
PSTEG: STEGANOGRAPHIC EMBEDDING THROUGH PATCHING

Kyle Petrowski a, Mehdi Kharrazi a, Husrev T. Sencar b, Nasir Memon b

a Dept. of Electrical and Computer Eng., Polytechnic University, Brooklyn, NY, USA.
b Dept. of Comp. and Inf. Science, Polytechnic University, Brooklyn, NY, USA.

ABSTRACT
In this paper we propose a novel approach to image

steganography in which embedding is done without making

explicit modifications to the image; that is, the embedding

distortion introduced to the cover image is both perceptually

and statistically ensured to be less detectable. If an image is

divided into blocks and each block is hashed, then the hash

values could represent the embedded message content. A

set of replacement blocks can be obtained by consecutively

capturing images of the same scene (or resampling the in-

cident light). Since image content remains the same and

noise is sampled, the set of replacements are statistically

compatible while still providing unique hash values. With

such an approach the embedder can choose the block with

hash value corresponding to the message content without

violating any of the natural image statistics. When applied

to JPEG images, experiments show that this technique can

achieve embedding rates of .063 bits per DCT coefficient or

.157 bits per nonzero DCT coefficient while still remaining

undetectable by Farid’s universal steganalysis tool.

1. INTRODUCTION

Steganographic embedding techniques share the common

goal of maximizing the embedding rate while minimizing

the distortion caused by the embedding process. For ex-

ample Outguess [3] preserved the global DCT histogram,

F5 [4] minimizes embedding distortion via minimizing the

number of modifications through employing matrix embed-
ding. On the other hand, the technique in [5] models statis-

tical properties of DCT coefficients and preserves the statis-

tics of the perceptually important image component while

the embedder operates on the perceptually insignificant com-

ponent. Perturbed Quantization technique [6] incorporates

an innovative coding technique which embeds into select

DCT coefficients.

In general, the main weakness with all embedding tech-

niques is that they modify the natural image statistics one

way or the other, thus making steganalysis possible by de-

tecting deviations from natural image statistics. But would

N. Memon thanks Ton Kalker for suggesting this approach.

This work was supported by AFRL Grant No. F30602-03-C-0091

it be possible to embed a secret message in a cover image,

without any modifications to the image. Well it is possible

but not practical. For example, let’s consider cover images

obtained trough a digital camera. Then, if the goal is to

embed n bits of information in an image, one could keep

capturing images until the LSB of n locations of interest

(defined by a secret key) match the message bits. But the

number of images one has to capture to obtain an image

with the right LSBs, for a reasonable message length, will

be large on average and thus such an approach would be

impractical.

On the other hand, it is well known that image captur-

ing devices add some noise to the captured image. This

noise is due to different components of the image capturing

device. Using the above observation, and the fact that con-

secutive images captured from a constant scene will be dif-

ferent due to the device noise, we propose a new embedding

technique called steganographical embedding trough patch-

ing or PSteg in short. PSteg creates stego images by patches

obtained from multiple captured copies of the selected cover

image. Such an approach will reduce the embedding distor-

tion to the image capturing device noise which is less prone

to perceptual and statistical detection.

The rest of this paper is organized as follows: in section

2 we first introduce the concept behind PSteg. In Section

3, we cover practical issues, and in 4 we show some ex-

perimental results. Finally in section 5 we conclude with

discussion and future work.

2. PSTEG

At the heart of PSteg is the availability of multiple copies

of a selected cover image. The copies will be very similar

although not identical. The block diagram of the embed-

der is given in Figure 1. Images are broken into blocks of

arbitrary size according to a predefined pattern.

For each block coordinate (in the pattern) the unique

blocks are identified over all copies of the images. The num-

ber of unique blocks indicates the payload (number of bits)

that can be carried by the block at the selected block coor-

dinate. For example if there are 8 unique alternates for each

image block, then one can embed 3 bits per block.

II - 5370-7803-8874-7/05/$20.00 ©2005 IEEE ICASSP 2005



The embedding is done by breaking up the message bit

string into pieces that match the available payload of each

block. For this, each image block is hashed to the number of

bits to be embedded in that block. The stego image is then

patched together from a proper set of blocks whose hashes,

when combined, match the embedded message. Decoding

is done simply by breaking the stego image into blocks us-

ing the predefined block pattern and hashing them. Practical

concerns are further addressed in the following sections.

3. PRACTICAL ISSUES

3.1. Image acquisition

A practical implementation of PSteg requires a number of

additional considerations. Most image capture devices ex-

hibit some nonlinear characteristics, often induced by heat.

This results with a set of images whose content differs in

significant ways, perhaps by a DC offset. If left unchecked,

such a problem would result in stego images which are eas-

ily distinguishable from their cover counterparts, both visu-

ally and statistically. To compensate for such effects one of

the images could be chosen as a base image and each poten-

tial block replacement could be adjusted to match the cho-

sen characteristics of the respective block of the base image.

Limiting the normalization process to minimum processing

will preserve the uniqueness properties.

In the case of a DC offset, or brightness variation, the

normalization could be accomplished by subtracting a block’s

mean and then adding the mean of the respective base patch,

or in the frequency domain, simply using the DC value of

the base patch. Since the brightness difference may not be

constant across the entire image, the normalization should

be performed independently for each block instead of over

the entire image set. Another problem arises when there is

a global or local shift between the copies of the captured

images. Most generally, uncontrolled device movements

yields global shifts whereas local shifts are due to changes

in the captured scenery.

3.1.1. Flatbed Scanner

Image acquisition was initially attempted with a consumer

grade flatbed scanner. The advantages of using a scanner

are that it provides a controlled environment for image cap-

ture and can be used on any printable photograph. Many

scanners also output the data uncompressed and relatively

unprocessed. But there are a number of disadvantages such

as the brightness variation, which must be normalized. Ad-

ditionally, the movement of the scanner’s mechanical arm

seems to result in a subpixel shift between sample images.

While there are techniques for eliminating subpixel shift,

the effect of such techniques may make the resulting stego

image detectable.

3.1.2. Digital camera

The advantages of using a digital camera are that it does not

require an internal light source and can depend on a con-

sistent external source. Also, since there is no internal me-

chanical movement, any relative movement is external to

the camera and can be controlled. For example to avoid

camera movement, the shutter could be triggered remotely.

Although consumer grade digital cameras tend to be less

flexible in giving access to raw, unprocessed data than scan-

ners, they commonly use the ubiquitous JPEG format which

may mask the distortion created by PSteg blocks. Disad-

vantages of using a digital camera are that it also requires

brightness normalization.

3.2. Coding

Ideally an infinite number of images (of the same scene)

could be taken to guarantee that each message symbol is

available. However, the time and memory constraints render

such an approach impractical. JPEG compression, confor-

mation to a base image, and hashing collisions can further

reduce the availability of message symbols.

In practice, a hashing function should be chosen that

minimizes the number of collisions. Some possibilities are

taking a subset of the 128 bit MD5 hash, taking a subset

of the DJB2 hash, or xoring together all disjoint subsets

of the 128 bit MD5 hash of a particular size. Experiments

show that xoring MD5 hashes performs best in the context

of PSteg.

However, even with 150 JPEG compressed images, when

conformed replacement blocks are unique, the xored MD5

hashes exhibit too many collisions to produce all 128 val-

ues which would result in an 7 bit capacity for each block.

In order to have all possible hash values available the hash

length would have to be reduced to 3 or 4 bits. Instead of

accepting such a devastating reduction in information carry-

ing capacity, a simple coding scheme could be used to avoid

unavailable hash symbols.

In the coding scheme used, for any particular block we

hash all its replacements to one of 128 symbols. However,

we know that for any particular block some of the symbols

may be missing. We determine an upper bound on the miss-

ing symbols, call it M , so that there are at most M symbols

missing for any particular block and we pick M symbols

to be null symbols. Since we have 128 total symbols and

M null symbols, there remain 128 minus M symbols for

message content and we will code our message stream with

these 128 minus M remaining symbols.

However, in practice, over saturated and under saturated

regions of images have too many missing hash values, mak-

ing M too large and reducing the embedding rate below ac-

ceptable levels. To fix this problem, blocks whose DC val-

ues are over-saturated or under-saturated beyond a certain

II - 538



��
� � � �� � �

� �� �
����

� �� � ��

� �� � ��	 		 	 

� �� �� �� �
���
�


 

 

 

 

���
�

��
�

��
�

��
��� � � �� � � �
��
��

� � �� � �
� � � �� � � �

��
�

� � �

��
�

� � �� � �� � � �� � � �

each location
blocks for 
find unique

  
 

!!
!

" " "# # #
$ $ $% %& & '( ( )

*+
, , -

..
../ / / /0 0 0

1 11 12 3 3 455
55 6 66 6 77

8 88 88 88 8
999
9 ::;;< << < ==> >> > ??

@@
@@

AA
AAB B B BC C C

D D DD D DE EE E
F FF FF FF F

GGG
G

HHIIJ JJ J KK
L LL L MMNN
NN

OO
OO

P P PQ Q Q
R R R RS S S

TT
TT

UU
UU

VV
VV

WW
WWX X XY Y Y

ZZ
Z
[[
[

\ \ \\ \ \\ \ \
] ]] ]] ]

^ ^ ^^ ^ ^
_ __ _` ` `` ` `` ` `

a aa aa a

b b bb b bb b b
c cc cc c

d d dd d dd d d
e e ee e ee e e

f f ff f f
g gg gh hh hh h

i ii ii i
j jj jj jj jj j
k kk kk kk kk k

l ll l
m mm minto blocks

Break images

Message

Embed

Block patternCopy 1

Copy 2

Copy 3

Copy 4

Copy 5

Fig. 1. Block diagram for PSteg embedder.

threshold are ignored. Although not optimal, the following

heuristic works quite well:

Thresholdhigh = DCmax − �10log2NDCmax� + 20
Thresholdlow = DCmin − �10log2NDCmin�

where, N is the number of DC values equal to Max or Min.

Before embedding the message, the null symbols should

be selected as the first M values in a previously agreed upon

sequence of hash values and M should be embedded in the

parity of the DC coefficients of the first 7 non-saturated

blocks in an agreed upon sequence of blocks.

To simplify the illustration of this technique, assume

that we are hashing to the following six, instead of 128,

symbols: A, B, C, D, E, and F. We might know that at most

two of them may be missing. So we pick two null symbols

(for example B and E). Now we know we have 6 symbols

total and 2 null symbols, leaving 4 symbols for message

content. We may match them to binary message content

like this: 00-A, 01-C, 10-D, 11-F.

Assume we have an image consisting of 4 blocks. Since

there are at most two symbols missing from any given block,

our available symbols may look something like this:

Block1- A,C,D,E,F Block2- B,C,D,F

Block3- A,C,D,F Block4- B,C,D,E

If we have a message stream like this: 1000011110...

when converted to our symbol set it would look like this:

DACFD... and we would construct our image as follows:

Block1- D Block2- B

Block3- A Block4- C

The receiver knows from the hashing function that there

are 6 symbols total. The only additional information that the

receiver needs is how many null symbols are needed for this

particular image. Once the receiver knows the number of

null symbols he can pick them sequentially from an agreed

upon permutation of the total available symbols (for exam-

ple BEAFDC). So we embed the number of null symbols

in the parity of the DC coef of the first 3 blocks (only once

for the entire image). In this case we embed 010 to indi-

cate that the first two symbols in the sequence (B and E) are

the null symbols. Thus the receiver would decode the PSteg

message as follows: DBAC->10 skip 00 01->100001...

4. EXPERIMENTAL RESULTS AND COMPARISON

For image acquisition an ”Olympus 300 Digital” was se-

lected. It was set to capture 640x480 color images at its

highest quality setting, which uses an automatically adapted

custom quantization table for each image. Avoiding the

image acquisition problems discussed above, 89 different

scenes were captured with 150 sample images for each scene.

Before processing, the default images were converted to

gray scale, by stripping off the color information.

The block size was taken as the 8x8 JPEG blocks and

each block’s 63 AC coefficients were hashed with MD5 (the

DC coefficient was reserved for brightness adjustments).

Each of the 128 bit hash values were further reduced to 7

bit hash values by xoring together all of the 16, 8 bit, dis-

joint subsets and taking the 7 LSBs of the result.

For each of the 89 scenes acquired 10 stego images were

created, each with a different base sample image and a dif-

ferent random message embedded with the coding scheme

discussed above. For comparison each stego image’s re-

spective base sample image was taken as a cover image.

The size of the message embedded in each stego image

was recorded along with the number of nonzero DCT co-

efficients. The average embedding rates for the 890 stego-

images were .063 bits/coefficient and .157 bits/nonzero co-

efficient, with standard deviations of .0067 and .027, respec-

tively.

In order to test the undetectability of PSteg to steganaly-

sis algorithms, we used the universal steganalysis technique

proposed by Farid [7]. As for the classifier the freely avail-

able LibSvm[8] package was used with a RBF kernel. After

being converted from the DCT domain to the spatial do-

main, 74 statistics were computed for each of the 1780 im-

ages via wavelet decomposition. Fifteen of the scenes were

chosen at random for testing, while the remaining scenes

were used for training. This partitioning was repeated a total

II - 539



of ten times, with different random subsets used for training

and testing each time.

For each of the ten partitionings the SVM was trained

with the statistics from the 1480 image training subset (74

different scenes, 10 stego images and 10 cover images for

each scene). Afterward the trained classifier was tested against

the previously unseen 300 images (150 cover, 150 stego).

Over the average of the ten iterations, the SVM classifier

was only able to correctly classify 50.4% of the test images

at a false positive rate of 44.1% and a false negative rate

of 55.2% and with standard deviations of .9%, 14.9%, and

14.7%, respectively.

Before considering how PSteg compares with other em-

bedding techniques, it is important to note that the train-

ing/testing procedure outlined in this paper was designed to

reveal the robustness/reliability of the proposed embedding

algorithm. Rather than attempting to discriminate stego im-

ages from randomly selected cover images, the procedure

was designed to discriminate directly between PSteg-embedded

images and their cover counterparts. Furthermore, multiple

resampled versions of the cover images along with multiple

versions of the stego images were used to give the classi-

fier as many chances as possible to find the fundamental

differences between the cover and stego images of a partic-

ular scene. Intuitively, there is no reason why comparing

stego images to randomly selected cover images or provid-

ing one example of cover and stego for a particular scene

would yield better performance results. It is in these two

important ways that the procedure for the benchmarks of al-

ternative image steganographic techniques given in [9] dif-

fers from the procedure used for PSteg. Additionally, the

procedure in [9] used a linear kernel for the SVM classifier,

instead of an RBF kernel. Although computational require-

ments may render the linear kernel more practical, the RBF

kernel is certainly more rigorous. Despite these differences

in benchmarking methodology, PSteg still has performance

results competitive with the best of alternative embedding

techniques. One thing worth mentioning is that although the

alternative benchmarks were performed at an embedding

rate of .2 bits/nzdct, if comparative data for .15 bits/nzdct

was available in [9] then it would have been included here

instead. There is no reason why PSteg cannot perform at a

higher embedding rate with more samples. Approximately

.15 bits/nzdct was chosen arbitrarily to demonstrate proof

of concept. Comparative results extracted from the ROC

curves of [9] are presented in Figure 1.

5. CONCLUSION AND FUTURE WORK

A novel steganographic embedding technique that embeds

information without making explicit changes to an image

has been demonstrated at moderately high embedding rates

of .063 bits/coefficient and .157 bits/nonzero-coefficient, while

Comparison of Detection Rates

Embedding Technique PSteg PQ Outguess F5

False Positive .44 .44 .44 .44

False Negative .55 .56 .46 .45

Total Correct .505 .50 .55 .555

Table 1. All embedding rates .2 bits/nzdct except PSteg.

remaining completely undetectable against Farid’s [7] uni-

versal steganalysis technique. These results are in confor-

mance with other state-of-the-art embedding techniques.

However, PSteg still has room for improvements. Char-

acteristics yet to be determined are how much the bits/nonzero-

coefficient can be increased by reducing the quality factor

and how many samples can be included before reaching the

capacity limit. A more sophisticated coding scheme would

also probably improve embedding rates and detectability

results could be made more rigorous by attempting other

methods of steganalysis. Future research could explore a

number of extensions, such as applying the technique to

color images and other image formats (JPEG2000, bitmap,

etc.). Furthermore, a more rigorous analytical investigation

of this technique might reveal possible weaknesses which

could be used for further improvement.

6. REFERENCES

[1] G.J. Simmons, “The prisoners problem and the subliminal

channel,” CRYPTO, pp. 51–67, 1983.

[2] M. Kharrazi, H. T. Sencar, and N. Memon, “Image steganog-

raphy: Concepts and practice,” to appear in Lecture Note Se-
ries, Institute for Mathematical Sciences, National University
of Singapore, 2004.

[3] N. Provos, “Defending against statistical steganalysis,” 10th
USENIX Security Symposium, 2001.

[4] A. Westfeld, “F5a steganographic algorithm: High capacity

despite better steganalysis,” 4th International Workshop on
Information Hiding., 2001.

[5] Phil Sallee, “Model-based steganography,” International
Workshop on Digital Watermarking, Seoul, Korea., 2003.

[6] J. Fridrich, M. Goljan, and D. Soukal, “Perturbed quantiza-

tion steganography with wet paper codes,” ACM Multimedia
Workshop, Magdeburg, Germany, September 20-21, 2004.

[7] S. Lyu and H. Farid, “Detecting hidden messages using

higher-order statistics and support vector machines,” 5th In-
ternational Workshop on Information Hiding., 2002.

[8] Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library
for support vector machines, 2001, Software available at

http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[9] M. Kharrazi, H.T. Sencar, and N. Memon, “Benchmarking

steganographic and steganalysis techniques,” SPIE Sympo-
sium on Electronic Imaging, San Jose, CA, 2005.

II - 540


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       
	nd: nd
	header: Proceedings of the 2   International IEEE EMBS Conference on Neural Engineering                      Arlington, Virginia · March 16 - 19, 2005
	footer: 0-7803-8709-0/05/$20.00©2005 IEEE


