in the time and frequency domains has
been utilized in clinical diagnosis and is well documented in the literature
[8,9]. In the time domain analysis, the amplitudes and duration of the P.
QRS, and T complexes have been used to construct the feature vector.
Pattern recognition techniques were then applied to the feature vector for
classification purposes [8,9]. However, extraction of the feature vector is
often complicated by the presence of background noise and other artifacts
interfering with the pattern.

In the frequency domain, analysis of the ECG signal has often resulted
in unsuccessful discrimination among pathological states. In an effort to
produce more conclusive spectral results, Amazeen el al. [9) utilized the
phase information for distinguishing normal from abnormal ECGs.

Murthy el al. [10) proposed homomorphic filtering and cepstrum analy-
sis. Here we summarize their results and refer the reader to the Ref. (10]
for details. The ECG signal was taken as the output of a system driven by
excitation functions. Note that the ECG signal represented the convolu-
tion of the basic wavelet and excitatory functions. The complex cepstrum
of the ECG signal was filtered to separate the system (basic wavelet) and
the excitation functions. In this approach. the basic wavelet represented
the action potential generated by the heart, while the excitation function
represented the excitation pattern of the heart muscle during the cardiac
cycle. In their study, Murthy el al. (10) analyzed ECG recordings that
exhibited normal characteristics and recordings showing inverted T-
waves and two type of vetfiricular p~m~ture beats as shown in Fig. 6.3.

Figure 6.4 shows the'complex cepstra estimated by Eq. (6.11).As noted
by Murthy el al. the normal and inverted T-wave ECG patterns in Fig. 6.3

. -Jclosely resemble one another. However, the complex cepstra of these two
( ';'-=-signalsare clearlydistinguishable.The complexcepstraof the two PYC

patterns were also easily distinguished from the normal cepstrum. The
minimum and maximum phase components of the complex cepstra pre-
sented in Fig. 6.4 were calculated as

i(n) = imin(n) + imax(n), (6.36)

II
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where x(n) represents the complex cepstrum of the ECG signal and Xmin(n)
represents the minimum phase component of the signal x(n):

{

O' n < °
Xmin(")= U(O), " = 0

x(n), n > 0.

The maximum phasecomponent that xmax(n)represents is defined as

{

O' n > °

xmax(n)= li(O), n = 0

x(n), n < O.

By taking the inverse complex cepstrum of .tmin(") and oima,(n), the mini-
mum and maximum phase components of the signal xC,,) can be con-
structed. Figure 6.5 shows the minimum and maximum phase compo-
nents for the four ECG signals. It is obvious from this figure that the
minimum, as opposed to the maximum, phase component acts as an
effective decision criterion.

Finally, the basic wavelet of the ECG signal was recovered upon linear
filtering of the complex cepstra. Prior to filtering, the complex cepstra
were recalculated for an exponentially weighted input data sequence
xw(n). The original input sequence x(n) was multiplied by an appropriate
weighting factor a", where a represents some constant. This exponential
weighting was provided in order for the sequence x(n) to exhibit minimal
phase characteristics and ultimately ameliorate the basic wavelet recov-
ered from the reconstructed cepstra [10].

Figure 6.6 shows the complex cepstra of the signals in Fig. 6.3, which
have been weighted using the a value appropriate for each signal. The
complex cepstra recalculated on the basis of these weighting factors were
lowpass filtered using a window 20 samples in width and centered at the
origin. The basic wavelets presented in Fig. 6.7 were reconstructed in the
time domain after filtering. The shapes of the wavelets in Figs. 6.7a and
6.7b, corresponding to the normal and inverted T-wave ECG patterns,
respectively, similarly resemble that of an action potential generated in
the heart muscle. Figure 6.8 shows the excitatory function reconstructed
after highpass filtering of the complex cepstra shown in Fig. 6.6.

The results presented in Figs. 6.7 and 6.8 substantiate the existence of
two excitation impulses: the first, a ventricular contraction manifested in
the QRS complex, and the second, ventricular repolarization evident at
the onset of the T-wave. In the case of PVC, the T-wave is absent since
repolarization is inhibited by a more prominent premature ventricular
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Fig. 6.3. Typical ECG signals. (a) Normal. (b) Inverted T. (c) PVCI. (d)
PVC2. [From Murthy e( al. (3)).
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Fig. 6.6. Complex ccpstra of the signals in Fig. 6.3 exponentially weighted
with a. (a) Normal a = 0.76. (b) Inverted T. a = 0.76. (c) PVCI. cr = 0.91. Id)
PVC2. cr = 0.98. [From Murthy et al. (10)).
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Fig. 6.7. (a-d) Basicwaveletsrecoveredby lowpass filtering the complex
cepstra of Fig. 6.5a-6.5d. with a window w = 20 samples centered at the origin.
[From Murthy et at. [10]].
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Fig. 6.8. Excitation function obtained by highpass filtering of the complex
ccr~tr;1 of Fig. (}..'ia-fi..'id. [From Murthy et (/1. [10)).
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contraction. Therefore. the results demonstrate the fuct that two excit-
atory impulses are present in the normal and inverted T-wave ECG pat-
terns. while only one impulse can be identified in the presence of a rvc
110).

In summary. Murthy ('f (/1. 1101utili/cd homomorphic liltering and thc .
complex cepstrum method to decompose the input data sequence X(II)
into its wavelet and excitatory function components. The results of their
analysis reveal that the basic wavelet components closely resemble action
potentials in cardiac muscle fibers while the excitatory functions follow
the excitation pattern evident in the heart muscle during the cardiac
cycle.

Murthy e/ 01. also applied the ARMA method (covered in Chapter II)
to analyze the ECG signal and its minimum and maximum phase compo-
nents. The details of this study appear elsewhere [IOJ.

nents in the abnormal power cepstra was associated with coronary artery
disease.

It is evident upon comparison of Figs. 6.9b and 6.IOb that the complex
cepstra of the abnormal and normal patients exhibited marked differences
at the high time region. The low time components (around the origin)

6.4.2 Analysis of Diastolic Heart Sound Using the. <;epstrum Technique
II ~ '''~t~'

Previousstudies have shown that coronary stel'losesproduce sounds
due to turbulent blood flow in partially occluded arteries /11.12). During
diastole: coronary blood flow is maximum and the sounds associated with
turbulent blood flow through partially occluded coronary arteries are the
loudest.

The cepstrum method was proposed by Shen [131to analyze isolated
diastolic heart sounds produced by partially occluded coronary arteries.
The recorded diastolic heart sounds were assumed to be a convolution of
the turbulent sound caused by coronary occlusions (excitation function)
and the sound transmission mechanism (basic wavelet).

Isolated diastolic heart soundrecords.each 1024 samples in length
(sampled at 4 kHz). were initially windowed using a Hanning window.

-,\... The cepstrum method was applied to the heart sound recordings from five
,) patients(onenormal,one angioplasty.oneyoungsubject.and twocoro-

nary artery disease patients). The recordings were performed in a sound-
proof room. Figures 6.9a and 6.IOa show the power cepstra of diastolic
heart soundsobtained from one diseasedand one normal patient; Figs.
6.9b and6.IOb reveal the complex cepstra for the diseased and the normal
patient respectively.

It is obvious from Fig. 6.9a that high time peaks can be found in the
power spectrum of the abnormal patient. However, as shown in Fig.
6.IOa, the power cepstrum of the normal patient did not include any high
time peaks.The presence'of the low time components (basic wavelets) in
both normal and abnormal patients was attri~uted to the impulseresponse ~
of the acoustic transmission system. The presence of high time compo-

Fig. 6.9. (a) Power cepstrum from one CAD palient (137). (b) Complex cep-
strum. (From Shen [13]]. " - .
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48 64

6.4.3 Analysis of Speech Signals Using Complex Cepstrum and
Linear Filtering

Prolific re~earch in the area of ~peech ~ignal proce~~ing hac; greatly
advanced our understanding of the ~pcech ~ignal waveform 121. The
speech signal may be regarded as the convolution of vocal cord timing.
the glottal pulse, and the vocal tract impulse response. A new procedure
for decomposition of the speech signal into its con~tituents has been
proposed by Oppenheim and Schafer [2J. Their approach was based on
the calculation of the complex cepstrum of the speech waveform. fol-
lowed by linear filtering of the extracted components and recovery of the
components in the time domain. This procedure is illustrated in Fig. 6.1',
where D(') represents the complex cepstrum, and in Fig. 6.12 where D-I
is the inverse complex cepstrum [2].

The authors define the speech signal s(n) as the convolution of the pitch
p(n), the glottal pulse g(II), and the vocal tract sequence V(Il),

s(n) = [p(n) * g(n) * v(n)) w(n), C6.37)

where wen) represents the window.
The pitch data were taken as a sequence sampled at a rate T. The

complex cepstrum of the train of pitch samples was weighted with the
window wen) such that

t _ I

32

Time (ms)

I

for II = 0, :tT, :t2T C6.38)

and the complex cepstrum of the pitch pCn) is

/;(11)= li'T(II) for II = 0, :tT, :th. C6.39)

32

The minimum phase window allows the pitch data to exhibit minimum
phase. Therefore, the complex cepstrum of p(II) is zero for n < O.

The complex cepstrum O(n)of the vocal tract is estimated on the basis
of a cascade of damped resonators [2],

M la.ln
O(n) = 2: ---! cos Will for n > O. (6.40)

i_I n

Fig. 6.10. (a) Power ccpstrum from one pscudonormal suhject (125). (h) Com-
plex cepstrum.IFrom Shcn (1311.

O(n) = 0 for n < 0 (6.41)

where ai represents the poles of the z-transform of V(Il).

appeared to be the same for both cepstra, while the high time components
of the abnormal complex spectrum (as was also the case for the power
spectrum) were an indication of the presence of coronary artery disease.
Further details regarding the application of the cepstrum approach for the
detection of coronary artery disease are described elsewhere [13].

Fig. 6.11. Canonic form for homomorphicdeconvolution. (From Oppenheim
and Schafer [2]).
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Fig. 6.12. Realization of the transformation 1>('I of Fig. 6.11. IFrom Op-
penheim and Schafer [211.

Finally, the glottal pulse R(I/) was defined as the convolution of the
minimum phasesequenceR,(I/) and the maximum phasesequencesR2(1/)
(R(I/) = g,(II) * !?!(I/)). Both the maximum and minimum phase compo-
nents are included in the convolution since details of the signal character-
istics have not been well documented.

As far as speech signal decomposition is concerned, the complex cep-
strum of the glottal pulse can be distinguished from the pitch pulse, given
its much shorter duration. It has also been observed that the complex
cepstrum of the vocal tract signal decays rapidly compared to the com-
plex cepstrum of the pitch pulse [2]. Consequently, Oppenheim and
Schafer divided the complex cepstrum into three regions. Any constituent
pulse with a pitch period of Tor 1/> T, was assumed to be the pitch pulse.
For 0 ~ 1/ < T, the contribution to the composite was attibuted to the
minimal phase component of the glottal pulse and the vocal tract. Finally,
any contribution for" < 0 was said to he given hy the maximum phase
component of the glottal pulse 121.

To recover the three constituent pulses, Oppenheim and Schafer fil-
tered the complex cepstrum as follows: for the pilch pulse period T, only
those components of the complex cepslnlll1 for 1/ ~ T were maintained;

otherwise, the complex cepstrum was multiplied by zero for II/I < T and
by one for II/I > T. The convolution of the minimum phase component
g,(I/) of the glottal pulse and the vocal tract signal was extracted by
multiplying the complex cepstrum by zero for 1/ < 0 and 1/ ~ T. The
maximum phase component R~(I/) of the glottal pulse was obtained after
multiplying Ihe complex cepstrum by zero for 1/~ O.The filtering process
was succeeded by the inverse z-transformalion of the complex cepstrum
in order to recover the pitch pulse. the convolution of the minimal phase
porI ion of the glottal pulse IInd the vocal truct, and the maximum phase
component of the glottal pulse.

Figure 6.13 shows the recovery of pitch for the vowel sound "ah" as in
"father." The speech was sampled at 10 kHz and weighted with a Han-
ning window 2.56 msec in duration.

(bl

Fig. 6.13. (a) Sample of the vowel "ah." (b) Resulting output due to pitch. (c)
Complex cepstrum of (a). [From Oppenheim and Schafer [2]].

Finally, the vocal tract sequences were extracted by matching the loga-
rithmic spectrum of the vocal and glottal pulses with the logarithmic
spectrum of a set of ideal cascade resonators [2J. For unabated signal
recovery. the authors suggested that the same windowing process be used
for calculating the complex cepstrum of the original speech waveform as
was used for windowing the vocal tract signal. Details of the analysis
using complex cepstrum and linear filtering are described in Ref. [2].

6.5 Computer Experiments

I. Create a data sequence consisting of three sinusoids with frequen-
cies of 2, 3, and 5 kHz and a 20-kHz sampling frequency,

x(n) = cos (217"2.n) + cos (217"2.n) + cos (217"2.n).

(e)

I I I . ,
-10 -5 0 5 .0
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