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Recall: The CAP Theorem

• Consistency: 
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all 
three at same time

– Otherwise known as “Brewer’s Theorem”

Network
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• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout 
it tunable parameter).

» Thus, when file is changed on one client, server is notified, but other clients 
use old version of file until timeout. 

– What if multiple clients write to same file? 
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2Write

 (RPC)

ACK

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

Recall: NFS Cache consistency

F1 still ok?
No: (F1:V2)
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• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another CPU reads 

file?
• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as if all 

processes are running on single system
» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

• For NFS:
» If read starts more than 30 seconds after write, get new copy; otherwise, 

could get partial update

NFS: Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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Andrew File System
• Andrew File System (AFS, late 80’s) → DCE DFS (commercial 

product)
• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the file is 

closed
» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately to 

other programs who have file open
• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server 

– On write followed by close:
» Send copy to server ; tells all clients with copies to fetch new version from 

server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask everyone “who has 
which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation
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Sharing Data, rather than Files ?

• Key:Value stores are used everywhere
• Native in many programming languages

– Associative Arrays in Perl
– Dictionaries in Python
– Maps in Go
– …

• What about a collaborative key-value store rather than 
message passing or file sharing?

• Can we make it scalable and reliable?
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Key Value Storage

Simple interface

• put(key, value); // Insert/write "value" 
associated with key

• get(key); // Retrieve/read value 
associated with key
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Why Key Value Storage?

• Easy to Scale
– Handle huge volumes of data (e.g., petabytes)
– Uniform items: distribute easily and roughly equally across many 

machines

• Simple consistency properties

• Used as a simpler but more scalable "database"
– Or as a building block for a more capable DB
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• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit card, ..)

• Facebook, Twitter :
– Key: UserID 
– Value: user profile (e.g., posting history, photos, friends, …)

• iCloud/iTunes:
– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples 
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Key-value storage systems in real life

• Amazon
– DynamoDB: internal key value store used to power Amazon.com (shopping 

cart)
– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by Facebook)

• Memcached: in-memory key-value store for small chunks of arbitrary data 
(strings, objects) 

• eDonkey/eMule: peer-to-peer sharing system

• …
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Key Value Store

• Also called Distributed Hash Tables (DHT)
• Main idea: simplify storage interface (i.e. put/get), then partition set 

of key-values across many machines
key, value

…
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Challenges

• Scalability: 
– Need to scale to thousands of machines 
– Need to allow easy addition of new machines

• Fault Tolerance: handle machine failures without losing data  and 
without degradation in performance

• Consistency: maintain data consistency in face of node failures 
and message losses 

• Heterogeneity (if deployed as peer-to-peer systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…



4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 14

Important Questions

• put(key, value): 
– where do you store a new (key, value) tuple?

• get(key): 
– where is the value associated with a given “key” stored?

• And, do the above while providing 
– Scalability
– Fault Tolerance
– Consistency



4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 15

How to solve the “where?”

• Hashing to map key space ⇒ location
– But what if you don’t know who are all the nodes that are 

participating?
– Perhaps they come and go …
– What if some keys are really popular?

• Lookup
– Hmm, won’t this be a bottleneck and single point of failure?
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Recursive Directory Architecture (put)

• Have a node maintain the mapping between keys and the 
machines (nodes) that store the values associated with the 
keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory

put(K14, V14)

pu
t(K

14
, V

14
)
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Recursive Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14

• Have a node maintain the mapping between keys and the 
machines (nodes) that store the values associated with the 
keys
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Iterative Directory Architecture (put) 

• Having the master relay the requests ! recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

N3
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Iterative Directory Architecture (get)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3
K105 N50

Master/Directory
get(K14)

get(K14)

V14
N3

• Having the master relay the requests ! recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node
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Iterative vs. Recursive Query

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

get(K14)

V14
N3

Recursive Iterative
+ Faster, as directory server is typically 

close to storage nodes
+ Easier for consistency: directory can 

enforce an order for all puts and gets
- Directory is a performance bottleneck

+ More scalable, clients do more work
- Harder to enforce consistency
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Fault Tolerance
• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter to guard 

against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 
K105 N50

Master/Directory
put(K14, V14)

put(K14, V14), N1

N1, N3

K14 V14

put(K14, V14)
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Consistency

• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every node? 

– Wait for acknowledgements from every node
• What happens if a node fails during replication?

– Pick another node and try again
• What happens if a node is slow?

– Slow down the entire put()? Pick another node?
• In general, with multiple replicas

– Slow puts and fast gets
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Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may need to make 
sure that updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K
14, V14’’)

put(K14, V14’’)

K14 V14’K14 V14’’
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Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may need to make 
sure that updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K
14, V14’’)

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) reach 
N1 & N3 in reverse  order!

put(K14, V14’)

put(K14, V14’')
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Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) may need to make 
sure that updates happen in the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K
14, V14’’)

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) reach 
N1 & N3 in reverse  order!

• What does get(K14) return?
• Undefined!

put(K14, V14’)

put(K14, V14’')
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Large Variety of Consistency Models
• Atomic consistency (linearizability): reads/writes (gets/

puts) to replicas appear as if there was a single underlying 
replica (single system image)

– Think “one updated at a time”
– Transactions

• Eventual consistency: given enough time all updates will 
propagate through the system

– One of the weakest form of consistency; used by many systems 
in practice

– Must eventually converge on single value/key (coherence)
• And many others: causal consistency, sequential consistency, 

strong consistency, …
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Quorum Consensus
• Improve put() and get() operation performance

– In the presence of replication!

• Define a replica set of size N
– put() waits for acknowledgements from at least W replicas

» Different updates need to be differentiated by something monotonically 
increasing like a timestamp

» Allows us to replace old values with updated ones
– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1? 
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Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N3, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

ACK

put(K14, V14)

pu
t(K

14
, V

14
)

ACK
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Quorum Consensus Example

• Now, issuing get() to any two nodes out of three will return the 
answer

N1 N2 N3 N4

K14 V14K14 V14

ge
t(K

14
)

V14

get(K14)

nill
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Scalability

• Storage: use more nodes

• Number of requests: 
– Can serve requests from all nodes on which a value is stored in 

parallel
– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it (multiple identical copies)
– Partition it, so different keys are served by different masters/

directories
» How do you partition? 
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Scalability: Load Balancing
• Directory keeps track of the storage availability at each node

– Preferentially insert new values on nodes with more storage available
• What happens when a new node is added?

– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes
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Scaling Up Directory

• Challenge:
– Directory contains a number of entries equal to number of (key, 

value) tuples in the system
– Can be tens or hundreds of billions of entries in the system!

• Solution: Consistent Hashing
– Provides mechanism to divide [key,value] pairs amongst a (potentially 

large!) set of machines (nodes) on network
• Associate to each node a unique id in an uni-dimensional space 

0..2m-1 ⇒ Wraps around: Call this “the ring!”
– Partition this space across n machines
– Assume keys are in same uni-dimensional space
– Each [Key, Value] is stored at the node with the smallest ID 

larger than Key
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Key to Node Mapping Example
• Paritioning example with 

m = 6 ! ID space: 0..63 
– Node  8 maps keys [5,8]
– Node 15 maps keys [9,15]
– Node 20 maps keys [16, 20]
– …
– Node 4 maps keys [59, 4]

• For this example, the mapping 
[14, V14] maps to node with 
ID=15
– Node with smallest ID larger than 

14 (the key)
• In practice, m=256 or more!

– Uses cryptographically secure hash 
such as SHA-256 to generate the 
node IDs

14 V14

4

20

3235

8

15

44

58

63 0

“The Ring”
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Chord: Distributed Lookup (Directory) Service

• “Chord” is a Distributed Lookup Service
– Designed at MIT and here at Berkeley (Ion Stoica among others)
– Simplest and cleanest algorithm for distributed storage

» Serves as comparison point for other options
• Import aspect of the design space:

– Decouple correctness from efficiency
– Combined Directory and Storage

• Properties 
– Correctness: 

» Each node needs to know about neighbors on ring (one predecessor and 
one successor)

» Connected rings will perform their task correctly
– Performance: 

» Each node needs to know about O(log(M)), where M is the total number of 
nodes

» Guarantees that a tuple is found in O(log(M)) steps
• Many other Structured, Peer-to-Peer lookup services: 

– CAN, Tapestry, Pastry, Bamboo, Kademlia, …
– Several designed here at Berkeley!
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Chord’s Lookup Mechanism: Routing!

• Each node maintains pointer 
to its successor 

• Route packet (Key, Value) to 
the node responsible for ID 
using successor pointers
– E.g., node=4 lookups for 

node responsible  
for Key=37 

• Worst-case (correct) 
lookup is O(n)
– But much better normal 

lookup time is O(log n)
– Dynamic performance 

optimization (finger table 
mechanism)

» More later!!!

4

20

3235

8

15

44

58

lookup(37)

node=44 is 
responsible 
for Key=37
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But what does this really mean??

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Node names intentionally scrambled WRT geography!
– Node IDs generated by secure hashes over metadata 

» Including things like the IP address
– This geographic scrambling spreads load and avoids hotspots

• Clients access distributed storage by accessing system through any member 
of the network

4

20

3235

8

15

44

58

14 V14

63 0

Client

Client

Client

Client

Client

14 V14
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Stabilization Procedure

• Periodic operation performed by each node n to maintain its successor 
when new nodes join the system

– The primary Correctness constraint

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;      // if x better successor, update 
   succ.notify(n); // n tells successor about itself   

n.notify(n’)
   if (pred = nil or n’    (pred, n))
       pred = n’;       // if n’ is better predecessor, update
   

€ 

∈

€ 

∈



4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 38

Joining Operation

4

20

3235

8

15

44

58

50

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

• Node with id=50  
joins the ring

• Node 50 must know at 
least one node already 
in system

– Assume known 
node is 15
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Joining Operation

4

20

3235

8

15

44

58

50

join(50)

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

succ=58

• n=50 sends join(50) 
to node 15

– Join propagated around 
ring!

• n=44 returns node 58
• n=50 updates its 

successor to 58



4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 40

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

x=
44

succ=4
pred=44

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;
   succ.notify(n);

€ 

∈

succ=58

• n=50 executes 
stabilize()

• n’s successor (58) 
returns x = 44



4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 41

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;
   succ.notify(n);

€ 

∈

succ=58

• n=50 executes 
stabilize()

– x = 44
– succ = 58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;
   succ.notify(n);

€ 

∈

succ=58

no
tif

y(
50

)

• n=50 executes 
stabilize()

– x = 44
– succ = 58

• n=50 sends to it’s 
successor (58) 
notify(50)
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)
   if (pred = nil or n’    (pred, n))
       pred = n’
   

€ 

∈

succ=58

no
tif

y(
50

)

• n=58 executes 
notify(50)

– pred = 44
– n’ = 50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=44

n.notify(n’)
   if (pred = nil or n’    (pred, n))
       pred = n’
   

€ 

∈

succ=58

no
tif

y(
50

)

pred=50
• n=58 executes 

notify(50)
– pred = 44
– n’ = 50

• set pred = 50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;
   succ.notify(n);

€ 

∈

succ=58

x=50

• n=44 executes stabilize()
• n’s successor (58) returns 

x=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;
   succ.notify(n);

€ 

∈

succ=58

• n=44 executes stabilize()
– x=50
– succ=58
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=58
pred=35

succ=4
pred=50

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;
   succ.notify(n);

€ 

∈

succ=58

succ=50

• n=44 executes stabilize()
– x=50
– succ=58

• n=44 sets  
succ=50
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.stabilize()
   x = succ.pred;
   if (x    (n, succ))
       succ = x;
   succ.notify(n);

€ 

∈

succ=58

notify(44)

• n=44 executes stabilize()
• n=44 sends notify(44) to 

its successor
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Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
   if (pred = nil or n’    (pred, n))
       pred = n’
   

€ 

∈

succ=58

notify(44)

• n=50 executes notify(44)
– pred=nil



4/28/20 Kubiatowicz CS162 ©UCB Fall 2020 50

Joining Operation

4

20

3235

8

15

44

58

50pred=nil

succ=50
pred=35

succ=4
pred=50

n.notify(n’)
   if (pred = nil or n’    (pred, n))
       pred = n’
   

€ 

∈

succ=58

notify(44)

pred=44

• n=50 executes notify(44)
– pred=nil

• n=50 sets pred=44
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Joining Operation (cont’d)

4

20

3235

8

15

44

58

50succ=58

succ=50

pred=44

pred=50

• This completes the 
joining operation!

• The same stabilizing 
process will deal with 
failed nodes by 
reconnecting the ring

• What if 2 or more nodes 
in a row fail?

– Keep track of 
more neighbors!

– Called the “leaf set”
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Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25
(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min +

i   ft[i] 
0  96 
1  96 
2  96 
3  96 
4  96 
5  112 
6  20

Finger Table at 80

32

4580

20
112

96
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Achieving Fault Tolerance for Lookup Service

• To improve robustness each node maintains the k (> 1) 
immediate successors instead of only one successor

– Again – called the “leaf set”
– In the pred() reply message, node A can send its k-1 successors to 

its predecessor B
– Upon receiving pred() message, B can update its successor list by 

concatenating the successor list received from A with its own list
• If k = log(M), lookup operation works with high probability even 

if half of nodes fail, where M is number of nodes in the system
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Storage Fault Tolerance

• Replicate tuples on 
successor nodes

• Example: replicate 
(K14, V14) on nodes 
20 and 32

4

20

3235

8

15

44

58

14 V14

63 0

14 V14

14 V14
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Storage Fault Tolerance
• If node 15 fails, no 

reconfiguration 
needed
– Still have two replicas 
– All lookups will be 

correctly routed after 
stabilization

• Will need to add a 
new replica on node 
35
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Replication in Physical Space

ID: 4

ID: 44

ID: 8

ID: 20

ID: 35

ID: 58

ID: 15

ID: 32

• Replicating in Adjacent nodes of virtual space ⇒ Geographic 
Separation in physical space

– Avoids single-points of failure through randomness
– More nodes, more replication, more geographic spread

Client

Client

Client

Client

Client

14 V14
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14 V14

630

14 V14

14 V14

14 V14

14 V14
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DynamoDB Example: Service Level Agreements (SLA)

• Dynamo is Amazon’s storage 
system using “Chord” ideas

• Application can deliver its 
functionality in a bounded time: 

– Every dependency in the platform 
needs to deliver its functionality 
with even tighter bounds.

• Example: service guaranteeing that 
it will provide a response within 
300ms for 99.9% of its requests for 
a peak client load of 500 requests 
per second

• Contrast to services which focus 
on mean response time

Service-oriented architecture of  
Amazon’s platform
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What is Computer Security Today?

• Computing in the presence of an adversary!
– Adversary is the security field’s defining characteristic

• Reliability, robustness, and fault tolerance
– Dealing with Mother Nature (random failures)

• Security
– Dealing with actions of a knowledgeable attacker dedicated to 

causing harm
– Surviving malice, and not just mischance

• Wherever there is an adversary, there is a computer security 
problem!

70-110 million 
users

.5 million
hosts ? ??? million

? ??? million? ??? million56 million 
users

83 million users
BlackEnergy 
SCADA  malware
(Supervisory Control  
and Data Acquisition)

Mirai IoT botnet
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Protection vs. Security
• Protection: mechanisms for controlling access of programs, 

processes, or users to resources
– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mechanisms to prevent misuse of 
resources

– Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external operational environment 
» Most well-constructed system cannot protect information if user 

accidentally reveals password – social engineering challenge
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On The Importance of Data Integrity

• In July (2015), a team of researchers took 
total control of a Jeep SUV remotely

• They exploited a firmware update 
vulnerability and hijacked the vehicle over 
the Sprint cellular network

• They could make it speed up, slow down 
and even veer off the road

• Machine-to-Machine (M2M) 
communication has reached a 
dangerous tipping point

– Cyber Physical Systems use models and 
behaviors that form elsewhere

– Firmware, safety protocols, navigation 
systems, recommendations, …

– IoT (whatever it is) is everywhere
• Do you know where your data came 

from?  PROVENANCE
• Do you know that it is ordered 

properly? INTEGRITY
• The rise of Fake Data!

– Much worse than Fake News…
– Corrupt the data, make the system behave 

very badly
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Security Requirements

• Authentication 
– Ensures that a user is who is claiming to be

• Data integrity 
– Ensure that data is not changed from source to destination or after 

being written on a storage device 

• Confidentiality 
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data
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Summary (1/2)
• Distributed File System: 

– Transparent access to files stored on a remote disk
– Caching for performance

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface for different 

types of file systems
• Cache Consistency: Keeping client caches consistent with one another

– If multiple clients, some reading and some writing, how do stale cached 
copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of changes
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Summary (2/2)

• Key-Value Store:
– Two operations

» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance ! replication
» Scalability ! serve get()’s in parallel; replicate/cache hot tuples
» Consistency ! quorum consensus to improve put() performance

• Chord:
– Highly scalable distributed lookup protocol
– Each node needs to know about O(log(M)), where m is the total number 

of nodes
– Guarantees that a tuple is found in O(log(M)) steps
– Highly resilient: works with high probability even if half of nodes fail
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Thank you!


