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CHAPTER 6 K

Cepstrum Analysis

In this chapter, a tutorial review of the cepstrum method is provided.
While details of the power and complex cepstra are discussed, extensive
derivations of the formulae are given elsewhere [1-7]. In addition to
cepstrum signal processing, topics for review include biomedical applica-
tions in the areas of electrocardiogram (ECG) and heart sound signal
analyses [1-7] and speech signal processing [2].

Previous studies suggest that cepstrum analysis is well suited to data
which consist of wavelets [1]. This is true even if the shapes of the wave-
lets are not known prior to analysis. For instance, the power cepstrum
was successfully applied in radar analysis, where the arrival time of the
main wavelet was determined by reducing interference [4]. and in marine
exploration, where source depth was determined and the ocean bottom
was mapped [4]. Considerable emphasis is given in this chapter to cep-
strum applications in medicine, including diastolic heart sound analysis
for the detection of coronary artery disease, ECG pattern classification
[10,13], and speech signal decomposition for theoretical as well as band-
width compression application purposes [2].

The cepstrum method serves as an alternative approach to linear pre-
diction in that it does not make any assumption regarding the characteris-
tics of the data sequence. Bogert et al. [1] developed the cepstrum ap-
proach to find echo arrival times in a composite signal by decomposing
the nonadditive constituents. The term cepstrum represents the power
spectrum,; it is defined as a function of pseudo-time, ¢, the spectral ripple
frequency or quefrency. The cepstrum terms defined by Bogert er al. are
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summarized below [1.4]:

frequency quefrency
SPCL‘“’HI'I‘I CL‘P.‘\'[I’!II'I‘I

phase saphe
amplitude  gamnitude
filtering liftering

harmonic  rahmonic
period repiod

Throughout the chapter, both terms are used so as not to confuse readers.

6.1 The Cepstra

Cepstrum analysis is concerned with the deconvolution of two signal
types: the fundamental (basic) wavelet and a train of impulses (excitation
function) [1.4]. The composite signal can be represented in terms of
power, complex, or phase cepstra. In this chapter, emphasis is placed on
the power and complex cepstra. Readers interested in phase cepstra are
referred to [1,3,4].

6.2 The Power Cepstrum

The power cepstrum was first described and used by Bogert e al. [1] in
1963. The purposc of the study was to determine echo arrival times in a
composite signal since the delayed echoes appear as ripples in the loga-
rithmic spectrum of the input data sequence x(n). In practice, the power
cepstrum is an effective tool provided that the frequencies of the basic
wavelet and excitation function do not overlap.

The power cepstrum of the signal is defined as the square of inverse z-
transform of the logarithm of the magnitude squared of the z-transform of
the data sequence, which can be written as

Xpe(nT) = (2" {log| X (2)]*})? (6.1)

| \?
" O e e y| X (=3[2-n1} - :
Xpe(nT) = (anj jE log| X(2)]*z d‘,) , (6.2)

where X(z) represents the z-transform of the data sequence x(n7). Let us
assume that the data sequence consists of two convoluted sequences
v(nT) and v(nT), which represent the basic wavelet and excitation func-
tion, respectively. The data sequence x(n7) can be written as

x(nT) = y(nT) * vo(nT). (6.3)
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This equation can then be written as the multiplication of the Fourier
transform of the two sequences,

| X@)P = Y@ - V)] (6.4)
Upon taking the logarithm of both sides of the equation, we obtain
oo log|X(@)F = log| Y(@) + log| V(). (6.5)

To further elaborate on the power spectrum analysis, let us assume that
the excitation function (signal) is given as

v(nT) = 8(nT) + cd(nT — nyT), (6.6)

where §(n) denotes the unit impulse function in a sampled data sequence.
On the basis of this equation, Eq. (6.4) can be further written as

X = |Y@P1 + cz7 ™. (6.7)

By taking the logarithm of both sides of this equation and substituting
z = e/, we expand Eq. (6.5) as

log|X(e/)|* = log| Y(e/)? + log(l + ¢? + 2¢ cos(wn,yT)) (6.8)
= log| ¥(e/)|2 + log(l + ¢?) + log (I + i—._,_ cos(mnnT}).
. 1 + ¢

(6.9)

The details of these derivations are described elsewhere [3]. It is obvious
from Eq. (6.9) that the logarithm of the magnitude squared of the z-
transform of the data sequence x(n) will have sinusoidal components
(ripples). The amplitudes and frequencies of these ripples correspond to
the amplitude ¢ of the excitation function and the time delay, n,T.

By taking the inverse z-transform of Eq. (6.9), the data sequence x(nT)
can now be expressed in terms of its components. It is assumed that the
power cepstra of these components are additive, each corresponding to
different frequency bands,

where y,. is the power cepstrum of the basic wavelet, and v, is the power
cepstrum of the excitation signal.

Note that in the above equation the cross-product term was neglected
If the data sequences y,. and v, have different frequency ranges, they can
be easily obtained by filtering in the pseudo-frequency domain.

In summary, after taking the inverse z-transform and obtaining the
power cepstrum, the peaks produced by the excitation function can be
identified at the quefrencies (delays) of n7T. Assuming that v,(nT) is an
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impulse function, the peaks of the power cepstrum can be detected if the
log| Y(2)]? is quefrency limited to less than noT and the ripples of the
log| Y(2)|* have a period (repoid) less than (ngT)".

While power cepstrum methods have been successfully applied to
biomedical signals including the ECG and diastolic heart sounds, the
methods are limited by their failure to maintain the phase information
required for precise recovery of analyzed signals.

6.3 The Complex Cepstrum

The complex cepstrum is an outgrowth of homomorphic system theory
developed by Oppenheim [2]. Although the power cepstrum can be used
for detecting echoes, it cannot be used for wavelet recovery since the
phase information is lost [2-5]. The complex cepstrum of a data sequence
can be defined as the inverse z-transform of the complex logarithm of the
z-transform of the data sequence as follows,

£(nT) = ﬁ} J; log(X(z)z" ! dz, (6.11)

where £(nT) represents the complex cepstrum and X(z) represents the z-
transform of the data sequence x(nT).

Let us assume that the input sequence is the convolution of two se-
quences as follows,

x(nT) = y(nT) * v(nT), (6.12)

where y(nT) represents the basic wavelet and v(nT) represents the excita-
tion function. This can be written in the z-domain as

X(2) = Y(@V(2). (6.13)
The logarithm of Eq. (6.13) is written as
X(2) = log X(2) = log Y(z) + log V(). (6.14)

The complex cepstrum can then be estimated by the inverse z-transform
of this equation,

#(nT) = f(nT) + g(nT), (6.15)

where £(nT) represents the complex cepstrum of composite signal x(n),
¥(nT) represents the complex cepstrum of the wavelet component, and
0(nT) represents the complex cepstrum of the excitation component.

In an effort to account for the presence of the excitation function in the
complex cepstra, we assume that the excitation function v(nT) is of the
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form
v(nT) = 6nT + cd(nT — nyT). (6.16)
By taking the z-transform and substituting z = e/», we have
V(z) = V(e™T) = | + cetomT (6.17)
and
X(e®T) = V(eTX1 + cetnT), (6.18)

Taking the logarithm of both sides of Eq. (6.18),
log X(e/®T) = log Y(e/*T) + log(l + ceJonT), (6.19)

Where ¢ < 1, the wavelet component dominates and the data sequence
exhibits minimum phase characteristics. This is most evident when Eq.

(6.19) is expanded to the form

.2
log X(e’™) = log Y(e/*T) + ce~fmT — 52— e Vol . .. (6.20)

Finally, the complex cepstrum of the data sequence x(n) is obtained by

- taking the inverse z-transform of Eq. (6.20),

2
£(nT) = $(nT) + c5(nT — neT) — % 8(nT = 2moT) - - - . (6.21)

It is evident in Eq. (6.21) that the complex cepstrum includes the com-
plex cepstrum of the wavelet as well as ripples of the excitation function
at the positive frequencies (n,T). The amplitudes and frequencies of the
ripples correspond to the amplitudes and delays of the excitation function
vingT).

For the case ¢ > 1, where the data sequence exhibits maximum phase
characteristics, Eq. (6.19) can be further written as

log(X(e/T)) = log(Y(e’T)) — jon,T + log ¢ + %ef‘w'of + 0L (6.22)

Prior to filtering, the term —jwn,T in the above equation should be ex-
tracted in order for the excitation function to show maximum phase char-
acteristics, which requires negative ripple frequencies. Note that the am-
plitudes of the ripples have been attenuated in Eq. (6.22) by the term 1/c.
The complex cepstrum can then be written as

2(nT) = J(nT) + (log OB(T) + = (T + 2meT) + - - - . (6.23)
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After filtering, the linear phase term —jwngT should be included again in
order to recover the excitation function [3].

The basic wavelet y(nT) can be recovered by lowpass filtering the com-
plex cepstrum and taking the inverse z-transform of the resultant se-
quence. Note that for cffective wavelet recovery it is essential that the
frequencies of the wavelet and the excitation function do not overlap. If
necessary, the excitation function can also be recovered by first highpass
filtering the complex spectra and then taking the inverse z-transform of
the resultant signal.

The recovery process requires that the filtered complex cepstrum be
z-transformed, exponentiated, and inverse z-transformed. The y(n7) and
v(nT) sequences can be restored since the necessary phase information
has been retained. Figures 6.1a and 6.1b show the overall cepstrum
(homomorphic deconvolution) wavelet recovery system. Figure 6.1c
shows the typical filters utilized: shortpass (lowpass), longpass
(highpass), and notch. These filters are defined in the pseudo-frequency
domain and are analogous to lowpass, highpass, and notch filters in the
frequency domain.

In summary, the complex cepstrum contains the phase information and
therefore allows reconstruction of the composite signal. The power cep-
strum can be calculated from the complex cepstrum as follows,

Xpe(nT) = (2(nT) + £(=nT)), (6.24)

where x,.(nT) represents the power cepstrum and £(nT) represents the
complex cepstrum,

6.3.1 Phase Unwrapping

Calculation of the complex cepstrum is however complicated by the
fact that it is multivalued. Where computers and commercial software are
employed to compute the imaginary part of the complex cepstrum, the
principal value is given as [4,6]

-7 = arglX(z)] = m. (6.25)

The term arg| X(z)|, representing the imaginary part of the complex cep-
strum, has discontinuities at multiples of 27 radians. Since the function is
discontinuous, calculation of the log| X(z)| is inappropriate. Consequently,
the imaginary part of the log( X (z)) must be continuous, periodic, and thus
analytical in some annular region of the z-plane in order to perform the z-
transformation of the log(.X(z)). Another important requirement is that the
imaginary part of the log(X(z)) must be an odd function of w since the
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Fig. 6.1. Overall wavelet recovery system, also known as homomorphic de-
convolution (filtering) or cepstrum system. The DFT is performed by an FFT
algorithm. xg(n) denotes the recovered wavelet. The input sequence is windowed
and then appended with zeros. (a) Simplified block diagram. (b) More detailed
block diagram which can be used to process data in real time. (c) Typical lifters for
the single-echo, minimum phase (¢ < 1) case where peaks occur at ny and multi-
ples thereof. (The notch lifter is sometimes called a comb lifter.) [From Childers
et al. [4]].
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complex cepstrum of a real function should be real. Therefore, un-

wrapped phase is required for calculation of the complex cepstrum.
Several approaches for computation of unwrapped phase values are
available [4]. However, only two of them are discussed here. The first is
based on the fact that the phase is sampled at a very high frequency. This
sampling rate is required so that the phase never changes more than 7
between samples. As shown in Fig. 6.2, the correction term, ¢(k), can be
added if the phase difference between samples of the module 27 phase

sequence P(k) exceeds m,
clk = 1) — 2m if P(k) = Pk —1)>m
clk) =9qctk — 1)+ 27 if Ptk — 1) — P(k) > =
clk — 1) otherwise,

where ¢(0) = 0.

a

21 A P

-2n 4 . s 8 s @

Fig. 6.2. Phase unwrapping. (a) Phase modulo 2. (b) C(k), the correction
sequence. (c) Unwrapped phase. [From Childers et al. [4]].
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Alternatively, the phase can be unwrapped by an adaptive numerical
integration procedure proposed by Tribolet [6]. This approach combines
information regarding the phase derivative and the principal value of the
phase. For each frequency, a set of permissible phase values is'defined by
adding integer multiples of 27 to the principal value of the phase. One of
these values may be selected as the unwrapped phase with the help of a
phase estimate. This phase estimate is formed by adaptive numerical
integration of the phase derivative within a given step interval. The step
interval is updated until the phase estimate approaches the permissible
phase values [6].

A new approach based on finite length cepstrum modeling was pro-
posed by Nadeu, details of which appear in Ref. [7].

6.3.2 Phase Unwrapping Using Adaptive Numerical Integration
The Fourier transform of the data sequence x(n) is given as
X(z) = Xulz) + A= [X(2)}e miXan, (6.26)

where Xy (z) represents the real part of X(z); X,(z) represents the imagi-
nary part of X(z), |X(z)| represents the magnitude of the X(z), and

. arg[ X(z)] represents the phase of the X(z). The logarithm of the Fourier

transform of the data sequence x(n) is written as
X(2) = log X(z) = log|X(z)| + j arg[ X(2)]. (6.27)

The derivative of X(z) may be found by assuming that Eq. (6.27) has a
valid Fourier transform,

8X(2) _ 8 log X(2) _ AX(2)/éw

o S XD (6.28)
The derivative of arg[ X(z)] is obtained from
6 arg[ X(z)] _ Xr(2) Xi(z) — Xi(2) Xr(2) (6.29)

dw |X(2)) '

where the first derivative notation represents 8/8w. Finally, the derivative
of X(z) is written as

X'(z) = Xr(2) + Xi(2) = —jFT{nx(n)}. (6.30)
It is evident then that the phase arg[ X(z)] can be defined as the integration
of the derivative arg’[ X(z)] as follows [6],

arg[ X@)] = | arg'[X(em)] dn, 6.31)
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based on the initial condition arg[ X(¢/")] = 0. The phase function exhibit-
ing these properties is called the umvrapped phase function. On the basis
of these properties, it is apparent that the unwrapped phase function is a
continuous function and can also be defined as an odd function when the
phase derivative of the mean is equal to zero. Otherwise, the lincar phase
component caused by the derivative of the arg[ X(z)] should be omitted
before phase unwrapping.

To calculate the unwrapped phase function, the principal value of the
phase is calculated at each frequency wy. The limited phase value can
then be found from the summation of the principal value and the correc-
tion factor 2ml(wy),

arg| X(z)] + 2ml(wy), (6.32)

where arg| X(z)] represents the principal value at the given frequency wy
and [/ is an integer value.

atgl X(e/)] = arg[ X(e™)] + 2ml(wy). (6.33)

The correction factor /(w;) at a given frequency w; can be estimated
where afg[ X(e/1)] represents the unwrapped phase function at frequency
wy by applying trapezoidal numerical integration to the phase derivative.
The current value of the phase estimate can be calculated by utilizing the
previous estimate of the phase value.

Step 1. '

W, = (u;.‘|

afgl X(e™] = aigl X(e™™ ] + — 5
X larg' [ X(e )] + arg'[ X(e/)]]. (6.34)

Equation (6.34) improves as the step increment Aw = w, — w;_; becomes
small. _ i

Step 2. The correction factor /(w,) at @, can be assumed to be con-
sistent if it falls into a predetermined range of one of the acceptable
correction factors 2ml(wy) at wy,

|afgl X(e/™)] — arg[X(e/)] + 2ml(wy)| < THR < 7. (6.35)

The resultant /(w;) can be used in Eq. (6.33) to form the unwrapped
phase at wy. The unwrapped phase at w;,, will be estimated using the
recently unwrapped phase at wy.
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This process continues until all the unwrapped phase values have
been determined.

6.4 Biomedical Applications of
Cepstrum Analysis

6.4.1 Analysis of the ECG Signal Using the Cepstrum Technique

The analysis of ECG signals in the time and frequency domains has
been utilized in clinical diagnosis and is well documented in the literature
[8,9]. In the time domain analysis, the amplitudes and duration of the P,
QRS, and T complexes have been used to construct the feature vector.
Pattern recognition techniques were then applied to the feature vector for
classification purposes [8,9]. However, extraction of the feature vector is
often complicated by the presence of background noise and other artifacts
interfering with the pattern.

In the frequency domain, analysis of the ECG signal has often resulted
in unsuccessful discrimination among pathological states. In an effort to
produce more conclusive spectral results, Amazeen et al. [9] utilized the
phase information for distinguishing normal from abnormal ECGs.

Murthy et al. [10] proposed homomorphic filtering and cepstrum analy-
sis. Here we summarize their results and refer the reader to the Ref. [10]
for details. The ECG signal was taken as the output of a system driven by
excitation functions. Note that the ECG signal represented the convolu-
tion of the basic wavelet and excitatory functions. The complex cepstrum
of the ECG signal was filtercd to separate the system (basic wavelet) and
the excitation functions. In this approach, the basic wavelet represented
the action potential generated by the heart, while the excitation function
represented the excitation pattern of the heart muscle during the cardiac
cycle. In their study, Murthy et al. [10] analyzed ECG recordings that
exhibited normal characteristics and recordings showing inverted T-
waves and two type of vefitricular pFémElurc beats as shown in Fig. 6.3.

Figure 6.4 shows the complex cepstra estimated by Eq. (6.11). As noted
by Murthy et al. the normal and inverted T-wave ECG patterns in Fig. 6.3

s closely resemble one another. However, the complex cepstra of these two

signals are clearly distinguishable. The complex cepstra of the two PVC
patterns were also easily distinguished from the normal cepstrum. The
minimum and maximum phase components of the complex cepstra pre-
sented in Fig. 6.4 were calculated as

£(n) = Kmin(n) + Lmax(n), (6.36)
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Fig. 6.3. Typical ECG signals. (a) Normal. (b) Inverted T. (c) PVCI. (d)

PVC2. [From Murthy et al. (3]].
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where £(n) represents the complex cepstrum of the ECG signal and £,(n)
represents the minimum phase component of the signal x(n):

(0, n<o

Emin(n) = 4 4£(0), n=20

[ £(n), n>0.

The maximum phase component that £,,.,(n) represents is defined as
s

0, n>0
Lmax(n) = {4£(0), n=10
| X(n), n<q.

By taking the inverse complex cepstrum of £n(n) and £,..(n). the mini-
mum and maximum phase components of the signal x(n) can be con-
structed. Figure 6.5 shows the minimum and maximum phase compo-
nents for the four ECG signals. It is obvious from this figure that the
minimum, as opposed to the maximum, phase component acts as an
effective decision criterion.

Finally, the basic wavelet of the ECG signal was recovered upon linear
filtering of the complex cepstra. Prior to filtering, the complex cepstra
were recalculated for an exponentially weighted input data sequence
X,(n). The original input sequence x(n) was multiplied by an appropriate
weighting factor a”, where a represents some constant. This exponential
weighting was provided in order for the sequence x(n) to exhibit minimal
phase characteristics and ultimately ameliorate the basic wavelet recov-
ered from the reconstructed cepstra [10].

Figure 6.6 shows the complex cepstra of the signals in Fig. 6.3, which
have been weighted using the « value appropriate for each signal. The
complex cepstra recalculated on the basis of these weighting factors were
lowpass filtered using a window 20 samples in width and centered at the
origin. The basic wavelets presented in Fig. 6.7 were reconstructed in the
time domain after filtering. The shapes of the wavelets in Figs. 6.7a and
6.7b, corresponding to the normal and inverted T-wave ECG patterns,
respectively, similarly resemble that of an action potential generated in
the heart muscle. Figure 6.8 shows the excitatory function reconstructed
after highpass filtering of the complex cepstra shown in Fig. 6.6.

The results presented in Figs. 6.7 and 6.8 substantiate the existence of
two excitation impulses: the first, a ventricular contraction manifested in
the QRS complex, and the second, ventricular repolarization evident at
the onset of the T-wave. In the case of PVC, the T-wave is absent since
repolarization is inhibited by a more prominent premature ventricular
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Fig. 6.3a-d. 3d. [From Murthy er al. [10]].
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Fig. 6.7.
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[From Murthy et al. [10]].
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Fig. 6.8. Excitation function obtained by highpass filtering of the complex
cepstra of Fig. 6.5a-6.5d. [From Murthy et al. [10]].
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contraction. Therefore, the results demonstrate the fact that two excit-
atory impulses are present in the normal and inverted T-wave ECG pat-
terns, while only one impulse can be identified in the presence of a PVC
[10].

In summary, Murthy er al. [10] utilized homomorphic filtering and the .

complex cepstrum method to decompose the input data sequence x(n)
into its wavelet and excitatory function components. The results of their
analysis reveal that the basic wavelet components closely resemble action
potentials in cardiac muscle fibers while the excitatory functions follow
the excitation pattern evident in the heart muscle during the cardiac
cycle.

Murthy et al. also applied the ARMA method (covered in Chapter 11)
to analyze the ECG signal and its minimum and maximum phase compo-
nents. The details of this study appear elsewhere [10].

6.4.2 Analysis of Diastolic Heart Sound Usmg the Cepstrum Technique

Previous studies have shown that Loronary ﬂtet‘l()scs produce sounds
due to turbulent blood flow in partially occluded arteries [11,12]. During
diastole, coronary blood flow is maximum and the sounds associated with
turbulent blood flow through partially occluded coronary arteries are the
loudest.

The cepstrum method was proposed by Shen [13] to analyze isolated
diastolic heart sounds produced by partially occluded coronary arteries.
The recorded diastolic heart sounds were assumed to be a convolution of
the turbulent sound caused by coronary occlusions (excitation function)
and the sound transmission mechanism (basic wavelet).

Isolated diastolic heart sound records. each 1024 samples in length
(sampled at 4 kHz), were initially windowed using a Hanning window.
The cepstrum method was applied to the heart sound recordings from five
patients (one normal, one angioplasty, one young subject, and two coro-
nary artery disease patients). The recordings were performed in a sound-
proof room. Figures 6.9a and 6.10a show the power cepstra of diastolic
heart sounds obtained from one discased and one normal patient; Figs.
6.9b and 6.10b reveal the complex cepstra for the disecased and the normal
patient respectively.

It is obvious from Fig. 6.9a that high time peaks can be found in the
power spectrum of the abnormal patient. However, as shown in Fig.
6.10a, the power cepstrum of the normal patient did not include any high
time peaks. The presence of the low time components (basic wavelets) in

both normal and abnormal patients was attributed to the impulse response %

of the acoustic transmission system. The presence of high time compo-
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nents in the abnormal power cepstra was associated with coronary artery
disease.

Itis evident upon comparison of Figs. 6.9b and 6.10b that the complex
cepstra of the abnormal and normal patients exhibited marked differences
at the high time region. The low time components (around the origin)
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Fig. 6.9. (a) Power cepstrum from one LAD patient (137). (b) Complex cep-
strum. [From Shen [13]].
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Fig. 6.10. (a) Power cepstrum from one pseudonormal subject (125). (b) Com-
plex cepstrum. [From Shen [13]].

appeared to be the same for both cepstra, while the high time components
of the abnormal complex spectrum (as was also the case for the power
spectrum) were an indication of the presence of coronary artery disease.
Further details regarding the application of the cepstrum approach for the
detection of coronary artery disease are described elsewhere [13].

gz
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6.4.3 Analysis of Speech Signals Using Complex Cepstrum and
Linear Filtering

Prolific research in the area of speech signal processing has greatly
advanced our understanding of the speech signal waveform [2]. The
speech signal may be regarded as the convolution of vocal cord timing,
the glottal pulse, and the vocal tract impulse response. A new procedure
for decomposition of the speech signal into its constituents has been
proposed by Oppenheim and Schafer [2]. Their approach was based on
the calculation of the complex cepstrum of the speech waveform. fol-
lowed by linear filtering of the extracted components and recovery of the
components in the time domain. This procedure is illustrated in Fig. 6.11,
where D(:) represents the complex cepstrum, and in Fig. 6.12 where D!
is the inverse complex cepstrum [2].

The authors define the speech signal s(n) as the convolution of the pitch
p(n), the glottal pulse g(n), and the vocal tract sequence v(n),

s(n) = [p(n) * g(n) * v(n)]w(n), (6.37)

where w(n) represents the window.

The pitch data were taken as a sequence sampled at a rate 7. The
complex cepstrum of the train of pitch samples was weighted with the
window w(n) such that

w,(n) = p(n)w(n) forn =0, 7, +2r (6.38)

and the complex cepstrum of the pitch p(n) is
pn) =, (n) forn =0, £7, £21. (6.39)

The minimum phase window allows the pitch data to exhibit minimum
phase. Therefore, the complex cepstrum of p(n) is zero for n < 0.

The complex cepstrum 8(n) of the vocal tract is estimated on the basis
of a cascade of damped resonators [2],

M |n
o(n) = 2, % cos wn  forn >0, (6.40)
i=1

o(n) =0 forn <0 (6.41)

where a; represents the poles of the z-transform of v(n).

—» D) »| Linear = D) —=

Fig. 6.11. Canonic form for homomorphic deconvolution. [From Oppenheim
and Schafer [2]].
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Fig. 6.12. Realization ol the transformation D() of Fig. 6.11. [From Op-
penheim and Schafer [2]].

Finally, the glottal pulse g(n) was defined as the convolution of the
minimum phase sequence g(n) and the maximum phase sequences g,(rn)
(g(n) = gi(n) * g.(n)). Both the maximum and minimum phase compo-
nents are included in the convolution since details of the signal character-
istics have not been well documented.

As far as speech signal decomposition is concerned, the complex cep-
strum of the glottal pulse can be distinguished from the pitch pulse, given
its much shorter duration. It has also been observed that the complex
cepstrum of the vocal tract signal decays rapidly compared to the com-
plex cepstrum of the pitch pulse [2]. Consequently, Oppenheim and
Schafer divided the complex cepstrum into three regions. Any constituent
pulse with a pitch period of 7 or n > 7, was assumed to be the pitch pulse.
For 0 = n < 7, the contribution to the composite was attibuted to the
minimal phase component of the glottal pulse and the vocal tract. Finally,
any contribution for n < 0 was said to be given by the maximum phase
component of the glottal pulse |2].

To recover the three constituent pulses, Oppenheim and Schafer fil-
tered the complex cepstrum as follows: for the pitch pulse period 7, only
those components of the complex cepstrum for n = 7 were maintained;
otherwise, the complex cepstrum was multiplied by zero for |n| < 7 and
by one for |n| > 7. The convolution of the minimum phase component
gi(n) of the glottal pulse and the vocal tract signal was extracted by
multiplying the complex cepstrum by zero for n < 0 and n = 7. The
maximum phase component g(n) of the glottal pulse was obtained after
multiplying the complex cepstrum by zero for n = 0. The filtering process
was succeeded by the inverse z-transformation of the complex cepstrum
in order to recover the pitch pulse, the convolution of the minimal phase
portion of the glottal pulse and the vocal tract, and the maximum phase
component of the glottal pulse.

Figure 6.13 shows the recovery of pitch for the vowel sound **ah’" as in
“father.” The speech was sampled at 10 kHz and weighted with a Han-
ning window 2.56 msec in duration.
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Fig. 6.13. (a) Sample of the vowel **ah.”” (b) Resulting output due to pitch. (c)
Complex cepstrum of (a). [From Oppenheim and Schafer [2]].

Finally, the vocal tract sequences were extracted by matching the loga-
rithmic spectrum of the vocal and glottal pulses with the logarithmic
spectrum of a set of idéal cascade resonators [2]. For unabated signal
recovery, the authors suggested that the same windowing process be used
for calculating the complex cepstrum of the original speech waveform as
was used for windowing the vocal tract signal. Details of the analysis
using complex cepstrum and linear filtering are described in Ref. [2].

6.5 Computer Experiments

1. Create a data sequence consisting of three sinusoids with frequen-
cies of 2, 3, and 5 kHz and a 20-kHz sampling frequency.

x(n) = cos (Zw;{lr n) + cos (wa:n) + cos (erf n)‘




