CE 815 – Secure Software Systems

Causal Analysis (Evasion attack)

Zahra Fazli/Mehdi Kharrazi Department of Computer Engineering Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the bottom of each slide, when the content is fully obtained from another source. Otherwise a full list of references is provided on the last slide. Thanks to Zahra Fazli for the help on the slides.

Content

- Provenance-Based IDS
 - Edge-based
 - Node-based
 - Path-based
 - Graph-based
- Evasion
 - Traditional IDS
 - Provenance-Based IDS
 - Prov-ninja
 - Discussion Holmes

Provenance-Based IDS

Why are Provenance-based IDS gaining popularity?

Lossy limit their

Provdetector

limit their effectiveness against advanced malicious actors

Unicorn

Content

Provenance-Based IDS

- Edge-based
- Node-based
- Path-based
- Graph-based
- Evasion
 - Traditional IDS
 - Provenance-Based IDS
 - Prov-ninja
 - Discussion Holmes

Evasion Attacks against Static Host Defenses

Evasion Attacks against Provenance-Based IDS

• Mimicry Attacks

Evading Provenance-Based ML Detectors with Adversarial System Actions, Kunal Mukherjee, Joshua Wiedemeier, Tianhao Wang, James Wei, Feng Chen, Muhyun Kim, Murat Kantarcioglu, and Kangkook Jee, USENIX Security 2023.

Popularity of Provenance-Based IDS

However, Provenance-based IDS are not yet mature.

Primary Roadblock to Provenance-Based IDS Adoption

Trust in Provenance-based IDS has not been established

Robustness against dedicated adversaries has not been verified

Adversarial validation is an established way to prove robustness

Adversarial Validation in Provenance-Based IDS

Generic adversarial techniques fail

Heterogenous graphs with node/edge attributes

Problem space feasibility is critical for validation

Only real-world attacks can invalidate defenses

Provenance mimicry attacks exist [Goyal], however

- Require adding >15,000 events
- Require knowledge of the defense model architecture
- Unlikely to be effective against event-level detectors

Contributions

ProvNinja

Identify Conspicuous Events

CE 815 - Secure Software Systems

[prov-ninja]

X Replace with Common Events

Event

CE 815 - Secure Software Systems

X Replace with Common Events

Index	Gadgets (Gadget Length)	Regularity Score	Rejection Rule	
	$\texttt{firefox.exe} - (Gadgets) \rightarrow \texttt{notepad.exe}$			
1	<pre>svchost.exe → wininit.exe → winlogon.exe → userinit.exe → explorer.exe (5)</pre>	2.8	Special Sequence	
2	<pre>svchost.exe → cmd.exe → shellexperiencehost.exe (3)</pre>	8.3	Display Irregularities	
3	nssm.exe \rightarrow python.exe \rightarrow conhost.exe \rightarrow wininit.exe \rightarrow explorer.exe (5)	4.39	Program Unavailability	
4	$conhost.exe \rightarrow \texttt{werfault.exe} \rightarrow \texttt{explorer.exe} \ (3)$	8.1	Insufficient Privilege	
5	$svchost.exe \rightarrow schtasks.exe \rightarrow conhost.exe \rightarrow explorer.exe (4)$	7.9	Scheduling Tasks	
6	$svchost.exe \rightarrow rundll32.exe \rightarrow winsat.exe \rightarrow explorer.exe (4)$	9.1	Writing to Registries	
7	twnserver.exe \rightarrow mpcmdrun.exe \rightarrow conhost.exe \rightarrow explorer.exe (4)	3.3	External Network Connections	
8	$sshd.exe \rightarrow ssh-shellhost.exe \rightarrow \texttt{explorer.exe} \ (3)$	7.5	User Interactions	
9	$sshd.exe \rightarrow mpcmdrun.exe \rightarrow conhost.exe$ \rightarrow winword.exe \rightarrow werfault.exe \rightarrow explorer.exe (6)	7.9	Singleton Programs	
10	<pre>services.exe → taskhostw.exe → ngentask.exe → ngen.exe → svchost.exe → explorer.exe (6)</pre>	4.2	Special Protocol Support	
11	$svchost.exe \rightarrow werfault.exe \rightarrow explorer.exe(3)$	9.5	-	

A 🐢 📈

Camouflage Processes

Problem Space Constraints

- Available transformations
 - discrepancies in available gadgets may occur
 - actively prefer system programs
- Preserving attack semantics
 - manually choose candidate system actions
- Robustness to pre-processing
 - data reduction: lossy graph compression approaches
- Plausibility to users and security analysts

Evaluation

Datasets

Experimental Setup

Reduces detection rates against SOTA Provenance-based IDS

Events Added per Replacement Path Length

Replacement Path Length

Each replacement adds fewer than 40 events

CE 815 - Secure Software Systems

Evasion Evaluation

edge-level detection : capability to counter robust provenance-based ML detectors

Table 3: PROVNINJA evasion for ShadeWatcher [32].

Attack Trunc	ShadeWatcher		Random Perturb.		ProvNinja	
Ацаск Туре	Recall	F1	Recall	F1	Recall	F1
Enterprise APT	0.96	0.93	0.98(+.02)	0.98(+.05)	0.45(51)	0.41(52)
Supply Chain APT	0.92	0.90	0.96(+.04)	0.97(+.07)	0.38(54)	0.40(50)
Average	0.94	0.92	0.97 (+. <i>03</i>)	0.98(+.06)	0.42(53)	0.41(51)

Evasion Evaluation

Defense Model	White-box (ProvNinja)		Black-box (ProvNinja)		Blind (ProvNinja)		Blind (Random Pert.)	
	Recall	F1	Recall	F1	Recall	F1	Recall	F1
ProvDetector	0.23	0.27	0.30 (+.07)	0.35 (+.08)	0.60 (+.37)	0.67 (+.40)	0.89 (+.66)	0.91 (+.64)
SIGL	0.31	0.35	0.38 (+.07)	0.47 (+.12)	0.69 (+.38)	0.74 (+.39)	0.97 (+.66)	0.95 (+.60)
S-GAT Prov-GAT	0.38 0.44	0.41 0.47	0.42(+.04) 0.51 (+.07)	0.51 (+. <i>10</i>) 0.61 (+. <i>14</i>)	0.75 (+. <i>37</i>) 0.78 (+. <i>34</i>)	0.77 (+. <i>36</i>) 0.80 (+. <i>33</i>)	0.91 (+.53) 0.96 (+.52)	0.93 (+.52) 0.97 (+.50)
ShadeWatcher	0.36	0.33	0.42 (+.06)	0.41 (+.08)	0.75 (+.39)	0.72 (+.39)	0.97 (+.61)	0.97 (+.64)
Average	0.34	0.37	0.41 (+.06)	0.47 (+.10)	0.71 (+.37)	0.74 (+.37)	0.94 (+. <i>60</i>)	0.95 (+.58)

Evasion Evaluation

(a) Enterprise APT.

(b) Supply Chain APT.

(c) Fileless Malware.

The Attack Realizability

Conclusion

ProvNinja systematically challenges Provenance-based IDS

Inspiring the development of robust IDS with realistic adversarial examples

Holmes

• What do you think about Holmes?

Acknowledgments

- [Prov-ninja] Kunal Mukherjee , et al. "Evading Provenance-Based ML Detectors with Adversarial System Actions" usenix 2024
- [unicorn] Xueyuan Han , et al. "Unicorn: Runtime provenance-based detector for advanced persistent threats"- ndss 2020
- [Threatrace]S. Wang, Z. Wang, , et al. "Threatrace:Detecting and tracing host-based threats in node level through provenance graph learning," IEEETransactions on Information Forensics and Security, 2022
- [Shadewatcher]- Zeng, Jun, et al. "Shadewatcher: Recommendation-guided cyber threat analysis using system audit records." 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022.
- [provedetector]- Wang, Qi, et al. "You Are What You Do: Hunting Stealthy Malware via Data Provenance Analysis." NDSS. 2020.
- [Goyal] Goyal, Akul, et al. "Sometimes, You Aren't What You Do: Mimicry Attacks against Provenance Graph Host Intrusion Detection Systems." 30th ISOC Network and Distributed System Security Symposium (NDSS'23), San Diego, CA, USA. 2023.