
CS162
Operating Systems and
Systems Programming

Lecture 13

Address Translation (Con’t),
Caching and TLBs

March 10th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the
bottom of that slide, in which case a full list of references is provided on the last
slide.

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: Implementation of Multi-Segment Model

• Segment map resides in processor
– Segment number mapped into base/limit pair
– Base added to offset to generate physical address
– Error check catches offset out of range

• As many chunks of physical memory as entries
– Segment addressed by portion of virtual address
– However, could be included in instruction instead:

» x86 Example: mov [es:bx],ax.
• What is “V/N” (valid / not valid)?

– Can mark segments as invalid; requires check as well

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

OffsetSeg #Virtual
Address

Base2 Limit2 V

+ Physical
Address

> Erroroffset

Check Valid

Access
Error

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: Problems with Segmentation

• Must fit variable-sized chunks into
physical memory

• May move processes multiple times
to fit everything

• Limited options for swapping to disk

• Fragmentation: wasted space
– External: free gaps between allocated chunks
– Internal: don’t need all memory within allocated chunks

process 6

process 9

OS

process 10

process 11?

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Paging: Physical Memory in Fixed Size Chunks

• Solution to fragmentation from segments?
– Allocate physical memory in fixed size chunks (“pages”)
– Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 … 110010

» Each bit represents page of physical memory
1 ⇒ allocated, 0 ⇒ free

• Should pages be as big as our previous segments?
– No: Could lead to lots of internal fragmentation

» Typically have small pages (1K-16K)
» Consequently: need multiple pages/segment

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Physical Address

Offset

How to Implement Simple Paging?

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R

page #1 V,R

V,R,W

V,R,W

N

V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Simple Page Table Example

a
b
c
d
e
f
g
h
i
j
k
l

0x00

0x04

0x08

Virtual
Memory

0x00

i
j
k
l

0x04

0x08

e
f
g
h

0x0C

a
b
c
d

0x10

Physical
Memory

Example (4 byte pages)

4
3
1

Page
Table

0

1

2

0000 0000

0001 0000

0000 0100 0000 1100

0000 1000

0000 0100
0x06?

0000 0110 0000 1110

0x0E!
0x09?

0000 1001 0000 0101

0x05!

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 7

PageTablePtrB page #0
page #1
page #2
page #3

page #5

V,R

N

V,R,W

N

page #4 V,R

V,R,W
page #4 V,R

What about Sharing?

• This physical page appears in
address space of both
processes

• But at DIFFERENT virtual
addresses!

– Will make sharing of
objects harder!

– Probably want to map at
same place instead?

OffsetVirtual
Page #

Virtual Address
(Process A):

PageTablePtrA page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

OffsetVirtual
Page #

Virtual Address
(Process B):

Shared
Page

page #2 V,R,W

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 8

Where is page sharing used ?

• The “kernel region” of every process has the same page table
entries

– The process cannot access it at user level
– But on U->K switch, kernel code can access it AS WELL AS the

region for THIS user
» What does the kernel need to do to access other user processes?

• Different processes running same binary!
– Execute-only, but do not need to duplicate code segments

• User-level system libraries (execute only)
• Shared-memory segments between different processes

– Can actually share objects directly between processes
» Must map page into same place in address space!

– This is a limited form of the sharing that threads have within a
single process

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 9

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

Example: Memory Layout for Linux 32-bit
(Pre-Meltdown patch!)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 10

Some simple security measures
• Address Space Randomization: Limit the damage of buffer overflow attacks

(e.g. overwriting stack to point to arbitrary code)
– Position-Independent Code => can place user code region anywhere

in the address space
» Random start address makes much harder for attacker to cause jump to

code that it seeks to take over
– Stack & Heap can start anywhere, so randomize placement

• Kernel address space isolation
– Don’t map whole kernel into each

process (Provide separate kernel
page table)

– Meltdown protection ⇒ map none
of kernel into user mode!

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 11

1111 1111 stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table
1110 1111

Summary: Paging

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 12

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

11111 11101
11110 11100
11101 null
11100 null
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

1110 0000

What happens if
stack grows to
1110 0000?

Summary: Paging

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Summary: Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

11111 11101
11110 11100
11101 10111
11100 10110
11011 null
11010 null
11001 null
11000 null
10111 null
10110 null
10101 null
10100 null
10011 null
10010 10000
10001 01111
10000 01110
01111 null
01110 null
01101 null
01100 null
01011 01101
01010 01100
01001 01011
01000 01010
00111 null
00110 null
00101 null
00100 null
00011 00101
00010 00100
00001 00011
00000 00010

Page Table

0000 0000
0001 0000

0101 000

0111 000

1110 00001110 0000

Physical memory view

data

code

heap

stack

stack

Allocate new
pages where
room!

Challenge: Table size equal to # of pages
in virtual memory!

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 14

How big do things get?
• 32-bit address space => 232 bytes (4 GB)

– Note: “b” = bit, and “B” = byte
– And for memory:

» “K”(kilo) = 210 = 1024 ≈ 103 (But not quite!)
» “M”(mega) = 220 = (1024)2 = 1,048,576 ≈ 106 (But not quite!)
» “G”(giga) = 230 = (1024)3= 1,073,741,824 ≈ 109 (But not quite!)

• Typical page size: 4 KB
– how many bits of the address is that ? (remember 210 = 1024)
– Ans – 4KB = 4×210 = 212 ⇒ 12 bits of the address

• So how big is the simple page table for each process?
– 232/212 = 220 (that’s about a million entries) x 4 bytes each => 4 MB
– When 32-bit machines got started (vax 11/780, intel 80386), 16 MB was a LOT of memory

• How big is a simple page table on a 64-bit processor (x86_64)?
– 264/212 = 252(that’s 4.5×1015 or 4.5 exa-entries)×8 bytes each =

36×1015 bytes or 36 exa-bytes!!!! This is a ridiculous amount of memory!
– This is really a lot of space – for only the page table!!!

• Mostly, the address space is sparse, i.e. has holes in it that are not mapped to physical
memory

– So, most of this space is taken up by page tables mapped to nothing

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 15

Page Table Discussion

• What needs to be switched on a context switch?
– Page table pointer and limit

• What provides protection here?
– Translation (per process) and dual-mode!
– Can’t let process alter its own page table!

• Analysis
– Pros

» Simple memory allocation
» Easy to share

– Con: What if address space is sparse?
» E.g., on UNIX, code starts at 0, stack starts at (231-1)
» With 1K pages, need 4 million page table entries!

– Con: What if table really big?
» Not all pages used all the time ⇒ would be nice to have working

set of page table in memory
• Simple Page table is way too big!

– Does it all need to be in memory?
– How about multi-level paging?
– or combining paging and segmentation

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 16

Physical
Address:

OffsetPhysical
Page #

4KB

Fix for sparse address space: The two-level page table

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr

register (i.e. CR3)
• Valid bits on Page Table Entries

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on

disk if not in use
4 bytes

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 17

Example: x86 classic 32-bit address translation

• Intel terminology: Top-level page-table called a “Page Directory”
– With “Page Directory Entries”

• CR3 provides physical address of the page directory
– This is what we have called the “PageTablePtr” in previous slides
– Change in CR3 changes the whole translation table!

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 18

What is in a Page Table Entry (PTE)?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=1⇒4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0

P
S D A

P
C

D
P

W
T U W P

01234567811-931-12

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 19

Examples of how to use a PTE
• How do we use the PTE?

– Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 20

Sharing with multilevel page tables

• Entire regions of the address space can be
efficiently shared

OffsetPhysical
Page #

4KB

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

PageTablePtr

PageTablePtr’

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 21

stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 22

stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 23

• What about a tree of tables?
– Lowest level page table ⇒ memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Multi-level Translation: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Permissions

Access
Error

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 24

What about Sharing (Complete Segment)?
Process A: OffsetVirtual

Page #
Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R

V,R

V,R,W

V,R,W

N

V,R,W

Shared Segment

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Process B: OffsetVirtual
Page #

Virtual
Seg #

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 25

Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we need for

application
» In other wards, sparse address spaces are easy

– Easy memory allocation
– Easy Sharing

» Share at segment or page level
• Cons:

– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, the 10b-10b-12b configuration keeps tables to
exactly one page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Recall: Dual-Mode Operation
• Can a process modify its own translation tables? NO!

– If it could, could get access to all of physical memory (no protection!)
• To Assist with Protection, Hardware provides at least two modes (Dual-Mode

Operation):
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bit(s) in control register only accessible in Kernel mode
– Kernel can easily switch to user mode; User program must invoke an exception

of some sort to get back to kernel mode
• Note that x86 model actually has more modes:

– Traditionally, four “rings” representing priority; most OSes use only two:
» Ring 0 ⇒ Kernel mode, Ring 3 ⇒ User mode
» Called “Current Privilege Level” or CPL

– Newer processors have additional mode for hypervisor (“Ring -1”)
• Certain operations restricted to Kernel mode:

– Modifying page table base (CR3 in x86), and segment descriptor tables
» Have to transition into Kernel mode before you can change them!

– Also, all page-table pages must be mapped only in kernel mode

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 27

Making it real:
X86 Memory model with segmentation (16/32-bit)

2-level page table
in 10-10-12 bit address

Combined address
Is 32-bit “linear”
Virtual address

Segment Selector from
instruction: mov eax, gs(0x0)

First level
called “directory”

Second level
called “table”

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 28

X86 Segment Descriptors (32-bit Protected Mode)
• Segments are either implicit in the instruction (say for code segments) or actually part

of the instruction
– There are 6 registers: SS, CS, DS, ES, FS, GS

• What is in a segment register?
– A pointer to the actual segment description:

G/L selects between GDT and LDT tables (global vs local descriptor tables)

– RPL: Requestor’s Privilege Level (RPL of CS ⇒ Current Privilege Level)
• Two registers: GDTR and LDTR hold pointers to the global and local descriptor tables

in memory
– Includes length of table (for < 213) entries

• Descriptor format (64 bits):

G: Granularity of segment [Limit Size] (0: 16bit, 1: 4KiB unit)
DB: Default operand size (0: 16bit, 1: 32bit)

A: Freely available for use by software
P: Segment present

DPL: Descriptor Privilege Level: Access requires Max(CPL,RPL)≤DPL
S: System Segment (0: System, 1: code or data)

Type: Code, Data, Segment

Segment selector [13 bits] G
/L RPL

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 29

How are segments used?
• One set of global segments (GDT) for everyone, different set of local

segments (LDT) for every process
• In legacy applications (16-bit mode):

– Segments provide protection for different components of user programs
– Separate segments for chunks of code, data, stacks

» RPL of Code Segment ⇒CPL (Current Privilege Level)
– Limited to 64K segments

• Modern use in 32-bit Mode:
– Even though there is full segment functionality, segments are set up as “flattened”,

i.e. every segment is 4GB in size
– One exception: Use of GS (or FS) as a pointer to “Thread Local Storage” (TLS)

» A thread can make accesses to TLS like this:
 mov eax, gs(0x0)

• Modern use in 64-bit (“long”) mode
– Most segments (SS, CS, DS, ES) have zero base and no length limits
– Only FS and GS retain their functionality (for use in TLS)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!
9 bits 9 bits 12 bits48-bit Virtual

Address: OffsetVirtual
P2 index

Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 31

From x86_64 architecture specification

• All current x86 processor support a 64 bit operation
• 64-bit words (so ints are 8 bytes) but 48-bit addresses

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Larger page sizes supported as well

• Or larger page sizes, memory is now cheap

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 33

7 bits 9 bits 12 bits64bit
Virtual

Address:
OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 34

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory

allocated to processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons:

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 35

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual memory

allocated to processes
– Physical memory may be much less

» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

» PowerPC, UltraSPARC, IA64
• Cons:

– Complexity of managing hash chains: Often in hardware!
– Poor cache locality of page table

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

Total size of page table ≈ number of pages used by
program in physical memory. Hash more complex

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Idea: index page table by physical pages instead of VM

IA64: Inverse Page Table (IPT)

VMpage2, pid 0

VMpage1, pid 0

VMpage0, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical memory 
in 4kB pages

Page numbers in red

pid 0 VMpage0

pid 1 …

pid 0 VMpage2

pid 0 VMpage1

xx free

pid 2 …

pid 1 …

pid 0 VMpage3

Inverse Page Table

VMpage0

VMpage1

VMpage2

VMpage3
0x0

0x1

0x2
0x3

0x4

0x5

0x6

0x7

Process id 0
Virtual memory

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 37

IPT address translation
• Need an associative map from VM page to IPT address:

– Use a hash map

pid 0 VMpage0
pid 1

pid 0 VMpage1
pid 0 VMpage2
xx free
pid 2

pid 1

pid 0 VMpage3

Inverse Page Table

VMpage2 (52b) Offset (12b)

0x0
0x1

0x2
0x3
0x4

0x5

0x6
0x7

Process 0 virtual address
0x3 Offset (12b)

Hash VM page #

VMpage0, pid 0

VMpage2, pid 0

VMpage1, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical address

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 38

Address Translation Comparison
Advantages Disadvantages

Simple  
Segmentation

Fast context switching:
Segment mapping
maintained by CPU

External fragmentation

Paging (single-level
page)

No external fragmentation,
fast easy allocation

Large table size ~ virtual memory
Internal fragmentation

Paged segmentation Table size ~ # of pages in
virtual memory, fast easy
allocation

Multiple memory references per
page access

Two-level pages

Inverted Table Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page table

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 39

Two Critical Issues in Address Translation

• How to translate addresses fast enough?
– Every instruction fetch
– Plus every load / store
– EVERY MEMORY REFERENCE !
– More than one translation for EVERY instruction

• What to do if the translation fails?
– Page fault (Later!)

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

sic
al

 a
dd

re
ss

”

Registers

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 40

How is the Translation Accomplished?

• What does the MMU need to do to translate an address?
• 1-level Page Table

– Read PTE from memory, check valid, merge address
– Set “accessed” bit in PTE, Set “dirty bit” on write

• 2-level Page Table
– Read and check first level
– Read, check, and update PTE

• N-level Page Table …
• MMU does page table Tree Traversal to translate each address
• How can we make this go REALLY fast?

– Fraction of a processor cycle

CPU MMU

Virtual
Addresses

Physical
Addresses

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 41

Recall: Memory Hierarchy

• Large memories are slow, only small memory is fast

L3 C
ache 

(shared)

R
egisters

Core

Core

Secondary  
 Storage  

(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
 (10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

R
egisters

L1 C
ache

L1 C
ache

L2 C
ache

L2 C
ache

0.3 3

10kBs 100kBs

Secondary  
 Storage  

(SSD)

100,000  
(0.1 ms)

100GBs

Address Translation
needs to occur here

Page table lives here
(perhaps cached)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 42

Where and What is the MMU ?

• The processor requests READ Virtual-Address to memory system
– Through the MMU to the cache (to the memory)

• Some time later, the memory system responds with the data stored at the
physical address (resulting from virtual ! physical) translation

– Fast on a cache hit, slow on a miss
• So what is the MMU doing?
• On every reference (I-fetch, Load, Store) read (multiple levels of) page table

entries to get physical frame or FAULT
– Through the caches to the memory
– Then read/write the physical location

Processor
(core)

Cache(s)

Physical
Memory

MMU

Rea
d <

V_A
ddr

 m>

< data @ mem[VtoP(m)] >

Rea
d <

Phs
_Ad

dr
X >

M
em

or
y
Bu

s

pgm data

page
tablesPTBR

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 43

Recall: CS61c Caching Concept

• Cache: a repository for copies that can be accessed more quickly than
the original

– Make frequent case fast and infrequent case less dominant
• Caching underlies many techniques used today to make computers fast

– Can cache: memory locations, address translations, pages, file blocks,
file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 44

Recall: In Machine Structures (eg. 61C) …
• Caching is the key to memory system performance

Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = 1

HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11.1 ns
HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns

Processor

Main
Memory
(DRAM)

100ns1 ns

Cache
(SRAM)

Processor

Main
Memory
(DRAM)

Access time = 100ns

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 45

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R

V,R

page #2 V,R,W

V,R,W

N

V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 46

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 47

Recall: Memory Hierarchy

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

L3 C
ache 

(shared)

R
egisters

Core

Core

Secondary  
 Storage  

(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
 (10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

R
egisters

L1 C
ache

L1 C
ache

L2 C
ache

L2 C
ache

0.3 3

10kBs 100kBs

Secondary  
 Storage  

(SSD)

100,000  
(0.1 ms)

100GBs

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 48

How do we make Address Translation Fast?

• Cache results of recent translations !
– Different from a traditional cache
– Cache Page Table Entries using Virtual Page # as the key

Processor
(core)

Cache(s)

Physical
Memory

MMU

Rea
d <

V_A
ddr

 m>

Rea
d <

Phs
_Ad

dr
X >

M
em

or
y
Bu

s

pgm data

page
tablesPTBR

V_Pg M1 : <Phs_Frame #1, V, … >

V_Pg M2 : <Phs_Frame #2, V, … >

V_Pg Mk : <Phs_Frame #k, V, … >

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Translation Look-Aside Buffer

• Record recent Virtual Page # to Physical Frame # translation
• If present, have the physical address without reading any of the

page tables !!!
– Even if the translation involved multiple levels
– Caches the end-to-end result

• Was invented by Sir Maurice Wilkes – prior to caches
– People realized “if it’s good for page tables, why not the rest of the

data in memory?”
• On a TLB miss, the page tables may be cached, so only go to

memory when both miss

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 50

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sav
e

Resu
lt

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 51

What kind of Cache for TLB?

• Remember all those cache design parameters and trade-offs?
– Amount of Data = N * L * K
– Tag is portion of address that identifies line (w/o line offset)
– Write Policy (write-thru, write-back), Eviction Policy (LRU, …)

.
tag data

line size (L)

of Sets
(N)

Set Size (k) - Associativity

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 52

How might organization of TLB differ from that
of a conventional instruction or data cache?

• Let’s do some review …

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 53

• Compulsory (cold start or process migration, first reference): first
access to a block

– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction, Compulsory

Misses are insignificant
• Capacity:

– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped to the same cache location
– Solution 1: increase cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates memory

A Summary on Sources of Cache Misses

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 54

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 55

:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache

• Direct Mapped 2N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 56

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache

• N-way set associative: N entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 57

Review: Fully Associative Cache

• Fully Associative: Every block can hold any line
– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

 Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 58

• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 59

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Miss rates for a workload:
 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Which block should be replaced on a miss?

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 60

• Write through: The information is written to both the block in the
cache and to the block in the lower-level memory

• Write back: The information is written only to the block in the cache
– Modified cache block is written to main memory only when it is

replaced
– Question is block clean or dirty?

• Pros and Cons of each?
– WT:

» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM

 processor not held up on writes
» CON: More complex

 Read miss may require writeback of dirty data

Review: What happens on a write?

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Questions about caches ?

• How does operating system behavior affect cache
performance?

• Switching threads?
• Switching contexts?
• Cache design? What addresses are used?
• What does our understanding of caches tell us about TLB

organization?

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 62

What TLB Organization Makes Sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high! (PT traversal)
– Cost of Conflict (Miss Time) is high
– Hit Time – dictated by clock cycle

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 63

TLB organization: include protection

• How big does TLB actually have to be?
– Usually small: 128-512 entries (larger now)
– Not very big, can support higher associativity

• Small TLBs usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

 0xFA00 0x0003 Y N Y R/W 34
 0x0040 0x0010 N Y Y R 0
 0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
 TLB I-Cache RF Operation WB

 E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 65

Example: Pentium-M TLBs (2003)

• Four different TLBs
– Instruction TLB for 4K pages

» 128 entries, 4-way set associative
– Instruction TLB for large pages

» 2 entries, fully associative
– Data TLB for 4K pages

» 128 entries, 4-way set associative
– Data TLB for large pages

» 8 entries, 4-way set associative

• All TLBs use LRU replacement policy
• Why different TLBs for instruction, data, and page

sizes?

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 66

Intel Nahelem (2008)

• L1 DTLB
– 64 entries for 4 K pages and
– 32 entries for 2/4 M pages,

• L1 ITLB
– 128 entries for 4 K pages using 4-way associativity and
– 14 fully associative entries for 2/4 MiB pages

• unified 512-entry L2 TLB for 4 KiB pages, 4-way associative.

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 67

Current Intel x86 (Skylake, Cascade Lake)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 68

Current Example: Memory Hierarchy
• Caches (all 64 B line size)

– L1 I-Cache: 32 KiB/core, 8-way set assoc.
– L1 D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back

policy
– L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles

latency
– L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive

victim cache, Write-back policy, 50-70 cycles latency
• TLB

– L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

– L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

– L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:

https://en.wikichip.org/wiki/KiB

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 69

What happens on a Context Switch?
• Need to do something, since TLBs map virtual addresses to physical

addresses
– Address Space just changed, so TLB entries no longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 70

Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 71

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 72

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 73

Two Critical Issues in Address Translation

• How to translate addresses fast enough?
– Every instruction fetch
– Plus every load / store
– EVERY MEMORY REFERENCE !
– More than one translation for EVERY instruction

• Next: What to do if the translation fails?
– Page fault! This is a synchronous exception!

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

sic
al

 a
dd

re
ss

”

Registers

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 74

Recall: User→Kernel
(Exceptions: Traps & Interrupts)

• A system call instruction causes a synchronous exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions (“Trap”):
– Divide by zero, Illegal instruction, Bus error (bad address, e.g. unaligned

access)
– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions:
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– Some processors (e.g. x86) also save registers, changes stack

• Handler does any required state preservation not done by CPU:
– Might save registers, other CPU state, and switches to kernel stack

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 75

Page Fault

• The Virtual-to-Physical Translation fails
– PTE marked invalid, Priv. Level Violation, Access violation, or does not

exist
– Causes an Fault / Trap

» Not an interrupt because synchronous to instruction execution
– May occur on instruction fetch or data access
– Protection violations typically terminate the instruction

• Other Page Faults engage operating system to fix the situation and
retry the instruction

– Allocate an additional stack page, or
– Make the page accessible - Copy on Write,
– Bring page in from secondary storage to memory – demand paging

• Fundamental inversion of the hardware / software boundary

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 76

Next Up: What happens when …

virtual address

MMU
PT

instruction

physical address

page#
frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 77

Summary (1/3)

• Page Tables
– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped through page table

to physical page number
– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted Page Table
– Use of hash-table to hold translation entries
– Size of page table ~ size of physical memory rather than size of virtual

memory

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 78

Summary (2/3)
• The Principle of Locality:

– Program likely to access a relatively small portion of the address
space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 79

Summary (3/3)
• “Translation Lookaside Buffer” (TLB)

– Small number of PTEs and optional process IDs (< 512)
– Fully Associative (Since conflict misses expensive)
– On TLB miss, page table must be traversed and if located PTE is

invalid, cause Page Fault
– On change in page table, TLB entries must be invalidated
– TLB is logically in front of cache (need to overlap with cache access)

• Next Time: What to do on a page fault?

