
CS162
Operating Systems and
Systems Programming

Lecture 24

Distributed Storage,
Key Value Stores, Chord

April 28th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu
Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the
bottom of that slide, in which case a full list of references is provided on the last
slide.

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 2

Recall: The CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all
three at same time

– Otherwise known as “Brewer’s Theorem”

Network

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 3

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout
it tunable parameter).

» Thus, when file is changed on one client, server is notified, but other clients
use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2Write

 (RPC)

ACK

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

Recall: NFS Cache consistency

F1 still ok?
No: (F1:V2)

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 4

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads

file?
• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as if all

processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

• For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise,

could get partial update

NFS: Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 5

Andrew File System
• Andrew File System (AFS, late 80’s) → DCE DFS (commercial

product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the file is

closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to

other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 6

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server ; tells all clients with copies to fetch new version from

server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone “who has
which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 7

Sharing Data, rather than Files ?

• Key:Value stores are used everywhere
• Native in many programming languages

– Associative Arrays in Perl
– Dictionaries in Python
– Maps in Go
– …

• What about a collaborative key-value store rather than
message passing or file sharing?

• Can we make it scalable and reliable?

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 8

Key Value Storage

Simple interface

• put(key, value); // Insert/write "value"
associated with key

• get(key); // Retrieve/read value
associated with key

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 9

Why Key Value Storage?

• Easy to Scale
– Handle huge volumes of data (e.g., petabytes)
– Uniform items: distribute easily and roughly equally across many

machines

• Simple consistency properties

• Used as a simpler but more scalable "database"
– Or as a building block for a more capable DB

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 10

• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter :
– Key: UserID
– Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 11

Key-value storage systems in real life

• Amazon
– DynamoDB: internal key value store used to power Amazon.com (shopping

cart)
– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by Facebook)

• Memcached: in-memory key-value store for small chunks of arbitrary data
(strings, objects)

• eDonkey/eMule: peer-to-peer sharing system

• …

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 12

Key Value Store

• Also called Distributed Hash Tables (DHT)
• Main idea: simplify storage interface (i.e. put/get), then partition set

of key-values across many machines
key, value

…

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 13

Challenges

• Scalability:
– Need to scale to thousands of machines
– Need to allow easy addition of new machines

• Fault Tolerance: handle machine failures without losing data and
without degradation in performance

• Consistency: maintain data consistency in face of node failures
and message losses

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 14

Important Questions

• put(key, value):
– where do you store a new (key, value) tuple?

• get(key):
– where is the value associated with a given “key” stored?

• And, do the above while providing
– Scalability
– Fault Tolerance
– Consistency

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 15

How to solve the “where?”

• Hashing to map key space ⇒ location
– But what if you don’t know who are all the nodes that are

participating?
– Perhaps they come and go …
– What if some keys are really popular?

• Lookup
– Hmm, won’t this be a bottleneck and single point of failure?

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 16

Recursive Directory Architecture (put)

• Have a node maintain the mapping between keys and the
machines (nodes) that store the values associated with the
keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory

put(K14, V14)

pu
t(K

14
, V

14
)

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 17

Recursive Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14

• Have a node maintain the mapping between keys and the
machines (nodes) that store the values associated with the
keys

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 18

Iterative Directory Architecture (put)

• Having the master relay the requests ! recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

N3

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 19

Iterative Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory
get(K14)

get(K14)

V14
N3

• Having the master relay the requests ! recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 20

Iterative vs. Recursive Query

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

get(K14)

V14
N3

Recursive Iterative
+ Faster, as directory server is typically

close to storage nodes
+ Easier for consistency: directory can

enforce an order for all puts and gets
- Directory is a performance bottleneck

+ More scalable, clients do more work
- Harder to enforce consistency

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 21

Fault Tolerance
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter to guard

against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory
put(K14, V14)

put(K14, V14), N1

N1, N3

K14 V14

put(K14, V14)

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 22

Consistency

• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every node?

– Wait for acknowledgements from every node
• What happens if a node fails during replication?

– Pick another node and try again
• What happens if a node is slow?

– Slow down the entire put()? Pick another node?
• In general, with multiple replicas

– Slow puts and fast gets

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 23

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may need to make
sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K
14, V14’’)

put(K14, V14’’)

K14 V14’K14 V14’’

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 24

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may need to make
sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K
14, V14’’)

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) reach
N1 & N3 in reverse order!

put(K14, V14’)

put(K14, V14’')

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 25

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may need to make
sure that updates happen in the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K
14, V14’’)

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) reach
N1 & N3 in reverse order!

• What does get(K14) return?
• Undefined!

put(K14, V14’)

put(K14, V14’')

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 26

Large Variety of Consistency Models
• Atomic consistency (linearizability): reads/writes (gets/

puts) to replicas appear as if there was a single underlying
replica (single system image)

– Think “one updated at a time”
– Transactions

• Eventual consistency: given enough time all updates will
propagate through the system

– One of the weakest form of consistency; used by many systems
in practice

– Must eventually converge on single value/key (coherence)
• And many others: causal consistency, sequential consistency,

strong consistency, …

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 27

Quorum Consensus
• Improve put() and get() operation performance

– In the presence of replication!

• Define a replica set of size N
– put() waits for acknowledgements from at least W replicas

» Different updates need to be differentiated by something monotonically
increasing like a timestamp

» Allows us to replace old values with updated ones
– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1?

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 28

Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N3, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

ACK

put(K14, V14)

pu
t(K

14
, V

14
)

ACK

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 29

Quorum Consensus Example

• Now, issuing get() to any two nodes out of three will return the
answer

N1 N2 N3 N4

K14 V14K14 V14

ge
t(K

14
)

V14

get(K14)

nill

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 30

Scalability

• Storage: use more nodes

• Number of requests:
– Can serve requests from all nodes on which a value is stored in

parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it (multiple identical copies)
– Partition it, so different keys are served by different masters/

directories
» How do you partition?

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 31

Scalability: Load Balancing
• Directory keeps track of the storage availability at each node

– Preferentially insert new values on nodes with more storage available
• What happens when a new node is added?

– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 32

Scaling Up Directory

• Challenge:
– Directory contains a number of entries equal to number of (key,

value) tuples in the system
– Can be tens or hundreds of billions of entries in the system!

• Solution: Consistent Hashing
– Provides mechanism to divide [key,value] pairs amongst a (potentially

large!) set of machines (nodes) on network
• Associate to each node a unique id in an uni-dimensional space

0..2m-1 ⇒ Wraps around: Call this “the ring!”
– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the smallest ID

larger than Key

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 33

Key to Node Mapping Example
• Paritioning example with

m = 6 ! ID space: 0..63
– Node 8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the mapping
[14, V14] maps to node with
ID=15
– Node with smallest ID larger than

14 (the key)
• In practice, m=256 or more!

– Uses cryptographically secure hash
such as SHA-256 to generate the
node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 34

Chord: Distributed Lookup (Directory) Service

• “Chord” is a Distributed Lookup Service
– Designed at MIT and here at Berkeley (Ion Stoica among others)
– Simplest and cleanest algorithm for distributed storage

» Serves as comparison point for other options
• Import aspect of the design space:

– Decouple correctness from efficiency
– Combined Directory and Storage

• Properties
– Correctness:

» Each node needs to know about neighbors on ring (one predecessor and
one successor)

» Connected rings will perform their task correctly
– Performance:

» Each node needs to know about O(log(M)), where M is the total number of
nodes

» Guarantees that a tuple is found in O(log(M)) steps
• Many other Structured, Peer-to-Peer lookup services:

– CAN, Tapestry, Pastry, Bamboo, Kademlia, …
– Several designed here at Berkeley!

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 35

Chord’s Lookup Mechanism: Routing!

• Each node maintains pointer
to its successor

• Route packet (Key, Value) to
the node responsible for ID
using successor pointers
– E.g., node=4 lookups for

node responsible
for Key=37

• Worst-case (correct)
lookup is O(n)
– But much better normal

lookup time is O(log n)
– Dynamic performance

optimization (finger table
mechanism)

» More later!!!

4

20

3235

8

15

44

58

lookup(37)

node=44 is
responsible
for Key=37

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 36

But what does this really mean??

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Node names intentionally scrambled WRT geography!
– Node IDs generated by secure hashes over metadata

» Including things like the IP address
– This geographic scrambling spreads load and avoids hotspots

• Clients access distributed storage by accessing system through any member
of the network

4

20

3235

8

15

44

58

14 V14

63 0

Client

Client

Client

Client

Client

14 V14

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 37

Stabilization Procedure

• Periodic operation performed by each node n to maintain its successor
when new nodes join the system

– The primary Correctness constraint

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x; // if x better successor, update
 succ.notify(n); // n tells successor about itself

n.notify(n’)
 if (pred = nil or n’ (pred, n))
 pred = n’; // if n’ is better predecessor, update

€

∈

€

∈

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 38

Joining Operation

4

20

3235

8

15

44

58

50

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

• Node with id=50
joins the ring

• Node 50 must know at
least one node already
in system

– Assume known
node is 15

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 39

Joining Operation

4

20

3235

8

15

44

58

50

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

• n=50 sends join(50)
to node 15

– Join propagated around
ring!

• n=44 returns node 58
• n=50 updates its

successor to 58

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 40

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

x=
44

succ=4
pred=44

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x;
 succ.notify(n);

€

∈

succ=58

• n=50 executes
stabilize()

• n’s successor (58)
returns x = 44

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 41

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x;
 succ.notify(n);

€

∈

succ=58

• n=50 executes
stabilize()

– x = 44
– succ = 58

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 42

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x;
 succ.notify(n);

€

∈

succ=58

no
tif

y(
50

)

• n=50 executes
stabilize()

– x = 44
– succ = 58

• n=50 sends to it’s
successor (58)
notify(50)

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 43

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)
 if (pred = nil or n’ (pred, n))
 pred = n’

€

∈

succ=58

no
tif

y(
50

)

• n=58 executes
notify(50)

– pred = 44
– n’ = 50

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 44

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)
 if (pred = nil or n’ (pred, n))
 pred = n’

€

∈

succ=58

no
tif

y(
50

)

pred=50
• n=58 executes

notify(50)
– pred = 44
– n’ = 50

• set pred = 50

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 45

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x;
 succ.notify(n);

€

∈

succ=58

x=50

• n=44 executes stabilize()
• n’s successor (58) returns

x=50

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 46

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x;
 succ.notify(n);

€

∈

succ=58

• n=44 executes stabilize()
– x=50
– succ=58

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 47

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x;
 succ.notify(n);

€

∈

succ=58

succ=50

• n=44 executes stabilize()
– x=50
– succ=58

• n=44 sets
succ=50

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 48

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
 x = succ.pred;
 if (x (n, succ))
 succ = x;
 succ.notify(n);

€

∈

succ=58

notify(44)

• n=44 executes stabilize()
• n=44 sends notify(44) to

its successor

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 49

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
 if (pred = nil or n’ (pred, n))
 pred = n’

€

∈

succ=58

notify(44)

• n=50 executes notify(44)
– pred=nil

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 50

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
 if (pred = nil or n’ (pred, n))
 pred = n’

€

∈

succ=58

notify(44)

pred=44

• n=50 executes notify(44)
– pred=nil

• n=50 sets pred=44

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 51

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50succ=58

succ=50

pred=44

pred=50

• This completes the
joining operation!

• The same stabilizing
process will deal with
failed nodes by
reconnecting the ring

• What if 2 or more nodes
in a row fail?

– Keep track of
more neighbors!

– Called the “leaf set”

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 52

Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min +

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

4580

20
112

96

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 53

Achieving Fault Tolerance for Lookup Service

• To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

– Again – called the “leaf set”
– In the pred() reply message, node A can send its k-1 successors to

its predecessor B
– Upon receiving pred() message, B can update its successor list by

concatenating the successor list received from A with its own list
• If k = log(M), lookup operation works with high probability even

if half of nodes fail, where M is number of nodes in the system

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 54

Storage Fault Tolerance

• Replicate tuples on
successor nodes

• Example: replicate
(K14, V14) on nodes
20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 55

Storage Fault Tolerance
• If node 15 fails, no

reconfiguration
needed
– Still have two replicas
– All lookups will be

correctly routed after
stabilization

• Will need to add a
new replica on node
35

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14

14 V14

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 56

Replication in Physical Space

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Replicating in Adjacent nodes of virtual space ⇒ Geographic
Separation in physical space

– Avoids single-points of failure through randomness
– More nodes, more replication, more geographic spread

Client

Client

Client

Client

Client

14 V14

4

20

3235

8

15

44

58

14 V14

630

14 V14

14 V14

14 V14

14 V14

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 57

DynamoDB Example: Service Level Agreements (SLA)

• Dynamo is Amazon’s storage
system using “Chord” ideas

• Application can deliver its
functionality in a bounded time:

– Every dependency in the platform
needs to deliver its functionality
with even tighter bounds.

• Example: service guaranteeing that
it will provide a response within
300ms for 99.9% of its requests for
a peak client load of 500 requests
per second

• Contrast to services which focus
on mean response time

Service-oriented architecture of
Amazon’s platform

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 58

What is Computer Security Today?

• Computing in the presence of an adversary!
– Adversary is the security field’s defining characteristic

• Reliability, robustness, and fault tolerance
– Dealing with Mother Nature (random failures)

• Security
– Dealing with actions of a knowledgeable attacker dedicated to

causing harm
– Surviving malice, and not just mischance

• Wherever there is an adversary, there is a computer security
problem!

70-110 million
users

.5 million
hosts ? ??? million

? ??? million? ??? million56 million
users

83 million users
BlackEnergy
SCADA malware
(Supervisory Control
and Data Acquisition)

Mirai IoT botnet

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 59

Protection vs. Security
• Protection: mechanisms for controlling access of programs,

processes, or users to resources
– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mechanisms to prevent misuse of
resources

– Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external operational environment
» Most well-constructed system cannot protect information if user

accidentally reveals password – social engineering challenge

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 60

On The Importance of Data Integrity

• In July (2015), a team of researchers took
total control of a Jeep SUV remotely

• They exploited a firmware update
vulnerability and hijacked the vehicle over
the Sprint cellular network

• They could make it speed up, slow down
and even veer off the road

• Machine-to-Machine (M2M)
communication has reached a
dangerous tipping point

– Cyber Physical Systems use models and
behaviors that form elsewhere

– Firmware, safety protocols, navigation
systems, recommendations, …

– IoT (whatever it is) is everywhere
• Do you know where your data came

from? PROVENANCE
• Do you know that it is ordered

properly? INTEGRITY
• The rise of Fake Data!

– Much worse than Fake News…
– Corrupt the data, make the system behave

very badly

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 61

Security Requirements

• Authentication
– Ensures that a user is who is claiming to be

• Data integrity
– Ensure that data is not changed from source to destination or after

being written on a storage device

• Confidentiality
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 62

Summary (1/2)
• Distributed File System:

– Transparent access to files stored on a remote disk
– Caching for performance

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface for different

types of file systems
• Cache Consistency: Keeping client caches consistent with one another

– If multiple clients, some reading and some writing, how do stale cached
copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of changes

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 63

Summary (2/2)

• Key-Value Store:
– Two operations

» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance ! replication
» Scalability ! serve get()’s in parallel; replicate/cache hot tuples
» Consistency ! quorum consensus to improve put() performance

• Chord:
– Highly scalable distributed lookup protocol
– Each node needs to know about O(log(M)), where m is the total number

of nodes
– Guarantees that a tuple is found in O(log(M)) steps
– Highly resilient: works with high probability even if half of nodes fail

4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 64

Thank you!

