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The Promise and Limitations of ML for Vulnerability Detection

• Current Achievements: 
• Machine Learning for Vulnerability Detection (ML4VD) models achieve up to 70% 

accuracy in identifying security flaws from source code. 
• Claims of outperforming traditional program analysis methods without hardcoded 

program semantics. 
• Key Contradictions: 

• Models struggle to distinguish vulnerable functions from their patched counterparts. 
• High benchmark scores may give a false sense of security. 

• Challenges Highlighted: 
• Overfitting: Models depend on unrelated features in the training data. 
• Generalization Issues: Poor performance on out-of-distribution data.
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Proposed Solutions and Contributions

• Proposed Methodology: 
• Algorithm 1: Tests overfitting to unrelated features by using semantic-preserving 

transformations. 
• Algorithm 2: Assesses model ability to distinguish vulnerabilities from patches. 

• Key Contributions: 
• Identification of critical flaws in current evaluation methods. 
• Introduction of a new dataset, VulnPatchPairs, featuring matched pairs of vulnerable 

and patched functions. 
• Empirical findings: 

• Severe overfitting to unrelated features during training. 
• Lack of generalization across vulnerability-related contexts.
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Expectations for Vulnerability Detection Models

• General Expectations: 
• Predict vulnerabilities accurately regardless of transformations. 
• Remain robust to both semantic-preserving and label-inverting changes. 

• Key Evaluation Criteria: 
• Semantic-Preserving: No change in prediction after transformation. 
• Label-Inverting: Prediction changes align with modified ground truth. 

• Implications: 
• Robust models must handle diverse real-world code variations.
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What is Data Augmentation?

• Definition: 
• Application of code transformations to code snippets in a dataset. 
• Ensures transformations preserve program semantics. 

• Purpose: 
• Improve model robustness to variations in real-world code. 
• Test vulnerability detection models under diverse conditions. 

• Core Concept: 
• Transformations should not change the ground truth vulnerability label, 

unless intended.

6[Risse]



Fall 1403 CE 815 - Secure Software Systems

Types of Transformations

• Semantic-Preserving Transformations: 
• Changes that do not affect vulnerability status: 
• Identifier renaming. 
• Adding unused code or comments. 
• Reordering unrelated statements. 
• Replacing elements with equivalents.
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Example: Semantic-Preserving Transformation

• Original Code: 

• Transformed Code (Semantic-Preserving):

8

int calculateSum(int a, int b) { 
    int sum = a + b; 
    return sum; 
} 

int calculateSum(int firstParam, int secondParam) { 
    // Calculate sum of two numbers 
    int sum = firstParam + secondParam; 
    return sum; 
} 

• Identifier Renaming: 

• a → firstParam, b → secondParam. 

• Comment Insertion: 

• Added a comment describing the functionality. 

• Key Point: 

• Ground Truth Label (e.g., vulnerable/non-
vulnerable) remains the same.
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Types of Transformations (con’t)

• Label-Inverting Transformations: 
• Changes that alter vulnerability status: 
• Adding a vulnerability to non-vulnerable code. 
• Removing a vulnerability from vulnerable code. 

• Expected Behavior: 
• Models should: 
• Maintain predictions for semantic-preserving changes. 
• Adapt predictions accurately for label-inverting changes.
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Goal of Algorithm 1 (Detecting Overfitting)

• Objective: 
• Assess if ML4VD models overfit to training data features unrelated to 

vulnerabilities. 
• Test if performance gains from training data augmentation generalize beyond 

specific transformations. 
• Key Questions: 
• Does augmenting the testing data degrade performance? 
• Can augmenting the training data restore performance? 
• How does using different augmentations for training and testing affect 

performance?
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Key Insights from Algorithm 1

• Expected Results: 
• Testing augmentation without training augmentation reduces performance 

(outputA1.1>0). 
• Identical augmentations for training and testing partially restore performance 

(outputA1.2>outputA1.1). 
• Using different augmentations for training and testing causes performance 

drops (outputA1.3≪outputA1.2). 
• Applications: 
• Identify overfitting to specific augmentations. 
• Assess model robustness across diverse data transformations.
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Goal of Algorithm 2

• Objective: 
• Evaluate if ML4VD techniques can distinguish between vulnerabilities and their 

patches. 
• Test if models trained on one setting can generalize to another: 

• Standard vulnerability detection dataset. 
• Vulnerability-patch dataset. 

• Key Questions: 
• Can models trained on standard datasets distinguish patched functions from vulnerable 

ones? 
• Can models trained on vulnerability-patch datasets perform well on standard datasets?
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Key Insights from Algorithm 2

• Expected Results: 
• Models trained on standard datasets struggle with vulnerability-patch 

tasks (outputA2.2). 
• Models trained on vulnerability-patch tasks may generalize poorly to 

standard datasets (outputA2.4). 
• Applications: 
• Evaluate real-world utility of ML4VD techniques. 
• Highlight gaps in generalization between standard and modified settings.
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Experiments

• Impact of Data Augmentation: 
• How does testing data augmentation affect ML4VD performance? 
• Does training data augmentation restore performance? 

• Overfitting: 
• Do ML4VD techniques overfit to specific augmentations? 
• Can models generalize across different augmentations? 

• Generalization to Vulnerability-Patch Tasks: 
• Can ML4VD distinguish between vulnerabilities and their patches? 
• Does training on patches improve standard task performance?
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Datasets Used

• CodeXGLUE/Devign: 
• 26.4k C functions, ~46% vulnerable. 
• Common vulnerabilities: memory-related (e.g., buffer overflows, memory leaks). 

• VulDeePecker: 
• 61.6k C/C++ code samples, ~28% vulnerable. 
• Focus: buffer and resource management errors. 

• VulnPatchPairs (New Dataset): 
• 26.2k C functions: 
• 13.1k vulnerable functions from CodeXGLUE. 
• 13.1k patched versions extracted from FFmpeg and QEMU repositories.
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Training Pipeline

• Training Process: 
• Models pre-trained on large source code datasets (e.g., 2.3M - 680M snippets). 
• Fine-tuned for 10 epochs on selected datasets. 

• Performance Metrics: 
• CodeXGLUE: Accuracy (balanced dataset). 
• VulDeePecker: F1-score (imbalanced dataset). 
• Additional Metrics: Precision, Recall, False Positive Rate (FPR), False Negative Rate (FNR). 

• Hardware Setup: 
• 5 NVIDIA A100 GPUs (40 GB RAM each). 
• Approx. 60 days of compute time per full experiment on one GPU.
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Semantic preserving transformations used
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Experimental Design

• Algorithms Applied: 
• Algorithm 1: Detect overfitting to augmentations. 
• Algorithm 2: Test generalization to vulnerability-patch tasks. 

• Transformations Used: 
• 11 semantic-preserving transformations (e.g., identifier renaming, 

statement reordering, comment removal).
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Research Question 1 (Impact of Data Augmentation)

• Applying semantic-preserving transformations to testing data reduces performance 
(average drop): 

• CodeXGLUE: 2.5% accuracy. 
• VulDeePecker: 4.3% F1-score. 

• Augmenting both training and testing data with the same transformations restores 
most performance: 
• ~69.0% of lost accuracy (CodeXGLUE). 
• ~66.2% of lost F1-score (VulDeePecker). 

• Most Impactful Transformations: Adding comments, reordering statements, and 
inserting unused functions.

22[Risse]



Fall 1403 CE 815 - Secure Software Systems 23[Risse]



Fall 1403 CE 815 - Secure Software Systems 24[Risse]



Fall 1403 CE 815 - Secure Software Systems

Research Question 2 (Overfitting to Specific Transformations)

• Training on transformations different from the testing data: 
• Performance restoration fails. 
• Results in an additional performance drop (30.2% for CodeXGLUE, 77.5% 

for VulDeePecker). 
• Using a meta-transformation (combining various transformations except 

one): 
• Partially restores performance but does not fully mitigate the drop. 

• Conclusion: ML4VD models overfit to specific augmentations and fail to 
generalize to unseen transformations.
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Research Question 3 (Generalization to Vulnerability-Patch Tasks)

• Standard to Patch Generalization: 
• Models trained on standard datasets performed worse than random 

guessing on vulnerability-patch tasks. 
• Patch to Standard Generalization: 
• Models trained on vulnerability-patch data performed poorly on 

standard datasets, with a significant performance drop. 
• Implications: ML4VD models cannot generalize across vulnerability-related 

contexts without task-specific training.
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Key Insights Across Experiments

• Testing data augmentation exposes dependence on unrelated features. 
• Training on specific transformations limits generalization capability. 
• Algorithm 1 reveals overfitting to label-unrelated features. 
• Algorithm 2 demonstrates inability to generalize between vulnerabilities and 

patches. 
• Impact on Real-World Use: Current ML4VD techniques are highly context-

dependent and unsuitable for real-world vulnerability detection without 
targeted improvements.
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