
 1

A New Fractal-Based Approach for 3D Visualization of Mountains in VRML
Standard

Mohsen Sharifi, Fatemeh Hashemi Golpaygani., Mehdi Esmaeli and Javad Sadeghi

Visualization Research Group
Computer Engineering Department

Iran University of Science and Technology
{msharifi, f_hashemi, m_esmaeili, javad} @iust.ac.ir

Abstract

Several factors currently limit the size of Virtual Reality
Modeling Language (VRML) models that can be effectively
visualized over the Web. Main factors include network bandwidth
limitations and inefficient encoding schemes for geometry and its
associated properties. The delays caused by these factors reduce
the attractiveness of VRML usage for a large range of virtual
reality models, CAD data, and scientific visualizations. To solve
this problem, we have tried to decrease the size of data by
deploying fractal geometry in VRML standard. A novel approach
is proposed for generating a “fractal mountain” using a random
Midpoint-Displacement method in VRML standard. Our VRML
2.0 implementation, which is based on two newly defined nodes,
TriangleGrid and FractMountain, and uses PROTO mechanism
and Java in the Script nodes for the logic, is presented too. It is
shown that our approach is more flexible and memory efficient
than other approaches for computing mountain structures.
Besides, mountains visualized by this approach look much more
natural than those generated by other approaches.

Keywords: Fractal, Midpoint Displacement, 3D Visualization,
Virtual Reality, VRML

1 Introduction

A geometric approach to represent territory and landscape is to
determine 3D objects, which in turn consists of finding a model
that represents a set of data points. A wide variety of
representation methods have been studied for modeling these
surfaces [Bolle et al. 1991] (For example, “Lorentz hat”).
Unfortunately, these models do not produce rough surfaces.
Models that are able to produce rough surfaces are mostly based
on random processes, and for this reason these models are not
suitable for approximation. To solve the problem of rough surface
approximation efficiently fractal geometry has been used.

Before the development of fractal geometry, typically Nature was
regarded as "noisy" Euclidean geometry. A mountain is primarily
a roughened cone, for example. Indeed, this view was codified by
Paul Cezanne's statement about painting: "Everything in Nature
can be viewed in terms of cones, cylinders, and spheres". In
contrast to this, Benoit Mandelbrot asserts, "Clouds are not
spheres, mountains are not cones, coastlines are not circles, and
bark is not smooth, nor does lightning travel in a straight line"
[SALA et al. 2002].

The word "fractal" was coined less than thirty years ago by one of
the history's most creative mathematicians, Benoit Mandelbrot
[Mandelbrot 1983], father of fractal geometry, but only with the
mathematical power of computers it has become possible to
derive beautiful and colorful images out of complex formulas.

A fractal object is self-similar in that subsections of the object are
similar in some sense to the whole object. No matter how small a
subdivision is taken, the subsection contains no less detail than the
whole.

Fractals have found their way into computer graphics, image and
video compression, and even film and music. For example
Hollywood used fractals in the movie "Star Trek II: The Wrath of
Khan". They have become a way of modeling real and virtual
aspects of the world [Howe 2000].

The advantage of displaying and rendering fractal graphics is that
they can be summed up in a very few rules. For example a terrain
displaying a complex object like a mountain range would only
require a few rules to be described as a fractal. However to store
all the points of the terrain would take up an enormous amount of
space. This storage saving advantage has the disadvantage of
requiring heavy computing power to generate such complex
objects [Howe 2000].

In order to get a good visual effect and effective query, the display
of geographical data should be in a 3-D mode and capable of
being interacted. This goal can be reached by integrating advances
in computer graphics and Internet technology. Advanced
graphical libraries, such as VRML (Virtual Reality Modeling
Language) [Carey and Bell 1997], make it possible to effectively
model and thereafter render the third dimension.

Since its first release in early 1995, VRML has gained broad
support. It is widely used today for scientific visualization,
architectural models, simulations, and even 3D cartoons. The
VRML 97 became an ISO (International Organization for

 2

Standardization) standard in December 1997 and now is in the
Moving Picture Expert Group’s new MPEG-4 standard [Nadeau
1999]. VRML has 54 different types of nodes available, plus the
ability to define new node types that extend the language. Parallel
Graphics has produced a popular VRML browser, called Cortona,
which is provided as a plug-in for Netscape and Internet Explorer.

Web3D Consortium has recently introduced an open and
extensible standard (X3D) as the next generation of VRML,
wherein the geometry and behavioral capabilities of the VRML 97
standard are mainly complemented with the eXtensible Markup
Language (XML) [Web3D 2003].

The visualization research group at Computer Engineering
Department of Iran University of Science and Technology is
aiming to work out the design and implementation of standards in
VRML (and X3D) to visualize varieties of natural phenomena that
are modeled by Fractals. In this paper a part of this activity related
to the efficient visualization of Fractal Mountains in VRML
through the definition of two new VRML nodes is reported.

VRML and Java have been chosen for programming (Section 2).
New nodes have been defined using the extensibility feature of
VRML (Section 3). Different methods of creating mountains were
investigated (Section 4) and an approach leading to the definition
of TriangleGrid and FractMountain nodes and their logic were
proposed (Section 5) and evaluated (Section 6). Further works on
the subject were clarified finally (Section 7).

2 VRML and Java Combined

VRML and Java provide a standardized, portable and platform
independent way to render dynamic, interactive 3D scenes across
the Internet. Integration of these two powerful and portable
software languages gives us interactive 3D graphics and complete
programming capabilities plus network access. Interfaces between
VRML and Java are made through Script nodes.

VRML provides the 3D scene graph, Script nodes encapsulate
Java functionality, and ROUTEs provide the wiring that connects
computation to rendering. Script nodes appear in the VRML file,
encapsulating the Java code and providing naming conventions
for interconnecting Java variables with field values in the scene.
Java classes for use with the Script node must import the vrml
package.

Using Script nodes in VRML 2.0, we can use Java classes to
affect the VRML world. With Script nodes, we are essentially
creating a new node, with associated fields and events.

A great deal of implementation work is now in progress. The most
optimistic view is that VRML and Java are well matched, well
specified, openly available and portable to most platforms on the
Internet [Brutzman 1998].

3 Extensions to VRML

In VRML 2.0, we can encapsulate a group of nodes together as a
new node type, a prototype, and then make that node type
available to anyone who wants to use it. We can then create
instances of the new type, each with different field values.
EXTERNPROTO definition specifies the remote URL where the
original PROTO is defined. Using the PROTO mechanism of

VRML and a Script node executing Java code, one can implement
a new VRML node [Nadeau 1999]; what we have exactly done
for the definition of our proposed nodes.

GeoVRML [GeoVRML 2003], which is an extension to the ISO
standard VRML for providing support for geographic
applications, is a notable example that has used the
EXTERNPROTO property and the Script mechanism to define its
nodes.

GeoVRML 1.0 offers the unique capability of an open file format
that lets geoscientists integrate their graphic data directly into a
3D computer graphics scene and allows remote users to view the
result interactively over the web using freely available standards-
based software. It was publicly announced as an official
recommended practice of the Web3D Consortium in June of 2000
and includes ten new extensions, or nodes, that sit on top of
VRML97. These nodes are defined using VRML’s
EXTERNPROTO extensibility features.

4 Fractal Mountains

There are several methods to create mountains. One of them is
Lindenmayer systems (L-systems). Most work on L-systems is
entirely focused on modeling of plants but this method can be
used also for modeling of mountains. This method is very flexible
but at the same time has limitation in size, because we have to be
careful so that the shape does not get too high or low since this
will create some extreme peaks [Johnson 1999].

Another method to build a mountain with fractal methods is the
application of midpoint displacement algorithm introduced by
Benoit Mandelbrot [Mandelbrot 1983]. In one-dimensional
midpoint displacement, we start with a line segment and then
recursively, for each line segment, find and displace the midpoint
by a random amount along the Y axis (vertically). This work
continues until reaching the desired level of detail, reducing the
random amount on each iteration.

A realistic mountain is three dimensional (3D), which requires
midpoint displacement in two dimensions. There are three
efficient methods that can be used to create 3D mountains using
midpoint displacement, with triangle, square and hexagonal
grids. Triangles have simple calculations [Fournier et al. 1982];
each side of the triangle is split half way and together these three
new points split the original triangle up into four smaller triangles.

But Miller believes [Miller 1986] that triangle method is ‘content
independent’ meaning that for adjacent triangles, no information
is passed thus leading to the creasing problem. He further believes
that squares method avoids this problem to some extend by
offsetting the grid during decomposition. The height of each new
vertex depends on all the neighboring vertices. The overhead is
quite large when the above recursive subdivision is used.

Mandelbrot introduced hexagon algorithm to generate terrain
without creases or seams [Peitgen and Saupe 1988]. Hexagons
finally solved the creasing problem by using a more complex
system. During decomposition, each hexagon is broken up into
three smaller hexagons. The height of additional vertices for the
smaller hexagons is averaged from neighboring vertices.
Unfortunately, Hexagon algorithm is almost inefficient because it
needs more space than the other two ones.

 3

Another method to create mountains is Diamond-Square
algorithm. This algorithm was originally described by Fournier,
Fussell, and Carpenter [Fournier et al.1982]. It uses the edges to
generate center points to be used as edges of other
squares/diamonds rather than just subdividing the edges.

This method of subdivision takes values from neighboring regions
and so it is ‘context dependent’. The size of generated facets of
this algorithm can get very large in a small number of iterations.
Miller argues that this Diamond-Square method is also susceptible
to the creasing problem [Miller 1986].

According to Miller, another problem with this method is that the
generated scene is not realistic as it artificially inputs the height
number for the center point (the peak) to force the generation of a
mountain, but Paul Mart does not agree with Miller on this point
by saying that if all the other height points are randomly generated
then why not do the same with the center peak? [Mart 2002]

It can therefore be concluded that, out of methods generating
Fractal Mountain, the midpoint displacement algorithm on
triangle grid provides a more flexible and memory efficient way
of computing mountain structures.

5 Our Proposition: TriangleGrid and
FractMountain Nodes

We have created 3D mountains using the midpoint displacement
method on a Triangle grid in VRML standard. The grid that is
being used to create the mountain is represented as a collection of
triangle objects.

The ElevationGrid node1 has mostly been used for the creation of
mountains in VRML standard, requiring the collection of huge
amount of data about the height of every single point in the whole
grid.

We have decided to generate the “Fractal Mountain” randomly
using fractal midpoint displacement method, instead of using a
height field, in order to reduce the size of data. We want to
introduce two new nodes into VRML standard: TriangleGrid and
FractMountain.

Given the advantages of creation of Fractal Mountain on triangle
grid, and considering the absence of such a node in VRML
standard, we had to define the new TriangleGrid node. Otherwise,
we had to simulate midpoint algorithm on some other grid
unsatisfactorily, like others had done before. For example,
Demidov [Demidov 2003] has simulated the midpoint
displacement method on ElevationGrid, but his resulting
mountain does not look very natural.

For creation of triangle grid in VRML, we used the
IndexedFaceSet node in VRML. TriangleGrid node has two
fields: the first field is “n” and the second one is “height”. The
first field, “n”, shows the size of grid, and the “height” represents
an array that contains all the heights of every single point in the
grid. The number of points in the grid is (n (n+1))/2.

1 The ElevationGrid node describes a uniform rectangular grid of varying
height. The grid lays in the y=0 plane, and a scalar array of heights
determines the height values of the y-axis.

Each point is a 3D object that represents a set of coordinates (x, y,
z). The height of the grid is initially zero (y = 0), but the x and z
have to be calculated. The index of each point is as shown in
Figure 1.

Figure 1. Triangle Grid

For example, for index 0, the set of data point is (n-1, 0, 0). After
all the coordinates and indexes have been created for each point,
we can introduce the triangles of the node, using different groups
of three indices.

Our second proposed node is FractMountain, which takes (TYPE,
N, ROUGHNESS) triple as input and outputs the relevant
mountain. The first field, TYPE, declares the kind of algorithm
that has to be used, as well as the type of grid (i.e. TriangleGrid or
ElevationGrid). The second field, N, declares the size of the
mountain. The last field, ROUGHNESS, lets the user to have the
choice of different surfaces for the mountain (i.e. rough or smooth
surfaces). If the TYPE is set to zero, the midpoint displacement
algorithm on the triangle grid is used.

Having defined the new node TriangleGrid, we needed a new
algorithm for applying the midpoint displacement method on this
node; the algorithm is nicknamed “Midpoint Displacement
Triangle Grid” (MDTG).

The MDTG algorithm starts with three basic index points, (0,
(n(n+1))/2-1, (n(n-1))/2) and then calculates three new midpoints
from them, as is shown in Figure 1. In order to simplify our
calculations, an array keeps the level of each point in the grid.

On each level of MDTG algorithm, we find three new middle
points of the triangle. If (x1, x2, x3) are three middle points of abc
triangle, x1 is set by the algorithm to the number of previous
points. Because the number of points in the triangle grid from the
start point to level r is ((r+1)(r+2))/2, the number of points before
x1 is equal to the amount of “a” plus the amount of the difference
between the number of points of level “r” and level “a”. Also x2
is equal to x1+(c-b)/2, and x3 is equal to (b+c)/2.

The algorithm finds the height of these middle points (M[x1], M
[x2], M[x3]). For example, if “x1” is the middle point of “a” and
“b”, M[x1] = (M[a] +M[b])/2 + R. The amount of R is calculated
using “n”, “Roughness” and a random number. To have more

 4

natural mountains, the amount of “R” has to be decreased after
every step; otherwise the surface will become very rough.

Figure 2. Sierpinski Triangle

Up to now, we have only calculated the points similar to the
Sierpinski Triangle points (shown in Figure 2). We have added
more levels to MDTG algorithm to calculate the remaining
ignored points.

The output of MDTG algorithm is an array M that contains the
height of each single point of the triangle grid.

Using MDTG algorithm and PROTO mechanism of VRML and
the Script node executing java code, we implemented a new
VRML node called FractMountain. With this new node, one can
create virtual 3D fractal mountains with a very small size of data.

Interestingly, with little syntactic change in the coding, the two
proposed nodes are also usable in X3D.

6 Evaluation

Normal methods of generating mountains require a huge amount
of data, while fractal methods and VRML require substantially
less data. The latter methods too differ in the amount of required
data and the quality of their generated mountain. To evaluate
these variations, we have compared three methods of generating
mountains in VRML standard: (1) mountain created by
ElevationGrid, (2) mountain created by midpoint displacement
method on ElevationGrid, and our proposed method (3) mountain
created by midpoint displacement method on TriangleGrid.

6-1 Mountains Created by ElevationGrid

The mountain created by ElevationGrid is shown in Figure
3. For generating mountain in this method we used huge
amount of data to represent the height of each single point.
Although there are 169 (13*13) points in the grid, which
may seem enough for a natural visualization, the result is
not a natural mountain and it has several artificial flat
planes.

Shape {
 geometry ElevationGrid {
 xDimension 13
 zDimension 13
 xSpacing .8
 zSpacing .8
 height[
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 1.5 0 0 0 0 0 0
0 0 0 0 0 0.5 1 0.5 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 2 1.5 1 2 3 2 1 1.5 2 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0.5 1 0.5 0 0 0 0 0
0 0 0 0 0 0 1.5 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0]}}

Figure 3. Mountain Created by ElevationGrid

6-2 Mountains Created by Midpoint Displacement
Method on ElevationGrid

Demidov has created a terrain by midpoint displacement method
on ElevationGrid [Demidov 2003]. In this method, the rectangle
view is populated by sea and one or more mountains. He has
improved the appearance of generated terrains by painting, for
example low height points (having low y values) with blue color.

Figure 4 shows a terrain generated by Demidov's method.
But it should be noticed that the whole rectangle visualizes
a terrain-containing mountain, not just a Fractal Mountain.
This shortcoming is due to the simulation of midpoint
displacement method with triangle on rectangle grid,
where the grid is not triangle.

 5

(a)

(b)

Figure 4. Simulated terrain with n = 64 with midpoint
displacement method on ElevationGrid; (a) without painting, (b)
terrain vertexes painted in white, brown, green and blue colors

according to their y values.

6-3 Mountains Created by Midpoint Displacement
Method on TriangleGrid

As is shown in Figure 5, the mountain generated by our method,
using midpoint displacement on TriangleGrid, gives a more
natural visualization of mountain. This is because midpoint
displacement method is used on triangle grid. An interesting point
experienced is that we only needed a small size of data space
(1.35 KB) to generate these figures.

n = 32 roughness parameter = 1

n = 32 roughness parameter = 2

n = 64 roughness parameter = 1

n = 64 roughness parameter = 2

n = 128 roughness parameter = 1

n = 128 roughness parameter = 2

n = 256 roughness parameter = 2

Figure 5. Simulated mountain with different n and roughness
values with midpoint displacement method on triangle grid.

As is shown in Figure 5, the images look more natural and
beautiful as the value of n increases.

 6

7 Conclusion and Future Works

Fractals exist everywhere in nature and have found their way into
computer graphics. They have been used for modeling the real
subjects of nature too. We have shown that midpoint displacement
is an efficient and simple method of generating Fractal
Mountains. We can achieve huge bandwidth savings plus cost
savings using a VRML world animated by a Java applet, rather
than 2D GIF or JPEG images animated by a Java world.
It is possible to generate even more realistic and natural looking
mountains than those generated by our approach. While VRML
supports a very general binding model for properties (color,
texture coordinate, and so on), our work can be extended in many
ways. Accurate texturing, different fractal dimensions, smoothing
and deformations can help to generate more realistic mountains.
Visualizing Fractal Mountain by another algorithm like Diamond-
Square algorithm and also visualization on hexagonal grid are
interesting works, which can be followed in the future. As
mentioned before, with small changes, both of our new nodes can
be implemented in X3D.

Acknowledgements

We would dearly like to thank Professor Demidov's guidance on
the subject and his permission to use his images in this paper.

References

BOLLE, R. M. & VEMERI, B. C. 1991. “On Three-Dimensional
Surface Reconstruction Methods”. IEEE Transactions on Pattern
Analysis and Machine Intelligence.

BRUTZMAN, D. 1998. The Virtual Reality Modeling Language
and Java, Communications of the ACM, vol. 41 no. 6, June, pp.
57-64.

CAREY, R AND BELL, G. 1997. The Annotated VRML97
Reference Manual. http://www.best.com/�rikk/Book/ book.html

DEMIDOV, E. 2003. http://www.people.nnov.ru/fractal

FOURIER, A., FUSSELL, D. AND CARPENTER, L. 1982.
Computer Rendering of Stochastic Models, Communications of
the ACM, 25, pp. 371-384.

GeoVRML working Group. 2003. http://www.geoVRML.org.

GUEZIEC, A. AND TAUBIN, G. AND HORN, B. 1999.
Framework Streaming Geometry in VRML. IEEE Computer
Graphics and Applications.

HOWE, A. 2000. Clouds are not Spheres, Mountains are not
Cones. http://www.csc.uvic.ca/~ahowe , University of Victoria.

JOHNSON, J. K. 1999. A Study of Generative Systems for
Modeling Natural Phenomena. http://valhallawebdesign.com
Thesis.

MANDELBROT, B. 1983. The Fractal Geometry of Nature,
W.H. Freeman, New York.

MARTZ, P. 1996-1997. Generating Random Fractal Terrain.
http://www.gameprogrammer.com/fractal.html.

MA, E. 2002. Simulating Nature. Project.

MILLER, G.S.P. 1986 .The Definition and Rendering of Terrain
Maps, ACM Vol 20 (4), 39-48

NADEAU, D. 1999. Building Virtual Words with VRML, IEEE
Computer Graphics and Applications.

PEITGEN, H. , SAUPE, D. 1988. The Science of Fractal Images,
Springer-Verlag, New York Inc.

SALA, N. AND METZELTIN, S. AND SALA M. .2002. Applications of
mathematics in the real world: Territory and landscape.

Web3D Consortium. 2003. http://www.web3d.org.

