
CS162
Operating Systems and
Systems Programming

Lecture 21

Filesystem Transactions (Con’t),
End-to-End Argument,

Distributed Decision Making

April 16th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the
bottom of that slide, in which case a full list of references is provided on the last
slide.

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 2

Recall: The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or none happen

• Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from that of all
others; no problems from concurrency

• Durability: if a transaction commits, its effects persist despite
crashes

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 3

Concept of a log

• One simple action is atomic – write/append a basic item
• Use that to seal the commitment to a whole series of actions

Ge
t

10
$

fr
om

 a
cc

ou
nt

 A

Ge
t

7$
 f

ro
m
 a

cc
ou

nt
 B

Ge
t

13
$

fr
om

 a
cc

ou
nt

 C

Pu
t

15
$

in
to

 a
cc

ou
nt

 X
Pu

t
15

$
in
to

 a
cc

ou
nt

 Y

St
ar

t
Tr

an
 N

Co
m
m
it
 T

ra
n

N

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 4

Transactional File Systems

• Better reliability through use of log
– All changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data preserved in
the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• Journaling File System
– Applies updates to system metadata using transactions (using logs, etc.)
– Updates to non-directory files (i.e., user stuff) can be done in place

(without logs), full logging optional
– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 5

Journaling File Systems

• Instead of modifying data structures on disk directly, write changes to a
journal/log

– Intention list: set of changes we intend to make
– Log/Journal is append-only
– Single commit record commits transaction

• Once changes are in the log, it is safe to apply changes to data structures on
disk

– Recovery can read log to see what changes were intended
– Can take our time making the changes

» As long as new requests consult the log first
• Once changes are copied, safe to remove log
• But, …

– If the last atomic action is not done … poof … all gone
• Basic assumption:

– Updates to sectors are atomic and ordered
– Not necessarily true unless very careful, but key assumption

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 6

Example: Creating a File

• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• Write map (i.e., mark used)

• Write inode entry to point to block(s)

• Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 7

Ex: Creating a file (as a transaction)
• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• [log] Write map (used)

• [log] Write inode entry to point to
block(s)

• [log] Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 8

“Redo Log “ – Replay Transactions

• After Commit

• All access to file system first looks in
log

• Eventually copy changes to disk

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or Disk)

headtail

pending

done

st
ar

t

co
m

m
it

tail tail tail tail

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 9

Crash During Logging – Recover

• Upon recovery scan the log

• Detect transaction start with no
commit

• Discard log entries

• Disk remains unchanged

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 10

Recovery After Commit

• Scan log, find start

• Find matching commit

• Redo it as usual
– Or just let it happen later

Data blocks

Free space
map

…

Inode table

Directory
entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 11

Journaling Summary

Why go through all this trouble?
• Updates atomic, even if we crash:

– Update either gets fully applied or discarded
– All physical operations treated as a logical unit

Isn't this expensive?
• Yes! We're now writing all data twice (once to log, once to

actual data blocks in target file)
• Modern filesystems offer an option to journal metadata

updates only
– Record modifications to file system data structures
– But apply updates to a file's contents directly

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 12

Going Further – Log Structured File Systems

• The log IS what is recorded on disk
– File system operations logically replay log to get result
– Create data structures to make this fast
– On recovery, replay the log

• Index (inodes) and directories are written into the log too
• Large, important portion of the log is cached in memory
• Do everything in bulk: log is collection of large segments
• Each segment contains a summary of all the operations within the

segment
– Fast to determine if segment is relevant or not

• Free space is approached as continual cleaning process of segments
– Detect what is live or not within a segment
– Copy live portion to new segment being formed (replay)
– Garbage collection entire segment
– No bit map

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 13

Example Use of LFS:
F2FS: A Flash File System

• File system used on many mobile devices
– Including the Pixel 3 from Google
– Latest version supports block-encryption for security
– Has been “mainstream” in linux for several years now

• Assumes standard SSD interface
– With built-in Flash Translation Layer (FTL)
– Random reads are as fast as sequential reads
– Random writes are bad for flash storage

» Forces FTL to keep moving/coalescing pages and erasing blocks
» Sustained write performance degrades/lifetime reduced

• Minimize Writes/updates and otherwise keep writes “sequential”
– Start with Log-structured file systems/copy-on-write file systems
– Keep writes as sequential as possible
– Node Translation Table (NAT) for “logical” to “physical” translation

» Independent of FTL
• For more details, check out paper in Readings section of website

– “F2FS: A New File System for Flash Storage” (from 2015)
– Design of file system to leverage and optimize NAND flash solutions
– Comparison with Ext4, Btrfs, Nilfs2, etc

4/16/20 Kubiatowicz CS162 © UCB Spring 2020

• The world is a large distributed system
– Microprocessors in everything
– Vast infrastructure behind them

14

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce
 …

MEMS for
Sensor Nets

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 15

• Centralized System: System in which major functions are performed
by a single physical computer

– Originally, everything on single computer
– Later : client/server model

• Distributed System: physically separate computers working together
on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

Centralized vs Distributed Systems

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 16

Distributed Systems: Motivation/Issues/Promise

• Why do we want distributed systems?
– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: much easier for users to collaborate through network

resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 17

Distributed Systems: Reality
• Reality has been disappointing

– Worse availability: depend on every machine being up
» Lamport: “A distributed system is one in which the

failure of a computer you didn’t even know existed
can render your own computer unusable.”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state

information (using only a network)
– What would be easy in a centralized system becomes

a lot more difficult
• Trust/Security/Privacy/Denial of Service

– Many new variants of problems arise as a result of distribution
– Can you trust the other members of a distributed application enough to even

perform a protocol correctly?
– Corollary of Lamport’s quote: “A distributed system is one where you can’t do

work because some computer you didn’t even know existed is successfully
coordinating an attack on my system!”

Leslie Lamport

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 18

Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its complexity behind a

simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by splitting them into smaller

pieces
– Fault Tolerance: System may hide various things that go wrong

• Transparency and collaboration require some way for different
processors to communicate with one another

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 19

How do entities communicate? A Protocol!

• A protocol is an agreement on how to communicate, including:
– Syntax: how a communication is specified & structured

» Format, order messages are sent and received
– Semantics: what a communication means

» Actions taken when transmitting, receiving, or when a timer expires
• Described formally by a state machine

– Often represented as a message transaction diagram
– Can be a partitioned state machine: two parties synchronizing duplicate sub-

state machines between them
– Stability in the face of failures!

Protocol
ExchangeB

A

DC
E

B
A

DC
E

Stable
Storage

Stable
Storage

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 20

Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s John….” 

Or: “Hi, it’s me” (← what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 21

Global Communication: The Problem

• Many different applications
– email, web, P2P, etc.

• Many different network styles and technologies
– Wireless vs. wired vs. optical, etc.

• How do we organize this mess?
– Re-implement every application for every technology?

• No! But how does the Internet design avoid this?

Skype SSH NFS

Packet
Radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 22

Solution: Intermediate Layers

• Introduce intermediate layers that provide set of abstractions for
various network functionality & technologies

– A new app/media implemented only once
– Variation on “add another level of indirection”

• Goal: Reliable communication channels on which to build distributed
applications

Skype SSH NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate
layers

“Narrow Waist”
Internet Protocol

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 23

The Internet Hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IP.

The “narrow waist” facilitates interoperability.

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 24

Implications of Hourglass

Single Internet-layer module (IP):
• Allows arbitrary networks to interoperate

– Any network technology that supports IP can exchange
packets

• Allows applications to function on all networks
– Applications that can run on IP can use any network

• Supports simultaneous innovations above and below IP
– But changing IP itself, i.e., IPv6, very involved

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 25

Drawbacks of Layering

• Layer N may duplicate layer N-1 functionality
– E.g., error recovery to retransmit lost data

• Layers may need same information
– E.g., timestamps, maximum transmission unit size

• Layering can hurt performance
– E.g., hiding details about what is really going on

• Some layers are not always cleanly separated
– Inter-layer dependencies for performance reasons
– Some dependencies in standards (header checksums)

• Headers start to get really big
– Sometimes header bytes >> actual content

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 26

End-To-End Argument
• Hugely influential paper: “End-to-End Arguments in System

Design” by Saltzer, Reed, and Clark (‘84)
• “Sacred Text” of the Internet

– Endless disputes about what it means
– Everyone cites it as supporting their position

• Simple Message: Some types of network functionality can only be
correctly implemented end-to-end

– Reliability, security, etc.
• Because of this, end hosts:

– Can satisfy the requirement without network’s help
– Will/must do so, since can’t rely on network’s help

• Therefore don’t go out of your way to implement them in the
network

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 27

Example: Reliable File Transfer

• Solution 1: make each step reliable, and then concatenate them

• Solution 2: end-to-end check and try again if necessary

OS

Appl.

OS

Appl.

Host A Host B

OK

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 28

Discussion

• Solution 1 is incomplete
– What happens if memory is corrupted?
– Receiver has to do the check anyway!

• Solution 2 is complete
– Full functionality can be entirely implemented at application layer

with no need for reliability from lower layers

• Is there any need to implement reliability at lower layers?
– Well, it could be more efficient

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 29

End-to-End Principle

Implementing complex functionality in the network:
• Doesn’t reduce host implementation complexity
• Does increase network complexity
• Probably imposes delay and overhead on all applications, even

if they don’t need functionality

• However, implementing in network can enhance performance
in some cases

– e.g., very lossy link

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 30

Conservative Interpretation of E2E

• Don’t implement a function at the lower levels of the
system unless it can be completely implemented at this
level

• Or: Unless you can relieve the burden from hosts, don’t
bother

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 31

Moderate Interpretation
• Think twice before implementing functionality in the network
• If hosts can implement functionality correctly, implement it in a

lower layer only as a performance enhancement
• But do so only if it does not impose burden on applications that do

not require that functionality
• This is the interpretation we are using

• Is this still valid?
– What about Denial of Service?
– What about Privacy against Intrusion?

– Perhaps there are things that must be in the network???

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 32

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two receivers

cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 33

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually received the

message?
– When can sender reuse the memory containing message?

• Mailbox provides 1-way communication from T1→T2
– T1→buffer→T2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 34

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:
 Producer:
 int msg1[1000];
 while(1) {
 prepare message;
 send(msg1,mbox);
 }

 Consumer:
 int buffer[1000];
 while(1) {
 receive(buffer,mbox);
 process message;
 }

• No need for producer/consumer to keep track of space in mailbox:
handled by send/receive

– Next time: will discuss fact that this is one of the roles the window in
TCP: window is size of buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 35

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

• Example: File service
 Client: (requesting the file)
 char response[1000];

 send(“read rutabaga”, server_mbox);
 receive(response, client_mbox);

 Server: (responding with the file)
 char command[1000], answer[1000];

 receive(command, server_mbox);
 decode command;
 read file into answer;
 send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 36

Distributed Consensus Making
• Consensus problem

– All nodes propose a value
– Some nodes might crash and stop responding
– Eventually, all remaining nodes decide on the same value from set of

proposed values
• Distributed Decision Making

– Choose between “true” and “false”
– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!
– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database
– In a global-scale system?

» What about erasure coding or massive replication?
» Like BlockChain applications!

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 37

General’s Paradox

• General’s paradox:
– Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because he
arrived a couple of days too early

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 38

General’s Paradox (con’t)
• Can messages over an unreliable network be used to guarantee

two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!
– In real life, use radio for simultaneous (out of band) communication

• So, clearly, we need something other than simultaneity!

Yeah, but what if you

Don’t get this ack?

11 am ok?

So, 11 it is?

Yes, 11 works

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 39

Two-Phase Commit
• Since we can’t solve the General’s Paradox

(i.e. simultaneous action), let’s solve a related problem

• Distributed transaction: Two or more machines agree to do something,
or not do it, atomically

– No constraints on time, just that it will eventually happen!

• Two-Phase Commit protocol: Developed by
Turing award winner Jim Gray

– (first Berkeley CS PhD, 1969)
– Many important DataBase breakthroughs

also from Jim Gray

Jim Gray

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 40

2PC Algorithm

• One coordinator
• N workers (replicas)
• High level algorithm description:

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator broadcasts

“GLOBAL-COMMIT”
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep track of what

you are doing
– If a machine crashes, when it wakes up it first checks its log to recover

state of world at time of crash

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 41

Two-Phase Commit: Setup

• One machine (coordinator) initiates the protocol
• It asks every machine to vote on transaction

• Two possible votes:
– Commit
– Abort

• Commit transaction only if unanimous approval

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 42

Two-Phase Commit: Preparing

Agree to Commit
• Machine has guaranteed that it will accept transaction
• Must be recorded in log so machine will remember this

decision if it fails and restarts
Agree to Abort
• Machine has guaranteed that it will never accept this

transaction
• Must be recorded in log so machine will remember this

decision if it fails and restarts

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 43

Two-Phase Commit: Finishing

Commit Transaction
• Coordinator learns all machines have agreed to commit
• Record decision to commit in local log
• Apply transaction, inform voters
Abort Transaction
• Coordinator learns at least on machine has voted to abort
• Record decision to abort in local log
• Do not apply transaction, inform voters

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 44

Two-Phase Commit: Finishing

Commit Transaction
• Coordinator learns all machines have agreed to commit
• Record decision to commit in local log
• Apply transaction, inform voters
Abort Transaction
• Coordinator learns at least on machine has voted to abort
• Record decision to abort in local log
• Do not apply transaction, inform voters

Be
cau

se
no

ma
chi

ne
can

 ta
ke

bac
k i

ts
dec

isio
n,

exa
ctl

y o
ne

of
the

se
wil

l h
app

en

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 45

Detailed Algorithm

Coordinator sends VOTE-REQ to all
workers

– Wait for VOTE-REQ from coordinator
– If ready, send VOTE-COMMIT to

coordinator
– If not ready, send VOTE-ABORT to

coordinator
– And immediately abort

– If receive VOTE-COMMIT from all N
workers, send GLOBAL-COMMIT to
all workers

– If doesn’t receive VOTE-COMMIT
from all N workers, send GLOBAL-
ABORT to all workers

– If receive GLOBAL-COMMIT then
commit

– If receive GLOBAL-ABORT then abort

Coordinator Algorithm Worker Algorithm

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 46

Failure Free Example Execution

coordinator

worker 1

time

VOTE-
REQ

VOTE-
COMMIT

GLOBAL-
COMMIT

worker 2

worker 3

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 47

State Machine of Coordinator

• Coordinator implements simple state machine:
INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE-REQ

Recv: VOTE-ABORT
Send: GLOBAL-ABORT

Recv: all VOTE-COMMIT
Send: GLOBAL-COMMIT

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 48

State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ
Send: VOTE-
ABORT

Recv: VOTE-REQ
Send: VOTE-COMMIT

Recv: GLOBAL-
ABORT

Recv: GLOBAL-COMMIT

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 49

Dealing with Worker Failures

• Failure only affects states in which the coordinator is
waiting for messages

• Coordinator only waits for votes in “WAIT” state
• In WAIT, if doesn’t receive N votes, it times out and sends

GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE-REQ

Recv: VOTE-ABORT
Send: GLOBAL-
ABORT

Recv: VOTE-COMMIT
Send: GLOBAL-
COMMIT

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 50

Example of Worker Failure

coordinator

worker 1

time

VOTE-REQ

VOTE-
COMMIT

GLOBAL-
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 51

Dealing with Coordinator Failure

• Worker waits for VOTE-REQ in INIT
– Worker can time out and abort (coordinator handles it)

• Worker waits for GLOBAL-* message in READY
– If coordinator fails, workers must BLOCK waiting for coordinator

to recover and send GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ
Send: VOTE-ABORT

Recv: VOTE-REQ
Send: VOTE-COMMIT

Recv: GLOBAL-
ABORT

Recv: GLOBAL-
COMMIT

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 52

Example of Coordinator Failure #1

coordinator

worker 1

VOTE-
REQ

VOTE-
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 53

Example of Coordinator Failure #2

VOTE-
REQ

VOTE-
COMMIT

INIT

READY

ABORT COMM

block waiting for
coordinator

restarted

GLOBAL-
ABORT

coordinator

worker 1

worker 2

worker 3

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 54

Durability

• All nodes use stable storage to store current state
– stable storage is non-volatile storage (e.g. backed by disk) that

guarantees atomic writes.
– E.g.: SSD, NVRAM

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker “asks” Coordinator in READY

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 55

Blocking for Coordinator to Recover
• A worker waiting for global decision can ask fellow workers about

their state
– If another worker is in ABORT or

COMMIT state then coordinator
must have sent GLOBAL-*

» Thus, worker can safely
abort or commit, respectively

– If another worker is still in
INIT state then both workers
can decide to abort

– If all workers are in ready, need to BLOCK (don’t know if
coordinator wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ
Send: VOTE-ABORT

Recv: VOTE-REQ
Send: VOTE-COMMIT

Recv: GLOBAL-ABORTRecv: GLOBAL-
COMMIT

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 56

Distributed Decision Making Discussion (1/2)

• Why is distributed decision making desirable?
– Fault Tolerance!
– A group of machines can come to a decision even if one or

more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 57

Distributed Decision Making Discussion (2/2)

• Undesirable feature of Two-Phase Commit: Blocking
– One machine can be stalled until another site recovers:

» Site B writes "prepared to commit" record to its log, sends a "yes"
vote to the coordinator (site A) and crashes

» Site A crashes
» Site B wakes up, check its log, and realizes that it has voted "yes" on

the update. It sends a message to site A asking what happened. At
this point, B cannot decide to abort, because update may have
committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items, pages

pinned in memory, etc) until learns fate of update

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 58

Alternatives to 2PC
• Three-Phase Commit: One more phase, allows nodes to fail or block

and still make progress.
• PAXOS: An alternative used by Google and others that does not have

2PC blocking problem
– Develop by Leslie Lamport (Turing Award Winner)
– No fixed leader, can choose new leader on fly, deal with failure
– Some think this is extremely complex!

• RAFT: PAXOS alternative from John Osterhout (Stanford)
– Simpler to describe complete protocol

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 59

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General and n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 lieutenants such
that the following Integrity Constraints apply:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal lieutenants obey the

order he sends

General

Attack!

Attac
k!

Attack!
Retreat!

Attack!

Retreat!
Attack!

Attack!Attack!

Lieutenant

Lieutenant

Lieutenant
Malicious!

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 60

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 because one malicious
player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision even if some subset of
them (< n/3) are malicious

General

LieutenantLieutenant

Attack! Attack!

Retreat!

General

LieutenantLieutenant

Attack! Retreat!

Retreat!

Request Distributed
Decision

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 61

Is a BlockChain a Distributed Decision Making Algorithm?

• BlockChain: a chain of blocks connected by hashes to root block
– The Hash Pointers are unforgeable (assumption)
– The Chain has no branches except perhaps for heads
– Blocks are considered “authentic” part of chain when they have authenticity

info in them
• How is the head chosen?

– Some consensus algorithm
– In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by

solving hard problem
» This is the job of “miners” who try to find “nonce” info that makes hash over block

have specified number of zero bits in it
» The result is a “Proof of Work” (POW)
» Selected blocks above (green) have POW in them and can be included in chains

– Longest chain wins

Hash Ptr
Root
Block

The “Block Chain”

Tentative Head #2

Tentative Head #1

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 62

Is a Blockchain a Distributed Decision Making Algorithm? (Con’t)

• Decision means: Proposal is locked into BlockChain
– Could be Commit/Abort decision
– Could be Choice of Value, State Transition, ….

• NAK: Didn’t make it into the block chain (must retry!)
• Anyone in world can verify the result of decision making!

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Miner:
Tries to solve
POW problem

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Proposal

Proposal

Epidemic
Replication

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

Hash Ptr
Root
Block

Observer:
Tracks state of

BlockChain

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 63

Summary (1/2)
• Protocol: Agreement between two parties as to how information is to

be transmitted
• E2E argument encourages us to keep Internet communication simple

– If higher layer can implement functionality correctly, implement it in a
lower layer only if:

» it improves the performance significantly for application that need that
functionality, and

» it does not impose burden on applications that do not require that
functionality

• Two-phase commit: distributed decision making
– First, make sure everyone guarantees that they will commit if asked

(prepare)
– Next, ask everyone to commit

4/16/20 Kubiatowicz CS162 © UCB Spring 2020 64

Summary (2/2)
• Byzantine General’s Problem: distributed decision making with

malicious failures
– One general, n-1 lieutenants: some number of them may be malicious

(often “f ” of them)
– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n ≥ 3f+1

• BlockChain protocols
– Could be used for distributed decision making

