
CE 815 – Secure Software Systems
Causal Analysis (Poirot) 

Mehdi Kharrazi 
Department of Computer Engineering 
Sharif University of Technology  

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A reference is noted on the bottom 
of each slide, when the content is fully obtained from another source. Otherwise a full list of references is provided on the 
last slide. Thanks to Zahra Fazli for the help on the slides.



Fall 1403 CE 815 - Secure Software Systems

Cybersecurity Stats in 2022

• An estimated 2,200 cyberattacks per day. 
• 255 million phishing attacks occurring in a six-month span, with over 853,987 

domain names reported for attempted phishing. 
• 2.8 billion malware attacks launched in the first half of 2022 alone. 
• 60% more malicious DDoS attacks occurring in the first six months of 2022 than the 

entirety of 2021. 
• 1.51 billion IoT breaches were reported in the first six months of 2022. 
• More than 500,000 users were negatively impacted by malicious mining software. 
• 92% of malware was successfully delivered via email. 
• 71% of organizations worldwide became victims of ransomware at least once. 
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Biggest Data Breaches in 2022 

• Twitter was accused of concealing data breaches that impacted millions of 
users’ data. 

• More than 1.2 million credit card numbers were leaked on the hacking forum 
BidenCash. 

• 11 million people were impacted by the Optus personal and medical 
cyberattack. 

• Threat actors attempted to sell the data of 500 million WhatsApp users on the 
dark web. 

• Both Uber and Rockstar had their internal servers compromised. 
• A student loan breach released 2.5 million social insurance numbers.
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Cybercrime Cost

https://www.independent.co.uk/advisor/vpn/cybercrime-statistics
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Advanced Persistent Threats Attacks

5[Prographer]
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Advanced Persistent Threat (APT) and its challenges 

• Targeted cyber attacks on organizations getting more sophisticated and 
stealthy.  
• Goal: to steal data, disrupt operations or destroy infrastructure.  
• APTs combine many different attack vectors each appearing in some log 

sources. 
• Firewall, IDS/IPS, Netflow, DNS logs, Identity and access management tools. 
• Might occur over a long duration. 
• Correlating heterogeneous alarms using heuristics like timestamp is not so 

effective Lacking the full picture (root cause, affected entities, etc.). 

6[Holmes]
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Evidence to investigate the attack

• System Audit log : ETW , Auditd , Sysmon , Sysdig 
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Provenance Graph

• Use Provenance Graph to enable alert correlation for attack campaign 
detection. 
• Vertices:  
• system entities (socket, process, file, memory, etc.), and agents (user, 

groups, etc.)  
• Edges: system calls (causal dependencies or information flow)  
• Leverage the full historical context of a system. 
• Reason about interrelationships between different events and objects. 
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Detect APT Attacks with Provenance Graph

9[Prographer]
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Threat Hunting

• IOC: Indicators of Compromise (IOCs) related to an Advanced Persistent 
Threat (APT) detected in an organization. 
• Post-detection, a prevalent query among security analysts is the potential 

targeting of their enterprise by the APT. 
• The endeavor to ascertain if the enterprise was targeted, termed as Threat 

Hunting. 
• Requires extensive and complex searches plus analysis on enterprise's host 

and network logs. 
• Identifying entities from IOC descriptions in logs and evaluating the likelihood 

of the APT's successful infiltration.

11[Poirot]
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Enterprise Threat Hunting Challenges

• Design approaches to link related IOCs over long attack durations, enabling 
search among millions of log events. 
• Ensure sound identification of attack campaigns despite mutated artifacts, 

and uncover the entire threat scenario. 
• Attacker might have mutated the artifacts like file hashes and IP addresses 

to evade detection.  
• Facilitate timely understanding and reaction to threats by minimizing false 

positives and enabling prompt cyber-response operations.

12[Poirot]
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Threat Hunting Limitations

• Information often shared via Cyber Threat Intelligence (CTI) reports in 
various formats like natural language, structured, and semi-structured 
forms. 
• OpenIOC, STIX, and MISP standards to facilitate IOC exchange and 

adversarial TTPs (techniques, tactics, and procedures) characterization. 
• Current threat hunting largely operates on fragmented views like signatures, 

file/process names, and IP addresses.

13[Poirot]
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Poirot

14[Poirot]
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Provenance Graph Construction (Gp)

• Determine APT actions in the system by modeling kernel audit logs. 
• labeled, typed, and directed graph representation of kernel audit logs for 

efficient causality and information flow tracking. 
• Nodes Representation: System entities involved in kernel audit logs like files 

and processes. 
• Edges Representation: Information flow and causality among nodes, 

considering direction. 
• Supports kernel audit logs from Windows, Linux, and FreeBSD, constructing an 

in-memory provenance graph with efficient searching features like fast hashing 
and reverse indexing for process/file name to unique node ID mapping.

15[Poirot]
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Provenance Graph Construction (Gp)

16[Poirot]
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Query Graph Construction (Gq)

• IOCs and relationships among them are extracted from CTI reports related 
to known attacks, obtained from various sources like security blogs, threat 
intelligence reports, and forums. 
• Automated tools help in initial feature extraction to generate query graphs, 

with manual refinement by security experts to reduce noise and enhance 
quality. 
• The behavior from CTI reports is modeled as a labeled, typed, and directed 

graph, with entities transformed into nodes and relationships into directed 
edges. 

17[Poirot]
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Example: Report on DeputyDog malware

18[Poirot]
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Graph Alignment

• Aligning query graph Gq representing attack, with provenance graph Gp representing 
system activity. 
• Matching single edges in Gq to paths in Gp , critical for algorithm design to handle 

noise added by attackers. 
• Existing graph matching problems are NP-complete, with practical limitations in 

threat hunting context.  
• Hence, finds possible candidate alignments, expands search from high likelihood 

seed nodes, employing a novel metric called influence score to prioritize flows. 
• Upon alignment, a score representing similarity is calculated; if above a threshold, 

an alert is raised for analysts, otherwise, the process iterates with the next seed 
node candidate.

19[Poirot]
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Algorithm Details

• Two Types of Alignments: Node alignment (between two nodes in different 
graphs) and graph alignment (a set of node alignments). 
• Node Alignment Example: A node representing a commonly used browser in 

Gq and a node representing a Firefox process in Gp. 
• Many-to-Many Relationship from V(Gq) to V(Gp), indicating multiple possible 

alignments. 
• Find the best possible graph alignment among candidate graph alignments. 
• Determine the best candidate alignment based on the number of aligned 

nodes and correspondence of flows to edges in Gq .

21[Poirot]
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Algorithm Details

• Path scoring function to quantify the "goodness" of a graph alignment. 
• Likelihood of an attacker producing a flow between nodes. 
• Two flows from node firefox2 to %registry%\firefox in graph Gp, with 

different likelihoods based on attacker control. 
• Not dependent on flow length but on the number of processes and distinct 

ancestors in the process tree. 
• Robust against evasion attempts, as activities adding noise have the same 

common ancestors unless attacker incurs higher compromise costs.

22[Poirot]
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Provenance Graph Construction (Gp)

23[Poirot]
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Algorithm Details

• Cmin: Minimum number of distinct compromises needed to create a flow from node i to 
node j. 
• Common Ancestor: Cmin value of 1 if all processes in a flow share a common ancestor. 
• Multiple Ancestors: Higher Cmin values indicate more compromises and a harder flow for 

attackers. 
• Assumption that attackers are unlikely to compromise many processes due to resource 

constraints. 
• Cthr Limit: A threshold limiting Cmin values to identify likely attacker-initiated flows. 

• Influence Score: Inverse of Cmin, higher values indicate easier control by an attacker. 
• Maximum and Minimum Scores: Scores range from 1 (easy control) to 0 (no flow 

exceeding Cthr).

24[Poirot]
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Algorithm Details

• S(Gq ::Gp ) calculates alignment score based on influence scores. 
• Sum of influence scores normalized by maximal possible value. 
• Higher S(Gq ::Gp ) value indicates more node alignments and similar flows under 

potential attacker control. 
• Score Range: Value between 0 and 1, with 1 indicating high likelihood of attacker 

control. 
• Alarm Threshold: Predefined threshold τ to trigger an alarm. 
• Threshold Calculation: τ determined based on maximum number of distinct entry 

points an attacker is likely to exploit. 
• Alarm Condition: Alarm raised if S(Gq ::Gp )≥τ.

25[Poirot]
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Algorithm Details

• Maximize alignment score by finding Gq ::Gp in a large provenance graph Gp  
• Size of Gp reaching millions of nodes and edges. 
• Step 1 (Find Candidate Node Alignments): 
• Search Gp nodes for candidate alignments for each Gq node. 
• Candidate alignment based on node name, type, annotations. 
• Initial step focuses on nodes in isolation without path/flow information.

26[Poirot]
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Algorithm Details

• Step 2 (Selecting Seed Nodes): 
• Identify starting points based on likely attack activities having fewer alignments. 
• Sort nodes by increasing order of candidate alignments and select seed nodes with fewest 

alignments first. 
• Step 3 (Expanding the Search): 
• From selected seed node, iterate over all aligned nodes in Gp initiating graph traversals to find 

other aligned nodes. 
• Stop search expansion along a path once influence score reaches 0 to reduce search complexity. 
• Multiple forward/backward tracking cycles may be needed based on Gq shape. 
• Repeat traversals from nodes adjacent to unvisited but previously visited nodes until all Gq 

nodes are covered.

27[Poirot]
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Algorithm Details

• Step 4 (Graph Alignment Selection): 
• Produce final result or iterate search from Step 2 if no result is found. 
• Identify a subset of candidate nodes in Gp for each node in Gq . 
• Determine total possible graph alignments based on candidate alignments per node. 
• Maximize alignment score by starting from a seed node, select node in Gp maximizing 

alignment score contribution, and fix this node alignment. Follow edges in Gq to fix 
alignment of additional nodes, selecting those maximizing score contribution. 

• Selection Function 
• Approximates each alignment's contribution to final alignment score, aiming for highest 

contribution. 
• Evaluation reveals attack graph usually found within the first few iterations.

28[Poirot]
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Evaluation

• Experiment 1: Utilized DARPA Transparent Computing (TC) program scenarios, 
simulating adversarial engagements in an enterprise network setting. 
• Experiment 2: Tested Poirot on real-world incidents replicated from publicly 

available threat reports in a controlled environment. 
• Experiment 3: Assessed Poirot's false signal robustness in an attack-free 

dataset. 
• Cthr set to 3 across experiments, influencing false positives/negatives rate. 
• Manual analysis of matched attack subgraphs to validate correct pinpointing 

of actual attacks in query graphs.

29[Poirot]
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Evaluation on DARPA TC Dataset

• Experiment Setup: Utilized a dataset from DARPA TC program's red-team vs. blue-
team adversarial engagement, with various servers and benign activities simulated. 
• Attack Scenarios Evaluated: Ten scenarios across BSD, Windows, and Linux systems. 
• BSD Attacks: Executed on a back-doored Nginx server on FreeBSD 11.0 (64-bit). 
• Windows Attacks: Win-1 involved a phishing email with malicious Excel macro; 

Win-2 exploited a vulnerable Firefox browser on Windows 7 Pro (64-bit). 
• Linux Attacks: Conducted on Ubuntu 12.04 (64-bit) and 14.04 (64-bit); Linux1&3 

had in-memory browser exploits, while Linux2&4 involved malicious browser 
extensions.

30[Poirot]
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Evaluation on DARPA TC Dataset (Con’t)

31[Poirot]
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Evaluation on DARPA TC Dataset (Con’t)
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Evaluation on DARPA TC Dataset (Con’t)
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Evaluation: real-world incidents
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Evaluation: Benign Dataset
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Conclusion

• Cyber threat hunting cast as graph pattern matching. 
• Efficient alignment algorithm for embedding threat behavior graph in kernel 

audit records provenance graph. 
• Tested on real-world cyber attacks, ten red-team attack scenarios across 

three OS platforms. 
• All attacks detected confidently, no false signals, and completed within 

minutes.

36[Poirot]
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