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Recall: POSIX I/O: Everything (looks like) a “File”

• Identical interface for :
– Devices (terminals, printers, etc.)
– Regular files on disk
– Networking (sockets)
– Local interprocess communication (pipes, sockets)

• Based on open(), read(), write(), and close()
• Allows simple composition of programs 

» find | grep | wc …
• HOWEVER: Not every thing actually IS a file!

– Pipes are only buffered in memory!
– Network sockets only buffered in memory/network!
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Recall: POSIX I/O Design Patterns
• Open before use

– Access control check, setup happens here
• Byte-oriented

– Least common denominator
– OS responsible for hiding the fact that real devices may not work this way (e.g. 

hard drive stores data in blocks)
• Explicit close
• Reads are buffered

– Part of making everything byte-oriented
– Process is blocked while waiting for device
– Let other processes run while gathering result

• Writes are buffered
– Complete in background (more later on)
– Return to user when data is “handed off ” to kernel

• Errors relayed to user in a variety of ways!
– Make sure to check them!
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Recall: Device Drivers

• Device Driver : Device-specific code in the kernel that interacts 
directly with the device hardware

– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different device drivers
– Special device-specific configuration supported with the ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(), close(), 
read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep until finished

– Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete
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Recall: Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program
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Communication between processes

• Can we view files as communication channels?

• Producer and Consumer of a file may be distinct processes
– May be separated in time (or not)

• However, what if data written once and consumed once?  
– Don’t we want something more like a queue?
– Can still look like File I/O!

write(wfd, wbuf, wlen); 

n = read(rfd,rbuf,rmax); 
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Communication Across the world looks like file IO 

• Connected queues over the Internet
– But what’s the analog of open?
– What is the namespace?
– How are they connected in time?

write(wfd, wbuf, wlen); 

n = read(rfd,rbuf,rmax); 
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write(rqfd, rqbuf, buflen); 

n = read(rfd,rbuf,rmax); 

Client (issues requests) Server (performs operations)

requests

responses

write(wfd, respbuf, len); 

n = read(resfd,resbuf,resmax); 

service requestwait

Request Response Protocol
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write(rqfd, rqbuf, buflen); 

n = read(rfd,rbuf,rmax); 

Client (issues requests) Server (performs operations)

write(wfd, respbuf, len); 

n = read(resfd,resbuf,resmax); 

service requestwait

requests

responses

Request Response Protocol
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Client-Server Models

• File servers, web, FTP, Databases, …
• Many clients accessing a common server

Server

Client 1

Client 2

Client n

***
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Client-Server Communication

• Client “sometimes on”
– Initiates a request to the 

server when interested
– E.g., Web browser on your 

laptop or cell phone
– Doesn’t communicate 

directly with other clients
– Needs to know the server’s 

address

• Server is “always on”
– Services requests from 

many client hosts
– E.g., Web server for the 
www.cnn.com Web site

– Doesn’t initiate contact with 
the clients

– Needs a fixed, well-known 
address
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Sockets

• Socket: an abstraction of a network I/O queue
– Mechanism for inter-process communication 
– Embodies one side of a communication channel

» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote machine (called 

“network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Data transfer like files

– Read / Write against a descriptor
• Over ANY kind of network

– Local to a machine
– Over the internet (TCP/IP, UDP/IP)
– OSI, Appletalk, SNA, IPX, SIP, NS, …
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Silly Echo Server – running example

write(fd, buf,len); 
n = read(fd,buf,); 

Client (issues requests) Server (performs operations)

requests

responses

write(fd, buf,); 

n = read(fd,rcvbuf, ); 

printwait

gets(fd,sndbuf, …); 

print
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Echo client-server example
void client(int sockfd) {
  int n;
  char sndbuf[MAXIN]; char rcvbuf[MAXOUT];
  getreq(sndbuf, MAXIN);        /* prompt */
  while (strlen(sndbuf) > 0) {
    write(sockfd, sndbuf, strlen(sndbuf)); /* send */
    memset(rcvbuf,0,MAXOUT);               /* clear */
    n=read(sockfd, rcvbuf, MAXOUT-1);      /* receive */
    write(STDOUT_FILENO, rcvbuf, n);   /* echo */
    getreq(sndbuf, MAXIN);                 /* prompt */
  }
}

void server(int consockfd) {
  char reqbuf[MAXREQ];
  int n;
  while (1) {                   
    memset(reqbuf,0, MAXREQ);
    n = read(consockfd,reqbuf,MAXREQ-1); /* Recv */
    if (n <= 0) return;
    n = write(STDOUT_FILENO, reqbuf, strlen(reqbuf)); 
    n = write(consockfd, reqbuf, strlen(reqbuf)); /* 
echo*/
  }
}
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What assumptions are we making?

• Reliable
– Write to a file => Read it back.  Nothing is lost. 
– Write to a (TCP) socket => Read from the other side, same.
– Like pipes

• In order (sequential stream)
– Write X then write Y => read gets X then read gets Y

• When ready?
– File read gets whatever is there at the time.  Assumes writing 

already took place.  
– Like pipes!
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Socket creation and connection

• File systems provide a collection of permanent objects in 
structured name space

– Processes open, read/write/close them
– Files exist independent of the processes

• Sockets provide a means for processes to communicate 
(transfer data) to other processes.

• Creation and connection is more complex
• Form 2-way pipes between processes

– Possibly worlds away
• How do we name them?
• How do these completely independent programs know that 

the other wants to “talk” to them?
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Namespaces for communication over IP

• Hostname
– www.eecs.berkeley.edu

• IP address
– 128.32.244.172  (ipv6?)

• Port Number
– 0-1023 are “well known” or “system” ports

» Superuser privileges to bind to one
– 1024 – 49151 are “registered” ports (registry)

» Assigned by IANA for specific services
– 49152–65535 (215+214 to 216−1) are “dynamic” or “private”

» Automatically allocated as “ephemeral Ports”

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
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Server 
Socket

socket

Reque
st Co

nnect
ion

ServerClient

Socket Setup over TCP/IP

• Special kind of socket: server socket
– Has file descriptor
– Can’t read or write

• Two operations:
1. listen(): Start allowing clients to connect
2. accept(): Create a new socket for a particular client connection

connectionconnection

new 
socket

Connection 
socket
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Server 
Socket

socket socketconnection
Reque

st Co
nnect

ion
new 

socket

ServerClient

Socket Setup over TCP/IP

• Server Socket: Listens for new connections
– Produces new sockets for each unique connection
– 3-way handshake to establish new connection!

• Things to remember:
– Connection involves 5 values: 

[ Client Addr, Client Port, Server Addr, Server Port, Protocol ]
– Often, Client Port “randomly” assigned

» Done by OS during client socket setup
– Server Port often “well known”

» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023 



2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 20

Web Server using Sockets (in concept)
Client Server

read response

Close Client Socket

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address  
(host:port)

Listen for Connection

Close Connection Socket

Close Server Socket

write request

write response

Accept syscall()
Connection SocketConnection Socket

read request
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Client-Side of Protocol

char *host_name, port_name;

// Create a socket
struct addrinfo *server = lookup_host(host_name, port_name);
int sock_fd = socket(server->ai_family, server->ai_socktype,
                     server->ai_protocol);

// Connect to specified host and port
connect(sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client(sock_fd);

/* Clean up on termination */
close(sock_fd);
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Client: getting the server address (as addrinfo)
struct addrinfo *lookup_host(char *host_name, char *port) {
  struct addrinfo *server;
  struct addrinfo hints;

  // Constraints on returned address
  memset(&hints, 0, sizeof(hints));
  hints.ai_family = AF_UNSPEC; // Either IPv4 or IPv6
  hints.ai_socktype = SOCK_STREAM;// Reliable stream (i.e. TCP)

  // Lookup host:port, constrained by hints, return ptr in 
server
  int rv = getaddrinfo(host_name, port_name, &hints, &server);
  if (rv != 0) {
    printf("getaddrinfo failed: %s\n", gai_strerror(rv));
    return NULL;
  }
  return server;
}
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Server Protocol (v1)
// Create socket to listen for client connections
char *port_name;
struct addrinfo *server = setup_address(port_name);
int server_socket = socket(server->ai_family, server-         
                       >ai_socktype,server->ai_protocol);

// Bind socket to specific port
bind(server_socket, server->ai_addr, server->ai_addrlen);

// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
  // Accept a new client connection, obtaining a new socket
  int conn_socket = accept(server_socket, NULL, NULL);
  serve_client(conn_socket);
  close(conn_socket);
}

close(server_socket);
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Server: getting server addrinfo – for itself
struct addrinfo *setup_address(char *port) {
  struct addrinfo *server;
  struct addrinfo hints;

  // Constraints on returned address
  memset(&hints, 0, sizeof(hints));
  hints.ai_family = AF_UNSPEC; // IPv4 or IPv6
  hints.ai_socktype = SOCK_STREAM;// Reliable stream (i.e. TCP)
  hints.ai_flags = AI_PASSIVE; // Address for listening

  // Match any local address:port, constrained by hints, return 
ptr
  int rv = getaddrinfo(NULL, port, &hints, &server);
  if (rv != 0) {
    printf("getaddrinfo failed: %s\n", gai_strerror(rv));
    return NULL;
  }
  return server;
}
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How does the server protect itself?

• Isolate the handling of each connection 
• By forking it off as another process
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Sockets With Protection
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address  
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request
write response

Close Connection 
Socket

Close Server Socket

Child

Close Connection 
Socket

Close Listen Socket
Parent

Wait for child
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Server Protocol (v2)
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);

while (1) {
  // Accept a new client connection, obtaining a new socket
  int conn_socket = accept(server_socket, NULL, NULL);

  pid_t pid = fork(); // New process for connection
  if (pid == 0) { // Child process
    close(server_socket); // Doesn’t need server_socket
    serve_client(conn_socket); // Serve up content to client
    close(conn_socket); // Done with client!
    exit(EXIT_SUCCESS);
  } else { // Parent process
    close(conn_socket); // Don’t need client socket
    wait(NULL); // Wait for our (one) child
  }
}
close(server_socket);
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Concurrent Server

• Listen will queue requests
• Buffering present elsewhere
• But server waits for each connection to terminate before 

initiating the next
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Sockets With Protection and Parallelism
Client Server

Create Client Socket

Connect it to server (host:port)

Create Server Socket

Bind it to an Address  
(host:port)

Listen for Connection

Accept syscall()

Connection SocketConnection Socket

write request

read response

Close Client Socket

read request
write response

Close Connection 
Socket

Close Server Socket

Child

Close Connection 
Socket

Close Listen Socket
Parent
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Server Protocol (v3)
// Start listening for new client connections
listen(server_socket, MAX_QUEUE);
signal(SIGCHLD,SIG_IGN); // Prevent zombie children
while (1) {
  // Accept a new client connection, obtaining a new socket
  int conn_socket = accept(server_socket, NULL, NULL);

  pid_t pid = fork(); // New process for connection
  if (pid == 0) { // Child process
    close(server_socket); // Doesn’t need server_socket
    serve_client(conn_socket); // Serve up content to client
    close(conn_socket); // Done with client!
    exit(EXIT_SUCCESS);
  } else { // Parent process
    close(conn_socket); // Don’t need client socket
    // wait(NULL); // Don’t wait (SIGCHLD
                                 //   ignored, above)
  }
}
close(server_socket);



2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 31

Goal for Today

• Discussion of Scheduling: 
– Which thread should run on the CPU next?

• Scheduling goals, policies
• Look at a number of different schedulers

if ( readyThreads(TCBs) ) {
nextTCB = selectThread(TCBs);
run( nextTCB );

} else {
run_idle_thread();

}
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Recall: Scheduling

• Question: How is the OS to decide which of several tasks to take off 
a queue?

• Scheduling: deciding which threads are given access to resources 
from moment to moment  

– Often, we think in terms of CPU time, but could also think about access 
to resources like network BW or disk access
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Scheduling: All About Queues
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Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the problem so it can 
be solved

– For instance: is “fair” about fairness among users or programs?  
» If I run one compilation job and you run five, you get five times as much 

CPU on many operating systems
• The high-level goal: Dole out CPU time to optimize some desired 

parameters of system

USER1 USER2 USER3 USER1 USER2

Time 
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Assumption: CPU Bursts

• Execution model: programs alternate between bursts of CPU and I/O
– Program typically uses the CPU for some period of time, then does I/O, 

then uses CPU again
– Each scheduling decision is about which job to give to the CPU for use 

by its next CPU burst
– With timeslicing, thread may be forced to give up CPU before finishing 

current CPU burst

Weighted toward small bursts
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Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you 
only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair
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First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program  

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks 

• Example: Process Burst Time 
P1 24 

            P2 3 
P3  3

– Suppose processes arrive in the order: P1 , P2 , P3   
The Gantt Chart for the schedule is: 
 
 
 
 

– Waiting time for P1  = 0; P2  = 24; P3 = 27
– Average waiting time:  (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process stuck behind long process

P1 P2 P3

24 27 300
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Convoy effect

• With FCFS non-preemptive scheduling, convoys of small tasks 
tend to build up when a large one is running.

time

Sc
he

du
lin

g 
qu

eu
e

Scheduled Task (process, thread)

arrivals
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FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time:   (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– Average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27) 

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Getting milk, always stuck behind cart full of items! 

P1P3P2

63 300
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• FCFS Scheme: Potentially bad for short jobs!
– Depends on submit order
– If you are first in line at supermarket with milk, you don’t care 

who is behind you, on the other hand…
• Round Robin Scheme: Preemption!

– Each process gets a small unit of CPU time  
(time quantum), usually 10-100 milliseconds

– After quantum expires, the process is preempted  
and added to the end of the ready queue.

– n processes in ready queue and time quantum is q ⇒
» Each process gets 1/n of the CPU time 
» In chunks of at most q time units 
» No process waits more than (n-1)q time units

Round Robin (RR) Scheduling



2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 41

• Performance
– q large ⇒ FCFS
– q small ⇒ Interleaved (really small ⇒ hyperthreading?)
– q must be large with respect to context switch, otherwise 

overhead is too high (all overhead)

RR Scheduling (Cont.)



2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 42

Example of RR with Time Quantum = 20
• Example: Process Burst Time 

 P1   53 
 P2   8 
 P3  68 
 P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
                                       P2=(20-0)=20 

P3=(28-0)+(88-48)+(125-108)=85 
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1

0 20

P2

28

P3

48

P4

68

P1

88

P3

108

P4 P1 P3 P3

112 125 145 153
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Round-Robin Discussion
• How do you choose time slice?

– What if too big?
» Response time suffers

– What if infinite (∞)?
» Get back FIFO

– What if time slice too small?
» Throughput suffers! 

• Actual choices of timeslice:
– Initially, UNIX timeslice one second:

» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo each 

keystroke!
– Need to balance short-job performance and long-job throughput:

» Typical time slice today is between 10ms – 100ms
» Typical context-switching overhead is 0.1ms – 1ms
» Roughly 1% overhead due to context-switching
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Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR always better than 

FCFS?
• Simple example: 10 jobs, each take 100s of CPU time 

RR scheduler quantum of 1s 
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!

» Bad when all jobs same length
• Also: Cache state must be shared between all jobs with RR but can be 

devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000
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Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5
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Handling Differences in Importance: Strict Priority Scheduling

• Execution Plan
– Always execute highest-priority runable jobs to completion
– Each queue can be processed in RR with some time-quantum

• Problems:
– Starvation: 

» Lower priority jobs don’t get to run because higher priority jobs
– Deadlock: Priority Inversion

» Not strictly a problem with priority scheduling, but happens when low priority task has 
lock needed by high-priority task

» Usually involves third, intermediate priority task that keeps running even though high-
priority task should be running

• How to fix problems?
– Dynamic priorities – adjust base-level priority up or down based on heuristics 

about interactivity, locking, burst behavior, etc…

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4
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Scheduling Fairness

• What about fairness?
– Strict fixed-priority scheduling between queues is unfair (run 

highest, then next, etc):
» long running jobs may never get CPU 
» Urban legend: In Multics, shut down machine, found 10-year-

old job ⇒ Ok, probably not…
– Must give long-running jobs a fraction of the CPU even when 

there are shorter jobs to run
– Tradeoff: fairness gained by hurting avg response time!
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Scheduling Fairness

• How to implement fairness?
– Could give each queue some fraction of the CPU 

» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express 

lanes get so long, get better service by going into one of the 
other lines

– Could increase priority of jobs that don’t get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so 

everyone increases in priority⇒Interactive jobs suffer
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Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket
– On average, CPU time is proportional to number of tickets 

given to each job
• How to assign tickets?

– To approximate SRTF, short running jobs get more, long 
running jobs get fewer

– To avoid starvation, every job gets at least one ticket 
(everyone makes progress)

• Advantage over strict priority scheduling: behaves gracefully as 
load changes

– Adding or deleting a job affects all jobs proportionally, 
independent of how many tickets each job possesses
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Lottery Scheduling Example (Cont.)

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable  
response time?  

» If load average is 100, hard to make progress
» One approach: log some user out

# short jobs/
# long jobs

% of CPU each 
short jobs gets

% of CPU each 
long jobs gets

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%
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How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the performance 
of each algorithm  for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run against 

actual data – most flexible/general
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How to Handle Simultaneous  
Mix of Diff Types of Apps?

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers, workstations, pads, 

and cellphones?
• For instance, is Burst Time (observed) useful to decide which application gets 

CPU time?
– Short Bursts ⇒ Interactivity ⇒ High Priority?

• Assumptions encoded into many schedulers:
– Apps that sleep a lot and have short bursts must be interactive apps – they 

should get high priority
– Apps that compute a lot should get low(er?) priority, since they won’t notice 

intermittent bursts from interactive apps
• Hard to characterize apps:

– What about apps that sleep for a long time, but then compute for a long time?
– Or, what about apps that must run under all circumstances (say periodically)
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What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has least amount of  
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)
• Shortest Remaining Time First (SRTF):

– Preemptive version of SJF: if job arrives and has a shorter time to 
completion than the remaining time on the current job, immediately 
preempt CPU

– Sometimes called “Shortest Remaining Time to Completion First” 
(SRTCF)

• These can be applied to whole program or current CPU burst
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time
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Discussion

• SJF/SRTF are the best you can do at minimizing average response 
time

– Provably optimal (SJF among non-preemptive, SRTF among 
preemptive)

– Since SRTF is always at least as good as SJF, focus on SRTF

• Comparison of SRTF with FCFS
– What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the 
same length)

– What if jobs have varying length?
» SRTF: short jobs not stuck behind long ones
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Example to illustrate benefits of SRTF

• Three jobs:
– A, B: both CPU bound, run for week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O
– If only one at a time, C uses 90% of the disk, A or B could use 100% 

of the CPU
• With FCFS:

– Once A or B get in, keep CPU for two weeks
• What about RR or SRTF?

– Easier to see with a timeline

C

C’s 
I/O

C’s 
I/O

C’s 
I/O

A or B
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SRTF Example continued:

C’s 
I/O

CABAB… C

C’s 
I/O

RR 1ms time slice

C’s 
I/O

C’s 
I/O

CA BC

RR 100ms time slice

C’s 
I/O

AC

C’s 
I/O

AA

SRTF

Disk Utilization:
~90% but lots of 
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%



2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 57

• Starvation
– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this? 
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: hard to predict job’s runtime even for non-malicious users
• Bottom line, can’t really know how long job will take

– However, can use SRTF as a yardstick  
for measuring other policies

– Optimal, so can’t do any better
• SRTF Pros & Cons

– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

SRTF Further discussion
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Predicting the Length of the Next CPU Burst

• Adaptive: Changing policy based on past behavior
– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:  

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.  
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)

– Function f could be one of many different time series estimation schemes 
(Kalman filters, etc)

– For instance,  
exponential averaging 
τn = αtn-1+(1-α)τn-1 
with (0<α≤1)

 



2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 59

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior (first use in CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing exponentially 

(highest:1ms, next: 2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute 
Tasks Demoted to  

Low Priority
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Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling: 

» serve all from highest priority, then next priority, etc.
– Time slice:

» each queue gets a certain amount of CPU time 
» e.g., 70% to highest, 20% next, 10% lowest

Long-Running Compute 
Tasks Demoted to  

Low Priority
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Scheduling Details

• Countermeasure: user action that can foil intent of  
the OS designers

– For multilevel feedback, put in a bunch of meaningless I/O to keep 
job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing at higher 
priority the competitors. 

» Put in printf ’s, ran much faster!

Long-Running Compute 
Tasks Demoted to  

Low Priority
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Case Study: Linux O(1) Scheduler

• Priority-based scheduler : 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value ⇒ higher priority (for nice values)
– Highest priority value ⇒ Lower priority (for realtime values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed on the 

expired queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice range

– Like a multi-level queue (one queue per priority) with different timeslice at 
each level

– Execution split into “Timeslice Granularity” chunks – round robin through 
priority

Kernel/Realtime Tasks User Tasks

0 100 139
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O(1) Scheduler Continued
• Heuristics 

– User-task priority adjusted ±5 based on heuristics
» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg ⇒ more I/O bound the task, more reward (and vice versa)

– Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for temporary 

changes in behavior
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too 

long…
• Real-Time Tasks

– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same 

priority
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Linux Completely Fair Scheduler (CFS)
• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use heuristics to 

identify interactive tasks—it just makes sure every process gets a 
fair share of CPU within a set amount of time given the number of 
runnable processes on the CPU.”

• Inspired by Networking “Fair Queueing”
– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N processes 

execute simultaneously as if they truly got 1/N of the processor
» Tries to give each process an equal fraction of the processor

– Priorities reflected by weights such that increasing a task’s priority by 
1 always gives the same fractional increase in CPU time – regardless 
of current priority
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Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– We need to predict with confidence worst case response times for systems
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First),  

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
• Soft Real-Time

– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)
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Example: Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release) 
times

• Tasks have deadlines (D) and known computation times (C) 
• Example Setup:
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Example: Round-Robin Scheduling Doesn’t Work

Time
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• Tasks periodic with period P and computation C in each period:  ( , 
) for each task 

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the 

absolute deadline is (i.e. for each task!)
– The scheduler always schedules the active task with the closest absolute 

deadline

• Schedulable when  

𝑃𝑖
𝐶𝑖 𝑖

𝐷𝑡+1
𝑖 = 𝐷𝑡

𝑖 + 𝑃𝑖

𝑛

∑
𝑖=1 ( 𝐶𝑖

𝑃𝑖 ) ≤ 1

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T
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A Final Word On Scheduling
• When do the details of the scheduling policy and fairness really 

matter?
– When there aren’t enough resources to go around 

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay  

for itself in improved response time
» Perhaps you’re paying for worse response  

time in reduced productivity, customer angst,  
etc…

» Might think that you should buy a faster X  
when X is utilized 100%, but usually, response  
time goes to infinity as utilization⇒100% 

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of the load 

curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse
tim

e 100%
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Summary (1 of 2)
• Round-Robin Scheduling: 

– Give each thread a small amount of CPU time when it executes; cycle 
between all ready threads

– Pros: Better for short jobs 
• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):

– Run whatever job has the least amount of computation to do/least 
remaining amount of computation to do

– Pros: Optimal (average response time) 
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to 

approximate SJF/SRTF
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Summary (2 of 2)
• Lottery Scheduling:

– Give each thread a priority-dependent number of tokens (short 
tasks⇒more tokens)

• Linux CFS Scheduler : Fair fraction of CPU
– Approximates a “ideal” multitasking processor

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of 

processes?


