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Recall: Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax. 
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error
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Recall: Problems with Segmentation

• Must fit variable-sized chunks into  
physical memory

• May move processes multiple times  
to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

process 6

process 9

OS

process 10

process 11?
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Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation: 
00110001110001101 … 110010

» Each bit represents page of physical memory 
1 ⇒ allocated, 0 ⇒ free

• Should pages be as big as our previous segments?
– No: Could lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
» Consequently: need multiple pages/segment
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Physical Address

Offset

How to Implement Simple Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R

page #1 V,R

V,R,W

V,R,W

N

V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #
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Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!
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PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R

N

V,R,W

N

page #4 V,R

V,R,W
page #4 V,R

What about Sharing?

• This physical page appears in 
address space of both 
processes

• But at DIFFERENT virtual 
addresses!

– Will make sharing of 
objects harder!

– Probably want to map at 
same place instead?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

page #2 V,R,W
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Where is page sharing used ?

• The “kernel region” of every process has the same page table 
entries

– The process cannot access it at user level
– But on U->K switch, kernel code can access it AS WELL AS the 

region for THIS user
» What does the kernel need to do to access other user processes?

• Different processes running same binary! 
– Execute-only, but do not need to duplicate code segments

• User-level system libraries (execute only)
• Shared-memory segments between different processes

– Can actually share objects directly between processes
» Must map page into same place in address space!

– This is a limited form of the sharing that threads have within a 
single process



3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 9

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

Example: Memory Layout for Linux 32-bit 
(Pre-Meltdown patch!)
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Some simple security measures
• Address Space Randomization: Limit the damage of buffer overflow attacks 

(e.g. overwriting stack to point to arbitrary code)
– Position-Independent Code => can place user code region anywhere 

in the address space
» Random start address makes much harder for attacker to cause jump to 

code that it seeks to take over
– Stack & Heap can start anywhere, so randomize placement

• Kernel address space isolation
– Don’t map whole kernel into each  

process (Provide separate kernel  
page table)

– Meltdown protection ⇒ map none  
of kernel into user mode!
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1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table
1110 1111

Summary: Paging
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1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111   11101
11110   11100
11101     null   
11100     null   
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null      
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

1110 0000

What happens if 
stack grows to 
1110 0000?

Summary: Paging
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Summary: Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

11111   11101
11110   11100
11101   10111
11100   10110
11011     null
11010     null
11001     null
11000     null
10111     null
10110     null
10101     null
10100     null
10011     null
10010   10000
10001   01111
10000   01110
01111     null
01110     null
01101     null
01100     null
01011   01101 
01010   01100 
01001   01011
01000   01010
00111     null
00110     null
00101     null 
00100     null 
00011   00101
00010   00100
00001   00011
00000   00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 00001110 0000

Physical memory view

data

code

heap

stack

stack

Allocate new 
pages where 
room!

Challenge: Table size equal to # of pages 
in virtual memory!
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How big do things get?
• 32-bit address space => 232 bytes (4 GB)

– Note: “b” = bit, and “B” = byte
– And for memory: 

» “K”(kilo) = 210 = 1024     ≈ 103 (But not quite!)
» “M”(mega) = 220 = (1024)2 = 1,048,576    ≈ 106 (But not quite!)
» “G”(giga) = 230 = (1024)3= 1,073,741,824 ≈ 109 (But not quite!)

• Typical page size: 4 KB
– how many bits of the address is that ? (remember 210 = 1024)
– Ans – 4KB = 4×210 = 212 ⇒ 12 bits of the address

• So how big is the simple page table for each process?
– 232/212 = 220  (that’s about a million entries) x 4 bytes each => 4 MB
– When 32-bit machines got started (vax 11/780, intel 80386), 16 MB was a LOT of memory

• How big is a simple page table on a 64-bit processor (x86_64)?
– 264/212 = 252(that’s 4.5×1015 or 4.5 exa-entries)×8 bytes each =  

36×1015 bytes or 36 exa-bytes!!!!  This is a ridiculous amount of memory!
– This is really a lot of space – for only the page table!!!

• Mostly, the address space is sparse, i.e. has holes in it that are not mapped to physical 
memory

– So, most of this space is taken up by page tables mapped to nothing
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Page Table Discussion

• What needs to be switched on a context switch? 
– Page table pointer and limit

• What provides protection here?
– Translation (per process) and dual-mode!
– Can’t let process alter its own page table!

• Analysis
– Pros

» Simple memory allocation
» Easy to share

– Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (231-1)
» With 1K pages, need 4 million page table entries!

– Con: What if table really big?
» Not all pages used all the time ⇒ would be nice to have working 

set of page table in memory
• Simple Page table is way too big! 

– Does it all need to be in memory?
– How about multi-level paging? 
– or combining paging and segmentation
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Physical
Address:

OffsetPhysical
Page #

4KB

Fix for sparse address space:  The two-level page table

10 bits 10 bits 12 bits
Virtual 
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr 

register (i.e. CR3)
• Valid bits on Page Table Entries 

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on 

disk if not in use
4 bytes
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Example: x86 classic 32-bit address translation

• Intel terminology: Top-level page-table called a “Page Directory”
– With “Page Directory Entries”

• CR3 provides physical address of the page directory
– This is what we have called the “PageTablePtr” in previous slides
– Change in CR3 changes the whole translation table!
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What is in a Page Table Entry (PTE)?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures) 
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
PS: Page Size:  PS=1⇒4MB page (directory only). 
Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0

P
S D A

P
C

D
P

W
T U W P

01234567811-931-12
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Examples of how to use a PTE
• How do we use the PTE?

– Invalid PTE can imply different things:
» Region of address space is actually invalid or 
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?  

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies 

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background
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Sharing with multilevel page tables

• Entire regions of the address space can be 
efficiently shared

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual 
Address:

OffsetVirtual
P2 index

Virtual
P1 index

PageTablePtr

PageTablePtr’
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stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111       
110   null
101   null
100   
011   null
010   
001   null
000   

11   11101    
10   11100
01   10111
00   10110

11   01101    
10   01100
01   01011
00   01010

11   00101    
10   00100
01   00011
00   00010

11     null  
10   10000
01   01111
00   01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000
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stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111       
110   null
101   null
100              
011   null
010   
001   null
000   

11   11101    
10   11100
01   10111
00   10110

11   01101    
10   01100
01   01011
00   01010

11   00101    
10   00100
01   00011
00   00010

11     null  
10   10000
01   01111
00   01110

Page Tables
(level 2)

Page Table
(level 1)
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• What about a tree of tables?
– Lowest level page table ⇒ memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual 
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error



3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 24

What about Sharing (Complete Segment)?
Process A: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R

V,R

V,R,W

V,R,W

N

V,R,W

Shared Segment

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Process B: OffsetVirtual
Page #

Virtual
Seg #
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Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we need for 

application
» In other wards, sparse address spaces are easy

– Easy memory allocation
– Easy Sharing

» Share at segment or page level
• Cons:

– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, the 10b-10b-12b configuration keeps tables to 
exactly one page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!
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Recall: Dual-Mode Operation
• Can a process modify its own translation tables?  NO!

– If it could, could get access to all of physical memory (no protection!)
• To Assist with Protection, Hardware provides at least two modes (Dual-Mode 

Operation):
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bit(s) in control register only accessible in Kernel mode
– Kernel can easily switch to user mode; User program must invoke an exception 

of some sort to get back to kernel mode 
• Note that x86 model actually has more modes:

– Traditionally, four “rings” representing priority; most OSes use only two:
» Ring 0  ⇒ Kernel mode,  Ring 3  ⇒ User mode
» Called “Current Privilege Level” or CPL

– Newer processors have additional mode for hypervisor (“Ring -1”)
• Certain operations restricted to Kernel mode:

– Modifying page table base (CR3 in x86), and segment descriptor tables
» Have to transition into Kernel mode before you can change them!

– Also, all page-table pages must be mapped only in kernel mode
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Making it real:  
X86 Memory model with segmentation (16/32-bit)

2-level page table 
in 10-10-12 bit address

Combined address
Is 32-bit “linear”
Virtual address

Segment Selector from  
instruction: mov eax, gs(0x0)

First level
called “directory”

Second level
called “table”
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X86 Segment Descriptors (32-bit Protected Mode)
• Segments are either implicit in the instruction (say for code segments) or actually part 

of the instruction
– There are 6 registers: SS, CS, DS, ES, FS, GS

• What is in a segment register?  
– A pointer to the actual segment description: 

 
 
 
G/L selects between GDT and LDT tables (global vs local descriptor tables)

– RPL: Requestor’s Privilege Level (RPL of CS ⇒ Current Privilege Level)
• Two registers: GDTR and LDTR hold pointers to the global and local descriptor tables 

in memory
– Includes length of table (for < 213) entries

• Descriptor format (64 bits):

 
 

G: Granularity of segment [ Limit Size ] (0: 16bit, 1: 4KiB unit) 
DB: Default operand size (0: 16bit, 1: 32bit) 

A: Freely available for use by software 
P: Segment present 

DPL: Descriptor Privilege Level: Access requires Max(CPL,RPL)≤DPL 
S: System Segment (0: System, 1: code or data) 

Type: Code, Data, Segment

Segment selector [13 bits] G
/L RPL
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How are segments used?
• One set of global segments (GDT) for everyone, different set of local 

segments (LDT) for every process 
• In legacy applications (16-bit mode):

– Segments provide protection for different components of user programs
– Separate segments for chunks of code, data, stacks

» RPL of Code Segment ⇒CPL (Current Privilege Level) 
– Limited to 64K segments

• Modern use in 32-bit Mode:
– Even though there is full segment functionality, segments are set up as “flattened”, 

i.e. every segment is 4GB in size
– One exception: Use of GS (or FS) as a pointer to “Thread Local Storage” (TLS)

» A thread can make accesses to TLS like this: 
  mov eax, gs(0x0)

• Modern use in 64-bit (“long”) mode
– Most segments (SS, CS, DS, ES) have zero base and no length limits
– Only FS and GS retain their functionality (for use in TLS)
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Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!
9 bits 9 bits 12 bits48-bit Virtual 

Address: OffsetVirtual
P2 index

Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset) 
Page tables also 4k bytes (pageable)
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From x86_64 architecture specification

• All current x86 processor support a 64 bit operation
• 64-bit words (so ints are 8 bytes) but 48-bit addresses
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Larger page sizes supported as well

• Or larger page sizes, memory is now cheap
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7 bits 9 bits 12 bits64bit 
Virtual 

Address:
OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?
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• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory 

allocated to processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use 

• Answer: use a hash table 
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons: 

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #
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• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory 

allocated to processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use 

• Answer: use a hash table 
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons: 

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Total size of page table ≈ number of pages used by 
program in physical memory. Hash more complex
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Idea: index page table by physical pages instead of VM

IA64: Inverse Page Table (IPT)

VMpage2, pid 0

VMpage1, pid 0

VMpage0, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical memory 
in 4kB pages

Page numbers in red

pid 0 VMpage0

pid 1 …

pid 0 VMpage2

pid 0 VMpage1

xx free

pid 2 …

pid 1 …

pid 0 VMpage3

Inverse Page Table

VMpage0

VMpage1

VMpage2

VMpage3
0x0

0x1

0x2
0x3

0x4

0x5

0x6

0x7

Process id 0
Virtual memory
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IPT address translation
• Need an associative map from VM page to IPT address:

– Use a hash map

pid 0 VMpage0
pid 1

pid 0 VMpage1
pid 0 VMpage2
xx free
pid 2

pid 1

pid 0 VMpage3

Inverse Page Table

VMpage2 (52b) Offset (12b)

0x0
0x1

0x2
0x3
0x4

0x5

0x6
0x7

Process 0 virtual address
0x3 Offset (12b)

Hash VM page #

VMpage0, pid 0

VMpage2, pid 0

VMpage1, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical address
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Address Translation Comparison
Advantages Disadvantages

Simple  
Segmentation

Fast context switching: 
Segment mapping 
maintained by CPU 

External fragmentation

Paging (single-level 
page)

No external fragmentation, 
fast easy allocation

Large table size ~ virtual memory
Internal fragmentation

Paged segmentation Table size ~ # of pages in 
virtual memory, fast easy 
allocation 

Multiple memory references per 
page access 

Two-level pages

Inverted Table Table size ~ # of pages in 
physical memory

Hash function more complex
No cache locality of page table
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Two Critical Issues in Address Translation

• How to translate addresses fast enough?
– Every instruction fetch
– Plus every load / store
– EVERY MEMORY REFERENCE !
– More than one translation for EVERY instruction

• What to do if the translation fails?  
– Page fault (Later!)

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

sic
al

 a
dd

re
ss

”

Registers
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How is the Translation Accomplished?

• What does the MMU need to do to translate an address?
• 1-level Page Table

– Read PTE from memory, check valid, merge address
– Set “accessed” bit in PTE, Set “dirty bit” on write

• 2-level Page Table
– Read and check first level
– Read, check, and update PTE

• N-level Page Table …
• MMU does page table Tree Traversal to translate each address
• How can we make this go REALLY fast?

– Fraction of a processor cycle

CPU MMU

Virtual
Addresses

Physical
Addresses
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Recall: Memory Hierarchy

• Large memories are slow, only small memory is fast
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Where and What is the MMU ?

• The processor requests READ Virtual-Address to memory system
– Through the MMU to the cache (to the memory)

• Some time later, the memory system responds with the data stored at the 
physical address (resulting from virtual ! physical) translation

– Fast on a cache hit, slow on a miss
• So what is the MMU doing?
• On every reference (I-fetch, Load, Store) read (multiple levels of) page table 

entries to get physical frame or FAULT
– Through the caches to the memory
– Then read/write the physical location

Processor 
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Recall: CS61c Caching Concept

• Cache: a repository for copies that can be accessed more quickly than 
the original

– Make frequent case fast and infrequent case less dominant
• Caching underlies many techniques used today to make computers fast

– Can cache: memory locations, address translations, pages, file blocks, 
file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =  
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Recall: In Machine Structures (eg. 61C) …
• Caching is the key to memory system performance

Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = 1

HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11.1 ns
HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns

Processor

Main
Memory
(DRAM)

100ns1 ns

Cache
(SRAM)

Processor

Main
Memory
(DRAM)

Access time = 100ns
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• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual 
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error
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Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels 

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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Recall: Memory Hierarchy

• Take advantage of the principle of locality to: 
– Present as much memory as in the cheapest technology 
– Provide access at speed offered by the fastest technology
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How do we make Address Translation Fast?

• Cache results of recent translations !
– Different from a traditional cache
– Cache Page Table Entries using Virtual Page # as the key
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Translation Look-Aside Buffer

• Record recent Virtual Page # to Physical Frame # translation
• If present, have the physical address without reading any of the 

page tables !!!
– Even if the translation involved multiple levels
– Caches the end-to-end result

• Was invented by Sir Maurice Wilkes – prior to caches
– People realized “if it’s good for page tables, why not the rest of the 

data in memory?”
• On a TLB miss, the page tables may be cached, so only go to 

memory when both miss 
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Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since 

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sav
e

Resu
lt
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What kind of Cache for TLB?

• Remember all those cache design parameters and trade-offs?
– Amount of Data = N * L * K
– Tag is portion of address that identifies line (w/o line offset)
– Write Policy (write-thru, write-back), Eviction Policy (LRU, …)

. . . . . .
tag data

line size (L)

# of Sets 
(N)

Set Size (k) - Associativity
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How might organization of TLB differ from that 
of a conventional instruction or data cache?

• Let’s do some review …
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• Compulsory (cold start or process migration, first reference): first 
access to a block

– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction, Compulsory 

Misses are insignificant
• Capacity:

– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple  memory locations  mapped to the same cache location
– Solution 1: increase  cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates memory 

A Summary on Sources of Cache Misses
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• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

• Index Used to Lookup Candidates in Cache
– Index identifies the set 

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

How is a Block found in a Cache?

Block 
offset

Block Address
Tag Index

Set Select

Data Select
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:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache

• Direct Mapped 2N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01
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Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache

• N-way set associative: N entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block
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Review: Fully Associative Cache

• Fully Associative: Every block can hold any line
– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

 Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01
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• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block 
no.

Direct mapped: 
block 12 can go 
only into block 4 
(12 mod 8)

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4)

0 1 2 3 4 5 6 7Block 
no.

Set 
0

Set 
1

Set 
2

Set 
3

Fully associative: 
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block 
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block 
no.

Where does a Block Get Placed in a Cache?
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• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Miss rates for a workload:
                    2-way              4-way                 8-way 
Size LRU Random  LRU Random  LRU Random
16 KB 5.2% 5.7%     4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0%     1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17%    1.13%  1.13% 1.12% 1.12%

Which block should be replaced on a miss?
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• Write through: The information is written to both the block in the 
cache and to the block in the lower-level memory

• Write back: The information is written only to the block in the cache
– Modified cache block is written to main memory only when it is 

replaced
– Question is block clean or dirty?

• Pros and Cons of each?
– WT: 

» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB: 
» PRO: repeated writes not sent to DRAM 

 processor not held up on writes
» CON: More complex 

 Read miss may require writeback of dirty data

Review: What happens on a write?
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Questions about caches ?

• How does operating system behavior affect cache 
performance?

• Switching threads?
• Switching contexts?
• Cache design? What addresses are used?
• What does our understanding of caches tell us about TLB 

organization?
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What TLB Organization Makes Sense?

• Needs to be really fast
– Critical path of memory access 

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high! (PT traversal)
– Cost of Conflict (Miss Time) is high 
– Hit Time – dictated by clock cycle

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory
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TLB organization: include protection

• How big does TLB actually have to be?
– Usually small: 128-512 entries (larger now)
– Not very big, can support higher associativity

• Small TLBs usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

 0xFA00 0x0003 Y N Y R/W 34 
 0x0040 0x0010 N Y Y R 0 
 0x0041 0x0011 N Y Y R 0

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID
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Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU  /  E.A Memory Write Reg
 TLB       I-Cache          RF        Operation                                WB

 E.A.    TLB        D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry) 
100 Kernel physical space, cached 
101 Kernel physical space, uncached 
11x Kernel virtual space

Allows context switching among 
64 user processes without TLB flush

Virtual Address Space

TLB 
64 entry, on-chip,  fully associative, software TLB fault handler
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Example: Pentium-M TLBs (2003)

• Four different TLBs
– Instruction TLB for 4K pages

» 128 entries, 4-way set associative
– Instruction TLB for large pages

» 2 entries, fully associative
– Data TLB for 4K pages

» 128 entries, 4-way set associative
– Data TLB for large pages

» 8 entries, 4-way set associative

• All TLBs use LRU replacement policy
• Why different TLBs for instruction, data, and page 

sizes?
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Intel Nahelem (2008)

•  L1 DTLB
– 64 entries for 4 K pages and 
– 32 entries for 2/4 M pages, 

• L1 ITLB
– 128 entries for 4 K pages using 4-way associativity and 
– 14 fully associative entries for 2/4 MiB pages

• unified 512-entry L2 TLB for 4 KiB pages, 4-way associative.
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Current Intel x86 (Skylake, Cascade Lake)
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Current Example: Memory Hierarchy
• Caches (all 64 B line size)

– L1 I-Cache: 32 KiB/core, 8-way set assoc.
– L1 D Cache: 32 KiB/core, 8-way set assoc.,  4-5 cycles load-to-use, Write-back 

policy
– L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles 

latency
– L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive 

victim cache, Write-back policy, 50-70 cycles latency
• TLB

– L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page 

– L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

– L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:

https://en.wikichip.org/wiki/KiB
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What happens on a Context Switch?
• Need to do something, since TLBs map virtual addresses to physical 

addresses
– Address Space just changed, so TLB entries no longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”
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Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:

…

TLB:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag
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Two Critical Issues in Address Translation

• How to translate addresses fast enough?
– Every instruction fetch
– Plus every load / store
– EVERY MEMORY REFERENCE !
– More than one translation for EVERY instruction

• Next: What to do if the translation fails?  
– Page fault!  This is a synchronous exception!

Processor Memory
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Recall: User→Kernel  
(Exceptions: Traps & Interrupts)

• A system call instruction causes a synchronous exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions (“Trap”):
– Divide by zero, Illegal instruction, Bus error (bad address, e.g. unaligned 

access)
– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions:
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– Some processors (e.g. x86) also save registers, changes stack

• Handler does any required state preservation not done by CPU:
– Might save registers, other CPU state, and switches to kernel stack
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Page Fault

• The Virtual-to-Physical Translation fails
– PTE marked invalid, Priv. Level Violation, Access violation, or does not 

exist
– Causes an Fault / Trap

» Not an interrupt because synchronous to instruction execution
– May occur on instruction fetch or data access
– Protection violations typically terminate the instruction

• Other Page Faults engage operating system to fix the situation and 
retry the instruction

– Allocate an additional stack page, or
– Make the page accessible - Copy on Write, 
– Bring page in from secondary storage to memory – demand paging

• Fundamental inversion of the hardware / software boundary
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Next Up: What happens when …

virtual address

MMU
PT

instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset
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Summary (1/3)

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through page table 

to physical page number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted Page Table
– Use of hash-table to hold translation entries
– Size of page table ~ size of physical memory rather than size of virtual 

memory
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Summary (2/3)
• The Principle of Locality:

– Program likely to access a relatively small portion of the address 
space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent
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Summary  (3/3)
• “Translation Lookaside Buffer” (TLB)

– Small number of PTEs and optional process IDs (< 512)
– Fully Associative (Since conflict misses expensive)
– On TLB miss, page table must be traversed and if located PTE is 

invalid, cause Page Fault 
– On change in page table, TLB entries must be invalidated
– TLB is logically in front of cache (need to overlap with cache access)

• Next Time: What to do on a page fault?


