
CE 815 – Secure Software Systems
Causal Analysis (Poirot)

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the bottom
of each slide, when the content is fully obtained from another source. Otherwise a full list of references is provided on the
last slide. Thanks to Zahra Fazli for the help on the slides.

Fall 1403 CE 815 - Secure Software Systems

Cybersecurity Stats in 2022

• An estimated 2,200 cyberattacks per day.
• 255 million phishing attacks occurring in a six-month span, with over 853,987

domain names reported for attempted phishing.
• 2.8 billion malware attacks launched in the first half of 2022 alone.
• 60% more malicious DDoS attacks occurring in the first six months of 2022 than the

entirety of 2021.
• 1.51 billion IoT breaches were reported in the first six months of 2022.
• More than 500,000 users were negatively impacted by malicious mining software.
• 92% of malware was successfully delivered via email.
• 71% of organizations worldwide became victims of ransomware at least once.

2[packetlabs]

Fall 1403 CE 815 - Secure Software Systems

Biggest Data Breaches in 2022

• Twitter was accused of concealing data breaches that impacted millions of
users’ data.

• More than 1.2 million credit card numbers were leaked on the hacking forum
BidenCash.

• 11 million people were impacted by the Optus personal and medical
cyberattack.

• Threat actors attempted to sell the data of 500 million WhatsApp users on the
dark web.

• Both Uber and Rockstar had their internal servers compromised.
• A student loan breach released 2.5 million social insurance numbers.

3[packetlabs]

Fall 1403 CE 815 - Secure Software Systems

Cybercrime Cost

https://www.independent.co.uk/advisor/vpn/cybercrime-statistics

4

Fall 1403 CE 815 - Secure Software Systems

Advanced Persistent Threats Attacks

5[Prographer]

Fall 1403 CE 815 - Secure Software Systems

Advanced Persistent Threat (APT) and its challenges

• Targeted cyber attacks on organizations getting more sophisticated and
stealthy.
• Goal: to steal data, disrupt operations or destroy infrastructure.
• APTs combine many different attack vectors each appearing in some log

sources.
• Firewall, IDS/IPS, Netflow, DNS logs, Identity and access management tools.
• Might occur over a long duration.
• Correlating heterogeneous alarms using heuristics like timestamp is not so

effective Lacking the full picture (root cause, affected entities, etc.).

6[Holmes]

Fall 1403 CE 815 - Secure Software Systems

Evidence to investigate the attack

• System Audit log : ETW , Auditd , Sysmon , Sysdig

7

An example of windows ETW

Fall 1403 CE 815 - Secure Software Systems

Provenance Graph

• Use Provenance Graph to enable alert correlation for attack campaign
detection.
• Vertices:
• system entities (socket, process, file, memory, etc.), and agents (user,

groups, etc.)
• Edges: system calls (causal dependencies or information flow)
• Leverage the full historical context of a system.
• Reason about interrelationships between different events and objects.

8[Holmes]

Fall 1403 CE 815 - Secure Software Systems

Detect APT Attacks with Provenance Graph

9[Prographer]

Poirot: Aligning Attack Behavior with Kernel Audit Records for Cyber
Threat Hunting, S. M. Milajerdi, B. Eshete, R. Gjomemo, V. N. Venkatakrishnan,
CCS, 2019.

Fall 1403 CE 815 - Secure Software Systems

Threat Hunting

• IOC: Indicators of Compromise (IOCs) related to an Advanced Persistent
Threat (APT) detected in an organization.
• Post-detection, a prevalent query among security analysts is the potential

targeting of their enterprise by the APT.
• The endeavor to ascertain if the enterprise was targeted, termed as Threat

Hunting.
• Requires extensive and complex searches plus analysis on enterprise's host

and network logs.
• Identifying entities from IOC descriptions in logs and evaluating the likelihood

of the APT's successful infiltration.

11[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Enterprise Threat Hunting Challenges

• Design approaches to link related IOCs over long attack durations, enabling
search among millions of log events.
• Ensure sound identification of attack campaigns despite mutated artifacts,

and uncover the entire threat scenario.
• Attacker might have mutated the artifacts like file hashes and IP addresses

to evade detection.
• Facilitate timely understanding and reaction to threats by minimizing false

positives and enabling prompt cyber-response operations.

12[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Threat Hunting Limitations

• Information often shared via Cyber Threat Intelligence (CTI) reports in
various formats like natural language, structured, and semi-structured
forms.
• OpenIOC, STIX, and MISP standards to facilitate IOC exchange and

adversarial TTPs (techniques, tactics, and procedures) characterization.
• Current threat hunting largely operates on fragmented views like signatures,

file/process names, and IP addresses.

13[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Poirot

14[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Provenance Graph Construction (Gp)

• Determine APT actions in the system by modeling kernel audit logs.
• labeled, typed, and directed graph representation of kernel audit logs for

efficient causality and information flow tracking.
• Nodes Representation: System entities involved in kernel audit logs like files

and processes.
• Edges Representation: Information flow and causality among nodes,

considering direction.
• Supports kernel audit logs from Windows, Linux, and FreeBSD, constructing an

in-memory provenance graph with efficient searching features like fast hashing
and reverse indexing for process/file name to unique node ID mapping.

15[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Provenance Graph Construction (Gp)

16[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Query Graph Construction (Gq)

• IOCs and relationships among them are extracted from CTI reports related
to known attacks, obtained from various sources like security blogs, threat
intelligence reports, and forums.
• Automated tools help in initial feature extraction to generate query graphs,

with manual refinement by security experts to reduce noise and enhance
quality.
• The behavior from CTI reports is modeled as a labeled, typed, and directed

graph, with entities transformed into nodes and relationships into directed
edges.

17[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Example: Report on DeputyDog malware

18[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Graph Alignment

• Aligning query graph Gq representing attack, with provenance graph Gp representing
system activity.
• Matching single edges in Gq to paths in Gp , critical for algorithm design to handle

noise added by attackers.
• Existing graph matching problems are NP-complete, with practical limitations in

threat hunting context.
• Hence, finds possible candidate alignments, expands search from high likelihood

seed nodes, employing a novel metric called influence score to prioritize flows.
• Upon alignment, a score representing similarity is calculated; if above a threshold,

an alert is raised for analysts, otherwise, the process iterates with the next seed
node candidate.

19[Poirot]

Fall 1403 CE 815 - Secure Software Systems 20[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Algorithm Details

• Two Types of Alignments: Node alignment (between two nodes in different
graphs) and graph alignment (a set of node alignments).
• Node Alignment Example: A node representing a commonly used browser in

Gq and a node representing a Firefox process in Gp.
• Many-to-Many Relationship from V(Gq) to V(Gp), indicating multiple possible

alignments.
• Find the best possible graph alignment among candidate graph alignments.
• Determine the best candidate alignment based on the number of aligned

nodes and correspondence of flows to edges in Gq .

21[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Algorithm Details

• Path scoring function to quantify the "goodness" of a graph alignment.
• Likelihood of an attacker producing a flow between nodes.
• Two flows from node firefox2 to %registry%\firefox in graph Gp, with

different likelihoods based on attacker control.
• Not dependent on flow length but on the number of processes and distinct

ancestors in the process tree.
• Robust against evasion attempts, as activities adding noise have the same

common ancestors unless attacker incurs higher compromise costs.

22[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Provenance Graph Construction (Gp)

23[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Algorithm Details

• Cmin: Minimum number of distinct compromises needed to create a flow from node i to
node j.
• Common Ancestor: Cmin value of 1 if all processes in a flow share a common ancestor.
• Multiple Ancestors: Higher Cmin values indicate more compromises and a harder flow for

attackers.
• Assumption that attackers are unlikely to compromise many processes due to resource

constraints.
• Cthr Limit: A threshold limiting Cmin values to identify likely attacker-initiated flows.

• Influence Score: Inverse of Cmin, higher values indicate easier control by an attacker.
• Maximum and Minimum Scores: Scores range from 1 (easy control) to 0 (no flow

exceeding Cthr).

24[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Algorithm Details

• S(Gq ::Gp) calculates alignment score based on influence scores.
• Sum of influence scores normalized by maximal possible value.
• Higher S(Gq ::Gp) value indicates more node alignments and similar flows under

potential attacker control.
• Score Range: Value between 0 and 1, with 1 indicating high likelihood of attacker

control.
• Alarm Threshold: Predefined threshold τ to trigger an alarm.
• Threshold Calculation: τ determined based on maximum number of distinct entry

points an attacker is likely to exploit.
• Alarm Condition: Alarm raised if S(Gq ::Gp)≥τ.

25[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Algorithm Details

• Maximize alignment score by finding Gq ::Gp in a large provenance graph Gp
• Size of Gp reaching millions of nodes and edges.
• Step 1 (Find Candidate Node Alignments):
• Search Gp nodes for candidate alignments for each Gq node.
• Candidate alignment based on node name, type, annotations.
• Initial step focuses on nodes in isolation without path/flow information.

26[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Algorithm Details

• Step 2 (Selecting Seed Nodes):
• Identify starting points based on likely attack activities having fewer alignments.
• Sort nodes by increasing order of candidate alignments and select seed nodes with fewest

alignments first.
• Step 3 (Expanding the Search):
• From selected seed node, iterate over all aligned nodes in Gp initiating graph traversals to find

other aligned nodes.
• Stop search expansion along a path once influence score reaches 0 to reduce search complexity.
• Multiple forward/backward tracking cycles may be needed based on Gq shape.
• Repeat traversals from nodes adjacent to unvisited but previously visited nodes until all Gq

nodes are covered.

27[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Algorithm Details

• Step 4 (Graph Alignment Selection):
• Produce final result or iterate search from Step 2 if no result is found.
• Identify a subset of candidate nodes in Gp for each node in Gq .
• Determine total possible graph alignments based on candidate alignments per node.
• Maximize alignment score by starting from a seed node, select node in Gp maximizing

alignment score contribution, and fix this node alignment. Follow edges in Gq to fix
alignment of additional nodes, selecting those maximizing score contribution.

• Selection Function
• Approximates each alignment's contribution to final alignment score, aiming for highest

contribution.
• Evaluation reveals attack graph usually found within the first few iterations.

28[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Evaluation

• Experiment 1: Utilized DARPA Transparent Computing (TC) program scenarios,
simulating adversarial engagements in an enterprise network setting.
• Experiment 2: Tested Poirot on real-world incidents replicated from publicly

available threat reports in a controlled environment.
• Experiment 3: Assessed Poirot's false signal robustness in an attack-free

dataset.
• Cthr set to 3 across experiments, influencing false positives/negatives rate.
• Manual analysis of matched attack subgraphs to validate correct pinpointing

of actual attacks in query graphs.

29[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Evaluation on DARPA TC Dataset

• Experiment Setup: Utilized a dataset from DARPA TC program's red-team vs. blue-
team adversarial engagement, with various servers and benign activities simulated.
• Attack Scenarios Evaluated: Ten scenarios across BSD, Windows, and Linux systems.
• BSD Attacks: Executed on a back-doored Nginx server on FreeBSD 11.0 (64-bit).
• Windows Attacks: Win-1 involved a phishing email with malicious Excel macro;

Win-2 exploited a vulnerable Firefox browser on Windows 7 Pro (64-bit).
• Linux Attacks: Conducted on Ubuntu 12.04 (64-bit) and 14.04 (64-bit); Linux1&3

had in-memory browser exploits, while Linux2&4 involved malicious browser
extensions.

30[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Evaluation on DARPA TC Dataset (Con’t)

31[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Evaluation on DARPA TC Dataset (Con’t)

32[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Evaluation on DARPA TC Dataset (Con’t)

33[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Evaluation: real-world incidents

34[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Evaluation: Benign Dataset

35[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Conclusion

• Cyber threat hunting cast as graph pattern matching.
• Efficient alignment algorithm for embedding threat behavior graph in kernel

audit records provenance graph.
• Tested on real-world cyber attacks, ten red-team attack scenarios across

three OS platforms.
• All attacks detected confidently, no false signals, and completed within

minutes.

36[Poirot]

Fall 1403 CE 815 - Secure Software Systems

Acknowledgments

• [packetlabs] 239 Cybersecurity Statistics (2023) [https://www.packetlabs.net/
posts/239-cybersecurity-statistics-2023/]
• [Prographer] PROGRAPHER: An Anomaly Detection System based on Provenance

Graph Embedding, F. Yang, J. Xu, C. Xiong, Z. Li, K. Zhang, Usenix Sexurity 2023.
• [Holmes] HOLMES: Real-Time APT Detection through Correlation of Suspicious

Information Flows, S. Momeni Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, V. N.
Venkatakrishnan, IEEE Symposium on Security and Privacy 2019.
• [Poirot] Poirot: Aligning Attack Behavior with Kernel Audit Records for Cyber

Threat Hunting, S. M. Milajerdi, R. Gjomemo, B. Eshete, V.N. Venkatakrishnan,
CCS, 2019.

37

https://www.packetlabs.net/posts/239-cybersecurity-statistics-2023/
https://www.packetlabs.net/posts/239-cybersecurity-statistics-2023/
https://www.packetlabs.net/posts/239-cybersecurity-statistics-2023/
https://www.packetlabs.net/posts/239-cybersecurity-statistics-2023/

