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Abstract 
 
Several factors currently limit the size of Virtual Reality 
Modeling Language (VRML) models that can be effectively 
visualized over the Web. Main factors include network bandwidth 
limitations and inefficient encoding schemes for geometry and its 
associated properties. The delays caused by these factors reduce 
the attractiveness of VRML usage for a large range of virtual 
reality models, CAD data, and scientific visualizations. To solve 
this problem, we have tried to decrease the size of data by 
deploying fractal geometry in VRML standard. A novel approach 
is proposed for generating a “fractal mountain” using a random 
Midpoint-Displacement method in VRML standard. Our VRML 
2.0 implementation, which is based on two newly defined nodes, 
TriangleGrid and FractMountain, and uses PROTO mechanism 
and Java in the Script nodes for the logic, is presented too. It is 
shown that our approach is more flexible and memory efficient 
than other approaches for computing mountain structures. 
Besides, mountains visualized by this approach look much more 
natural than those generated by other approaches.  
 
Keywords: Fractal, Midpoint Displacement, 3D Visualization, 
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1  Introduction 
 
A geometric approach to represent territory and landscape is to 
determine 3D objects, which in turn consists of finding a model 
that represents a set of data points. A wide variety of 
representation methods have been studied for modeling these 
surfaces [Bolle et al. 1991] (For example, “Lorentz hat”). 
Unfortunately, these models do not produce rough surfaces. 
Models that are able to produce rough surfaces are mostly based 
on random processes, and for this reason these models are not 
suitable for approximation. To solve the problem of rough surface 
approximation efficiently fractal geometry has been used. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Before the development of fractal geometry, typically Nature was 
regarded as "noisy" Euclidean geometry. A mountain is primarily 
a roughened cone, for example. Indeed, this view was codified by 
Paul Cezanne's statement about painting: "Everything in Nature 
can be viewed in terms of cones, cylinders, and spheres". In 
contrast to this, Benoit Mandelbrot asserts, "Clouds are not 
spheres, mountains are not cones, coastlines are not circles, and 
bark is not smooth, nor does lightning travel in a straight line" 
[SALA et al. 2002]. 
 
The word "fractal" was coined less than thirty years ago by one of 
the history's most creative mathematicians, Benoit Mandelbrot 
[Mandelbrot 1983], father of fractal geometry, but only with the 
mathematical power of computers it has become possible to 
derive beautiful and colorful images out of complex formulas. 
 
A fractal object is self-similar in that subsections of the object are 
similar in some sense to the whole object. No matter how small a 
subdivision is taken, the subsection contains no less detail than the 
whole.  
 
Fractals have found their way into computer graphics, image and 
video compression, and even film and music. For example 
Hollywood used fractals in the movie "Star Trek II: The Wrath of 
Khan". They have become a way of modeling real and virtual 
aspects of the world [Howe 2000]. 
 
The advantage of displaying and rendering fractal graphics is that 
they can be summed up in a very few rules. For example a terrain 
displaying a complex object like a mountain range would only 
require a few rules to be described as a fractal. However to store 
all the points of the terrain would take up an enormous amount of 
space. This storage saving advantage has the disadvantage of 
requiring heavy computing power to generate such complex 
objects [Howe 2000]. 
 
In order to get a good visual effect and effective query, the display 
of geographical data should be in a 3-D mode and capable of 
being interacted. This goal can be reached by integrating advances 
in computer graphics and Internet technology. Advanced 
graphical libraries, such as VRML (Virtual Reality Modeling 
Language) [Carey and Bell 1997], make it possible to effectively 
model and thereafter render the third dimension. 
 
Since its first release in early 1995, VRML has gained broad 
support. It is widely used today for scientific visualization, 
architectural models, simulations, and even 3D cartoons. The 
VRML 97 became an ISO (International Organization for 
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Standardization) standard in December 1997 and now is in the 
Moving Picture Expert Group’s new MPEG-4 standard [Nadeau 
1999]. VRML has 54 different types of nodes available, plus the 
ability to define new node types that extend the language. Parallel 
Graphics has produced a popular VRML browser, called Cortona, 
which is provided as a plug-in for Netscape and Internet Explorer. 
 
Web3D Consortium has recently introduced an open and 
extensible standard (X3D) as the next generation of VRML, 
wherein the geometry and behavioral capabilities of the VRML 97 
standard are mainly complemented with the eXtensible Markup 
Language (XML) [Web3D 2003]. 
 
The visualization research group at Computer Engineering 
Department of Iran University of Science and Technology is 
aiming to work out the design and implementation of standards in 
VRML (and X3D) to visualize varieties of natural phenomena that 
are modeled by Fractals. In this paper a part of this activity related 
to the efficient visualization of Fractal Mountains in VRML 
through the definition of two new VRML nodes is reported. 
 
VRML and Java have been chosen for programming (Section 2).  
New nodes have been defined using the extensibility feature of 
VRML (Section 3). Different methods of creating mountains were 
investigated (Section 4) and an approach leading to the definition 
of TriangleGrid and FractMountain nodes and their logic were 
proposed (Section 5) and evaluated (Section 6). Further works on 
the subject were clarified finally (Section 7). 
 
2  VRML and Java Combined 
 
VRML and Java provide a standardized, portable and platform 
independent way to render dynamic, interactive 3D scenes across 
the Internet. Integration of these two powerful and portable 
software languages gives us interactive 3D graphics and complete 
programming capabilities plus network access. Interfaces between 
VRML and Java are made through Script nodes.  
 
VRML provides the 3D scene graph, Script nodes encapsulate 
Java functionality, and ROUTEs provide the wiring that connects 
computation to rendering. Script nodes appear in the VRML file, 
encapsulating the Java code and providing naming conventions 
for interconnecting Java variables with field values in the scene. 
Java classes for use with the Script node must import the vrml 
package. 
 
Using Script nodes in VRML 2.0, we can use Java classes to 
affect the VRML world. With Script nodes, we are essentially 
creating a new node, with associated fields and events.  
 
A great deal of implementation work is now in progress. The most 
optimistic view is that VRML and Java are well matched, well 
specified, openly available and portable to most platforms on the 
Internet [Brutzman 1998]. 
 
3  Extensions to VRML 
 
In VRML 2.0, we can encapsulate a group of nodes together as a 
new node type, a prototype, and then make that node type 
available to anyone who wants to use it. We can then create 
instances of the new type, each with different field values. 
EXTERNPROTO definition specifies the remote URL where the 
original PROTO is defined. Using the PROTO mechanism of 

VRML and a Script node executing Java code, one can implement 
a new VRML node [Nadeau 1999]; what we have exactly done 
for the definition of our proposed nodes. 
 
GeoVRML [GeoVRML 2003], which is an extension to the ISO 
standard VRML for providing support for geographic 
applications, is a notable example that has used the 
EXTERNPROTO property and the Script mechanism to define its 
nodes. 
 
GeoVRML 1.0 offers the unique capability of an open file format 
that lets geoscientists integrate their graphic data directly into a 
3D computer graphics scene and allows remote users to view the 
result interactively over the web using freely available standards-
based software. It was publicly announced as an official 
recommended practice of the Web3D Consortium in June of 2000 
and includes ten new extensions, or nodes, that sit on top of 
VRML97. These nodes are defined using VRML’s 
EXTERNPROTO extensibility features. 
 
4  Fractal Mountains 
 
There are several methods to create mountains. One of them is 
Lindenmayer systems (L-systems). Most work on L-systems is 
entirely focused on modeling of plants but this method can be 
used also for modeling of mountains. This method is very flexible 
but at the same time has limitation in size, because we have to be 
careful so that the shape does not get too high or low since this 
will create some extreme peaks [Johnson 1999]. 
 
Another method to build a mountain with fractal methods is the 
application of midpoint displacement algorithm introduced by 
Benoit Mandelbrot [Mandelbrot 1983]. In one-dimensional 
midpoint displacement, we start with a line segment and then 
recursively, for each line segment, find and displace the midpoint 
by a random amount along the Y axis (vertically). This work 
continues until reaching the desired level of detail, reducing the 
random amount on each iteration.  
 
A realistic mountain is three dimensional (3D), which requires 
midpoint displacement in two dimensions. There are three 
efficient methods that can be used to create 3D mountains using 
midpoint displacement, with triangle, square and hexagonal 
grids. Triangles have simple calculations [Fournier et al. 1982]; 
each side of the triangle is split half way and together these three 
new points split the original triangle up into four smaller triangles.  
 
But Miller believes [Miller 1986] that triangle method is ‘content 
independent’ meaning that for adjacent triangles, no information 
is passed thus leading to the creasing problem. He further believes 
that squares method avoids this problem to some extend by 
offsetting the grid during decomposition. The height of each new 
vertex depends on all the neighboring vertices. The overhead is 
quite large when the above recursive subdivision is used.  
 
Mandelbrot introduced hexagon algorithm to generate terrain 
without creases or seams [Peitgen and Saupe 1988]. Hexagons 
finally solved the creasing problem by using a more complex 
system. During decomposition, each hexagon is broken up into 
three smaller hexagons. The height of additional vertices for the 
smaller hexagons is averaged from neighboring vertices. 
Unfortunately, Hexagon algorithm is almost inefficient because it 
needs more space than the other two ones.  
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Another method to create mountains is Diamond-Square 
algorithm. This algorithm was originally described by Fournier, 
Fussell, and Carpenter [Fournier et al.1982]. It uses the edges to 
generate center points to be used as edges of other 
squares/diamonds rather than just subdividing the edges.  
 
This method of subdivision takes values from neighboring regions 
and so it is ‘context dependent’. The size of generated facets of 
this algorithm can get very large in a small number of iterations. 
Miller argues that this Diamond-Square method is also susceptible 
to the creasing problem [Miller 1986]. 
 
According to Miller, another problem with this method is that the 
generated scene is not realistic as it artificially inputs the height 
number for the center point (the peak) to force the generation of a 
mountain, but Paul Mart does not agree with Miller on this point 
by saying that if all the other height points are randomly generated 
then why not do the same with the center peak? [Mart 2002] 
 
It can therefore be concluded that, out of methods generating 
Fractal Mountain, the midpoint displacement algorithm on 
triangle grid provides a more flexible and memory efficient way 
of computing mountain structures. 
 
5  Our Proposition: TriangleGrid and 
FractMountain  Nodes 
 
We have created 3D mountains using the midpoint displacement 
method on a Triangle grid in VRML standard. The grid that is 
being used to create the mountain is represented as a collection of 
triangle objects. 
 
The ElevationGrid node1 has mostly been used for the creation of 
mountains in VRML standard, requiring the collection of huge 
amount of data about the height of every single point in the whole 
grid. 
 
We have decided to generate the “Fractal Mountain” randomly 
using fractal midpoint displacement method, instead of using a 
height field, in order to reduce the size of data. We want to 
introduce two new nodes into VRML standard: TriangleGrid and 
FractMountain. 
 
Given the advantages of creation of Fractal Mountain on triangle 
grid, and considering the absence of such a node in VRML 
standard, we had to define the new TriangleGrid node. Otherwise, 
we had to simulate midpoint algorithm on some other grid 
unsatisfactorily, like others had done before. For example, 
Demidov [Demidov 2003] has simulated the midpoint 
displacement method on ElevationGrid, but his resulting 
mountain does not look very natural. 
 
For creation of triangle grid in VRML, we used the 
IndexedFaceSet node in VRML. TriangleGrid node has two 
fields: the first field is “n” and the second one is “height”. The 
first field, “n”, shows the size of grid, and the “height” represents 
an array that contains all the heights of every single point in the 
grid. The number of points in the grid is (n (n+1))/2. 

                                                           
1 The ElevationGrid node describes a uniform rectangular grid of varying 
height. The grid lays in the y=0 plane, and a scalar array of heights 
determines the height values of the y-axis. 
 

 
Each point is a 3D object that represents a set of coordinates (x, y, 
z). The height of the grid is initially zero (y = 0), but the x and z 
have to be calculated. The index of each point is as shown in 
Figure 1.  

 
 

Figure 1. Triangle Grid 
 

For example, for index 0, the set of data point is (n-1, 0, 0). After 
all the coordinates and indexes have been created for each point, 
we can introduce the triangles of the node, using different groups 
of three indices. 
 
Our second proposed node is FractMountain, which takes (TYPE, 
N, ROUGHNESS) triple as input and outputs the relevant 
mountain. The first field, TYPE, declares the kind of algorithm 
that has to be used, as well as the type of grid (i.e. TriangleGrid or 
ElevationGrid). The second field, N, declares the size of the 
mountain. The last field, ROUGHNESS, lets the user to have the 
choice of different surfaces for the mountain (i.e. rough or smooth 
surfaces). If the TYPE is set to zero, the midpoint displacement 
algorithm on the triangle grid is used. 
 
Having defined the new node TriangleGrid, we needed a new 
algorithm for applying the midpoint displacement method on this 
node; the algorithm is nicknamed “Midpoint Displacement 
Triangle Grid” (MDTG). 
 
The MDTG algorithm starts with three basic index points, (0, 
(n(n+1))/2-1, (n(n-1))/2) and then calculates three new midpoints 
from them, as is shown in Figure 1. In order to simplify our 
calculations, an array keeps the level of each point in the grid.  
 
On each level of MDTG algorithm, we find three new middle 
points of the triangle. If (x1, x2, x3) are three middle points of abc 
triangle, x1 is set by the algorithm to the number of previous 
points. Because the number of points in the triangle grid from the 
start point to level r is ((r+1)(r+2))/2, the number of points before 
x1 is equal to the amount of “a” plus the amount of the difference 
between the number of points of level “r” and level “a”. Also x2 
is equal to x1+(c-b)/2, and x3 is equal to (b+c)/2.  
 
The algorithm finds the height of these middle points (M[x1], M 
[x2], M[x3]). For example, if “x1” is the middle point of “a” and 
“b”, M[x1] = (M[a] +M[b])/2 + R. The amount of R is calculated 
using “n”, “Roughness” and a random number. To have more 
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natural mountains, the amount of “R” has to be decreased after 
every step; otherwise the surface will become very rough. 

 

 
Figure 2. Sierpinski Triangle 

 
Up to now, we have only calculated the points similar to the 
Sierpinski Triangle points (shown in Figure 2). We have added 
more levels to MDTG algorithm to calculate the remaining 
ignored points. 
 
The output of MDTG algorithm is an array M that contains the 
height of each single point of the triangle grid. 
 
Using MDTG algorithm and PROTO mechanism of VRML and 
the Script node executing java code, we implemented a new 
VRML node called FractMountain. With this new node, one can 
create virtual 3D fractal mountains with a very small size of data. 
 
Interestingly, with little syntactic change in the coding, the two 
proposed nodes are also usable in X3D. 
 
6  Evaluation 
 
Normal methods of generating mountains require a huge amount 
of data, while fractal methods and VRML require substantially 
less data. The latter methods too differ in the amount of required 
data and the quality of their generated mountain. To evaluate 
these variations, we have compared three methods of generating 
mountains in VRML standard: (1) mountain created by 
ElevationGrid, (2) mountain created by midpoint displacement 
method on ElevationGrid, and our proposed method (3) mountain 
created by midpoint displacement method on TriangleGrid. 
 
6-1  Mountains Created by ElevationGrid 
 
The mountain created by ElevationGrid is shown in Figure 
3. For generating mountain in this method we used huge 
amount of data to represent the height of each single point. 
Although there are 169 (13*13) points in the grid, which 
may seem enough for a natural visualization, the result is 
not a natural mountain and it has several artificial flat 
planes. 
 
 
 
 
 
 
 
 

Shape { 
  geometry  ElevationGrid { 
        xDimension  13 
        zDimension  13 
        xSpacing   .8 
        zSpacing   .8 
     height[ 
0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 1.5 0 0 0 0 0 0 
0 0 0 0 0 0.5 1 0.5 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 1 2 1.5 1 2 3 2 1 1.5 2 1 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0.5 1 0.5 0 0 0 0 0 
0 0 0 0 0 0 1.5 0 0 0 0 0 0 
0 0 0 0 0 0 2 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0]}} 

 

 
 

Figure 3. Mountain Created by ElevationGrid  
 

 
6-2  Mountains Created by Midpoint Displacement 
Method on ElevationGrid 
 
Demidov has created a terrain by midpoint displacement method 
on ElevationGrid [Demidov 2003]. In this method, the rectangle 
view is populated by sea and one or more mountains. He has 
improved the appearance of generated terrains by painting, for 
example low height points (having low y values) with blue color. 
 
Figure 4 shows a terrain generated by Demidov's method. 
But it should be noticed that the whole rectangle visualizes 
a terrain-containing mountain, not just a Fractal Mountain. 
This shortcoming is due to the simulation of midpoint 
displacement method with triangle on rectangle grid, 
where the grid is not triangle. 
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(a) 
 

 
 

(b) 
 

Figure 4. Simulated terrain with n = 64 with midpoint 
displacement method on ElevationGrid; (a) without painting, (b) 
terrain vertexes painted in white, brown, green and blue colors 

according to their y values. 
 
 

6-3  Mountains Created by Midpoint Displacement 
Method on TriangleGrid 
 
As is shown in Figure 5, the mountain generated by our method, 
using midpoint displacement on TriangleGrid, gives a more 
natural visualization of mountain. This is because midpoint 
displacement method is used on triangle grid. An interesting point 
experienced is that we only needed a small size of data space 
(1.35 KB) to generate these figures.  

 

n = 32     roughness parameter = 1 

 

n = 32      roughness parameter = 2 

 

n = 64      roughness parameter = 1 
 

 

n = 64     roughness parameter = 2 
 

 

n = 128       roughness parameter = 1 
 
 

 
 

n = 128      roughness parameter = 2 
 

 

n = 256      roughness parameter = 2 
 
 

Figure 5. Simulated mountain with different n and roughness 
values with midpoint displacement method on triangle grid. 

 
As is shown in Figure 5, the images look more natural and 
beautiful as the value of n increases. 
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7  Conclusion and Future Works 
 
Fractals exist everywhere in nature and have found their way into 
computer graphics. They have been used for modeling the real 
subjects of nature too. We have shown that midpoint displacement 
is an efficient and simple method of generating Fractal 
Mountains. We can achieve huge bandwidth savings plus cost 
savings using a VRML world animated by a Java applet, rather 
than 2D GIF or JPEG images animated by a Java world. 
It is possible to generate even more realistic and natural looking 
mountains than those generated by our approach. While VRML 
supports a very general binding model for properties (color, 
texture coordinate, and so on), our work can be extended in many 
ways. Accurate texturing, different fractal dimensions, smoothing 
and deformations can help to generate more realistic mountains. 
Visualizing Fractal Mountain by another algorithm like Diamond-
Square algorithm and also visualization on hexagonal grid are 
interesting works, which can be followed in the future. As 
mentioned before, with small changes, both of our new nodes can 
be implemented in X3D. 
 
Acknowledgements 

We would dearly like to thank Professor Demidov's guidance on 
the subject and his permission to use his images in this paper. 

References  
 
BOLLE, R. M. & VEMERI, B. C. 1991. “On Three-Dimensional 
Surface Reconstruction Methods”. IEEE Transactions on Pattern 
Analysis and Machine Intelligence. 
 
BRUTZMAN, D. 1998. The Virtual Reality Modeling Language 
and Java, Communications of the ACM, vol. 41 no. 6, June, pp. 
57-64. 
 
CAREY, R AND BELL, G. 1997. The Annotated VRML97 
Reference Manual.  http://www.best.com/�rikk/Book/ book.html           
 
DEMIDOV, E.  2003.  http://www.people.nnov.ru/fractal 
 
FOURIER, A., FUSSELL, D. AND CARPENTER, L. 1982. 
Computer Rendering of Stochastic Models, Communications of 
the ACM, 25, pp. 371-384. 
 
GeoVRML working Group.  2003. http://www.geoVRML.org. 
 
GUEZIEC, A.  AND TAUBIN, G. AND HORN, B. 1999. 
Framework Streaming Geometry in VRML. IEEE Computer 
Graphics and Applications. 
 
HOWE, A.  2000. Clouds are not Spheres, Mountains are not 
Cones. http://www.csc.uvic.ca/~ahowe , University of Victoria. 
 
JOHNSON, J. K. 1999. A Study of Generative Systems for 
Modeling Natural Phenomena. http://valhallawebdesign.com 
Thesis. 
 
MANDELBROT, B.  1983.  The Fractal Geometry of Nature, 
W.H. Freeman, New York. 
 
MARTZ, P. 1996-1997.  Generating Random Fractal Terrain. 
http://www.gameprogrammer.com/fractal.html.  

 
MA, E. 2002. Simulating Nature. Project.   
 
MILLER, G.S.P. 1986 .The Definition and Rendering of Terrain 
Maps, ACM Vol  20 (4), 39-48 
 
NADEAU, D. 1999.  Building Virtual Words with VRML, IEEE 
Computer Graphics and Applications. 
 
PEITGEN, H.  , SAUPE, D. 1988. The Science of Fractal Images, 
Springer-Verlag, New York Inc. 
 
SALA, N.  AND METZELTIN, S. AND SALA M. .2002. Applications of 
mathematics in the real world: Territory and landscape. 
 
Web3D Consortium. 2003. http://www.web3d.org. 
 
 
 


