/l OthAnnuaI

((q Conference of Computer Society of Iran

ITRC February 15-17, 2005

B e —== —— == R e e

Some results on computing the visibility of a query point
inside polygons with holes

Ali Reza Zarei Mohammad Ghodsi
zarei@mehr.sharif.edu ghodsi@sharif.edu

Computer Engineering Department,
Sharif University of Technology,
P.O. Box 11365-9717, Tehran, Iran

Abstract

In this paper, we consider the problem of computing the visibility polygon of a
query point inside polygons with holes. The goal is to perform this computation
efficiently per query with more cost in the preprocessing phase. Our algorithm is
based on solutions in [10] and [11] proposed for simple polygons. In our solution,
the preprocessing is done in time O(n®log(n)) to construct a data structure of size
O(n®). It is then possible to report the visibility polygon of any query point g In
time O((1 + k') logn + |V (q)|), in which n and h are the number of the vertices and
holes of the polygon respectively, |V (g)| is the size of the visibility polygon of g, and
k' is an output and preprocessing sensitive parameter of at most h?.

Keywords: wisibility polygon, ﬁsz’bﬂﬁy decomposition, polygon with holes

1 Introduction

Visibility problems have many applications in motion planning, robotics, computer graph-
ics and geographical information systems. The main problem is to compute that area
of a surface that is visible from an object. In this paper we consider the point visibility
problem in polygons with holes.

Two points inside a polygon are visible from each other if their connecting segment
remains completely inside the polygon. The visibility polygon of a point g, called V(q),
in a polygon P is defined as the set of points in P that are visible from ¢g. The problem of
finding V (q) of a query point g has been considered for two decades. For simple polygons,
linear time optimal algorithms have been proposed [1, 6, 2, 9]. For polygons with holes,
the worst case optimal algorithms with total time of O(n logn) were presented in 7] and
5]. This was later improved to O(n + hlogh) in [3].

This problem in the query version has been considered by few. The only known
solution of this kind is to decompose the polygon into “visibility regions” so that all
points in a single such region have equivalent visibility polygons. Two visibility polygons
are equivalent if they are composed of the same sequence of vertices and edges from the
underlying polygon. In such a decomposition, the visibility regions are determined in
the preprocessing phase and their visibility polygons are computed and maintained in

Proceeding of CSI Computer Conference

Figure 1: uu' as a window of a polygon.

a proper data structure. For any point ¢, V(q) can then be obtained by refining the
visibility polygon of the region that contains q.

In a simple polygon with n vertices, V(q) can be reported in time O(logn+|V(q)|) by
spending O(n® log n) of preprocessing time and O(n°) space (8, 10]. Another improvement
to this method was done in [11] where the preprocessing time and space were reduced to
O(n?logn) and O(n?) respectively, at expense of more query time of O(log®n + |V (q)])-

However, none of these works are applicable on polygons with holes. In this paper we
apply the visibility decomposition method on non-simple polygons and present a method
to extend the above algorithms for such polygons. In an overall view, we add some new
edges and vertices to the non-simple polygon (called cut-diagonal) so that the polygon
can be unfolded along these diagonals and converted to a simple polygon. Then, we use
an existing algorithm on simple polygons (one of (8] and [10]) to compute a preliminary
version of the V(q). With some additional work, we find the final V'(q).

For a polygon of total n vertices and h holes, our algorithm needs the preprocessing
time of O(n®logn) and memory of size O(n®). Any query can then be handled in time
O((1+h')log(n)+|V(g)|) in which A’ is an output and preprocessing sensitive parameter
of at most h?.

In the rest of this paper and in section two, the visibility decomposition will be applied
to non-simple polygons and its time and space complexities will be analyzed. In section
three, the new algorithm will be presented. Finally, the materials will be summarized
and concluded in section four.

2 Visibility Decomposition

Let P be a polygon with h holes Hy, Ha,--- , Hp. Also let g be the query point for which
the visibility polygon V(gq) is to be computed. A visibility decomposition of P, denoted
as v-decomposition(P), is to partition P into a set of smaller visibility regions R, called
v-regions, such that for each region A € R, the same sequence of vertices and edges of P,
called A’s visibility sequence and denoted by v-sequence(A), are visible from any point
in A.

To construct a v-decomposition(P), we first identify the boundary segments of its
regions R. We then construct a subdivision from these segments. The boundary segments
are either the edges of P, or segments that we call windows of P. As shown in Figure 1,
a window wv’ is an extension of the segment between two mutually visible vertices u and
v of P. This is because the points below the window wu' are not visible from vertex
v, while the upper points are. It is easy to prove that no other kinds of segments are

223

Proceeding of CSI Computer Conference

Figure 2: A polygon with O(n*) v-regions and sinks

involved in construction of the v-decomposition. More details on the properties of such
a decomposition can be found in [10] and [11].

Lemma 1 . The number of the v-regions of a non-simple polygon P is O(n*) and this
bound s tight.

Proof. Each vertex of P can be an endpoint of at most n different windows. Hence, the
number of all windows is O(n?). Any two windows can intersect which will lead to at
most O(n*) v-regions. This bound is tight as shown in Figure 2.

It is easy to see that the v-sequences of two adjacent v-regions in a simple polygon
differ only in a single vertex which is visible from the points of one region and is in-
visible from the other. This fact helps reduce the space complexity of maintaining the
v-sequences of the v-regions in simple polygons. This is done by defining the sink regions.
A region is sink if the size of its v-sequence is smaller compared to all of its adjacent
regions. It is sufficient to only maintain the v-sequences of the sinks, from which the
v-sequences of all other regions can be computed.

A directed dual graph is built on the v-regions [8, 10]. In a simple polygon, there are
O(n?) sinks. This reduces the space requirement of v-decomposition of simple polygons
to O(n?). Unfortunately, the above property does not hold for non-simple polygons.

Lemma 2 .The space complexity of maintaining the v-sequences of the regions in a non-
simple polygon is O(n®).

Proof. This bound is trivially true, because the number of v-regions is O(n*) and any
one of these regions can have a v-sequence of size O(n). On the other hand, Figure 2
shows a polygon with O(n*) sink regions each with v-sequences of size O(n). This is
because any one of the v-regions like abcd contains at least one sink.

By computing the v-regions R of P and maintaining their v-sequences, V'(g) of an
arbitrary point ¢ inside P can be answered as follows: A point location structure will be
built over the v-regions. From this, the region r(q) containing ¢ can be found in time
O(lgn). The v-sequence(r(q))is then traced and refined to exactly compute V(g). This
refinement takes linear time in terms of the size of V(q) [10]. Therefore,

224

Proceeding of CSI Computer Conference

A

Figure 3: Computing V(q) inside a non-simple polygon: A) The original polygon P,
B) The cut-diagonals to produce a simple polygon Ps, C) The visibility polygon V;(q)
targeted to P, D) Extra segments of P viewed from q through the cut-diagonals, and
E) the final V(q) in P

Theorem 1 . Using O(n®logn) time to preprocess a polygon P and maintaining a data
structure of size O(n>), it is possible to report V(q) in time O(lgn + |V (q)]).

Proof. We first compute the V(r) for each vertex r of P |5|. All windows can then
be found in time O(n®logn). The v-decomposition and its dual graph can then be
constructed in time O(n* logn) [12]. The point location structure on the v-decomposition
can be constructed in time O(n*logn) [13, 14, 15, 16]. Since there can be O(n*) sinks,
computing the v-sequences takes O(n°logn) time and the size of anyone of these v-
sequences can be O(n). Hence, the total preprocessing time is O(n’logn) and the size
of the required data structure is O(n°). V(q) is then found in time O(logn + |V (q)|) as
describe above.

3 The Proposed Algorithm

Clearly, time and space complexities of the previous algorithm is too high and it is not
acceptable in all applications. In this section we propose another algorithm for this
problem that needs less preprocessing time and space at expense of higher cost of query
time.

The first step of this algorithm is to convert the initial non-simple polygon P into
a simple polygon Ps. This is done by adding some diagonals as “cuts” and an unfold
process. Vi(q) in Ps is then computed using an algorithm in [10, 11}, from which the
final V(q) in P is computed. This is done by a SEE-THROUGH procedure to be described
below.

Figure 3 depicts an example of the algorithm. The original non-simple P and its P;
are shown in parts A and B respectively. V(q) in P, denoted by V;(g) is computed as
shown in C. There are segments in P that are visible from ¢ through the “cut” segments
of Vis(q) which are shown in D. These segments are computed (recursively) by the SEE-
THROUGH algorithm to replace the cut-segments of V(q) which leads to the final V(q),
as shown in E.

3.1 Creating a simple polygon from P

We produce a simple polygon P from P by eliminating its holes. One hole, say H, in P
can be eliminated by adding a pair of cut-diagonals connecting a vertex of H to a vertex
of P in its outer boundary. Cutting P along this diagonal produces another polygon in
which H is no longer a hole. We continue this process on this new polygon to eliminate
all holes. A cut-diagonal should lie completely inside P and should not intersect any

225

Proceeding of CSI Computer Conference

other hole. This can be enforced if we eliminate leftmost hole first, which is the hole
whose leftmost corner has smallest z-coordinate.
For P with total of n vertices and h holes, P, will have n+ 2h vertices. We know that
the upper bound of A is [252|. Hence, the number of the vertices of P; is also O(n).
The conversion algorithm described above can be done by first triangulating the
polygon and then selection the proper cut-diagonals, which can be done in O(nlog*n)

17].

3.2 Computing visibility through cut-diagonals

As mentioned before, an important step of our approach is the SEE-THROUGH algorithm
to update the V;(q) on P,. This step finds new segments of edges of P that are visible
from ¢ through the cut-diagonals. We use the ideas presented in [11].

Theorem 2 . [11] Given a simple polygon P with size n and a cut-diagonal which cuts
P into two parts, L and R, by using O(n?logn) time, we could construct a data structure
of size O(n?) so that, for any query point ¢ € R, the partial visibility V1,(q) through the
diagonal can be reported in O(logn + |VL(q)|) time.

This theorem does not hold for non-simple polygons. We however, use its idea for
polygons with holes. Assume that P has only one hole H; which has been eliminated by
one cut-diagonal ujug as shown in Figure 8. For any query point ¢, we intend to find
the set of segments on edges of P that are visible from ¢ through uiug. Continuing uiug
through H; will lead to another segment vivz such that vy is on H; and v is the first
encounter of this segment with P. Now suppose that the cut-diagonal ujuz is replaced
by v1v2. Obviously, cutting P along viv2 will produce another simple polygon, called Pj'qi
for which ujug is a diagonal. We can now use Theorem 2 to preprocess P}{‘, and build
the appropriate data structures so that for any query point ¢, we can find the segments
of Py that are visible from ¢ through its diagonal ujug. These segments are denoted as
Vi, (q). Since, no part of v1vs is visible from ¢ through uyuz, Vg, (g) is the same as set of
segments we are looking for. Let us denote the above algorithm by SEE-THROUGH(H;).

This algorithm can be extended to more holes. This is done by performing SEE-
THROUGH(H;) once for each H; assuming that P has effectively been cut along the
cut-diagonals of other holes, which leads to a polygon with only one hole H;. Therefore,
we have h data structures resulted from these preprocessing steps. Given the query point,
we can find the extra segments of P visible from ¢ through all the cut-diagonals, to be
described in next subsection.

3.3 The algorithm

The preprocessing phase of the algorithm is done as follows:

a Add all cut-diagonals to produce the simple polygon Ps, as described in subsection
3.1

b Preprocess P; and create the data structure so that V(q) of any arbitrary query q
in P, can efficiently be reported. Theorem 3 is used for this step.

¢ For each hole, H;, perform SEE-THROUGH(H;) to preprocess the polygon, so that
for any query point ¢, V,(q) can be computed efficiently.

226

Proceeding of CSI Computer Conference

Figure 4: Replacing ujup with vive. Figure 5: A polygon with tight bound of .

Theorem 3. [10] 4 simple-polygon P can be preprocessed in O(n®logn) time and O(n®)
space such that given an arbitrary query point q inside the polygon, O(logn+[V(q)|) time
is sufficient to recover V(q).

The V(q) of any ¢ is computed as follows. The data structure build at step (b) of the
preprocessing phase is used to find V;(q) the set of segments viewed by ¢ in Ps. Suppose
that a segment of the cut-diagonal uv of a hole H; is a part of V5(¢g). The preprocessing of
step (c) is then used to find Vi, (g), the extra segments viewed through uv. The segment
wv in V;(q) is then replaced by Vg, (q). This is continued for any such segments in Vs(q)-
This process will finish without any loop, due to the nature of visibility. What remains
at the end is V(q), and this is easy to prove.

Lemma 3. The preprocessing time and space complezities of the algorithm are O(n°logn)
and O(n®), respectively.

Proof. Time complexity of the preprocessing of step (a), as described in section 3.1,
is O(nlog*n). Also, the resulted polygon Ps, like P, has O(n) vertices. The time and
space complexities of step (b) are as in Theorem 3.

As described in subsection 3.2, the preprocessing time for any cut-diagonal is of
size O(n?logn) and the size of its data structure is O(n?). There are at most O(n)
such diagonals in P. Thus, the total preprocessing time to construct cut-diagonal data
structures is O(n®logn) and they require O(n®) space.

Lemma 4 . The query time to report V(q) is O(logn + h'logn + h' + |V (q)|) where b’
is the number of cut-diagonals appeared in Vs(q) during the algorithm.

Proof. A point location of time O(logn) is done to find the location of ¢ in Ps. For
any one of the h’ cut-diagonals, appeared in Vs(g), a point location of size O(logn) is
required to run the SEE-THROUGH algorithm. The number of the edges that appear in
V,(q) is the size of the final visibility polygon V(g) plus the number of the cut-diagonals
appeared in V;(q).

Lemma 5 . The upper bound of b’ is O(h?*) and this bound is tight.

Proof. The cut-diagonals do not intersect each other except at their end-points. There-
fore, if a query point g sees a cut-diagonal [through another cut-diagonal I then it is
impossible for ¢ to see I’ through [. Also, only a single segment of another cut-diagonal
can directly be seen from a query point through another cut-diagonal. By directly we
mean that there is no other intermediary cut-diagonals between them. Hence, the upper
bound of #' is O(h?). Figure 5 shows a sample with tight bound of A'.

2217

Proceeding of CSI Computer Conference

The value of A’ for a query point depends on the position of the point and the
cut-diagonals, and the upper bound of A’ is happened rarely. However, h is O(n) and
therefore, the upper bound of k' is O(n?). We have improved this algorithm so that the
size of A’ is reduced to at most min(A, |V (q)|). This will be presented in our next paper.

4 Conclusion

In this paper, we have considered the problem of computing the visibility polygon V(q)
of a point ¢ inside a polygon with holes. This problem has been solved efficiently before,
but in the non-query version. Here, we proposed an efficient algorithm for the query
version of the problem where we preprocess the polygon to build a data structure by
which the V(q) of any query point ¢ could be reported rapidly.

We first applied and analyzed the notion of visibility decomposition to this type
of polygons. We then presented an algorithm to report V(g) of any ¢ in time O((1 +
K') log n+|V (q)|) by spending O(n3 logn) time to preprocess the polygon and maintaining
a data structure of size O(n®). The factor A’ is an output and preprocess sensitive
parameter of size at most h2.

We have improved this algorithm so that the size of A’ is reduced to at most min(h, |V (g)|).
This will be presented in our next paper.

It is interesting to know if this method can be used to solve other similar problems
such as finding the visibility polygon of a moving point and a line segment or the visibility
graph of a point set especially in dynamic environments. Another question is whether
we can omit the factor k' or reduce it to O(lgh').

References

[1] H.El Gindy and D. Avis, A Linear Algorithm for Computing the Visibility Polygon
from a Point, Journal of Algorithms, 2, pp. 186-197, 1981.

2] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. Tarjan, Linear Time Al-
gorithms for Visibility and Shortest Path Problems inside Simple Polygons, Proc.
Second Annual ACM Symp. on Computational Geometry, 1986, pp. 1-13.

[3] F. Dehne, J.-R. Sack, N. Santoro, An Optimal Algorithm for Computing Visibility
in the Plane, STAM Journal on Computing, Vol. 24, No. 1, pp. 184-201, February,
1995.

[4] M. Pocchiola and G. Vegter, The wvisibility complez, Internat. J. Comput. Geom.
Appl., 6(3):279308, 1996.

(5] S. Suri and J. O’'Rourke, Worst-Case Optimal Algorithms for Constructing Visibility
Polygons with Holes, In Proc. of the second annual symposium on Computational
geometry, 1986, pp. 14-23.

6] D.T. Lee, Visibility of a Simple Polygon, Computer vision, Graphics, and Image
Processing 22, 1983, pp. 207-221.

7] T. Asano, Efficient Algorithms for Finding the Visibility Polygons for a Polygonal
Region with Holes, Manuscript, Department of Electrical Engineering and Computer
Science, University of California at Berkeley, 1984.

228

Proceeding of CSI Computer Conference

8] L. Guibas, R. Motwani, and P. Raghavan, The Robot Localization Problem in two

9]

[10]

[11]

12]

[13]

14

[15)

16

[17]

Dimensions, SIAM J. of Computing 26, 4, 1997, pp. 1120-1138.

B. Chazelle and L. Guibas, Visibility and Intersection Problems in Plane Geometry,
In Proc. 1th Annu. ACM Sympos. Comput. Geom., 1985, pp. 135-156.

P. Bose, A. Lubiw, and J.I. Munro,, Efficient Visibility Queries in Simple Polygons,
In Proc. 4th Canad. Conf. Comput. Geom., 1992, pp. 23-28.

B. Aronov, L Guibas, M Teichmann, and L. Zhang, Visibility Queries and Mainte-
nance in Simple Polygons, Discrete and Computational Geometry 27(4), 2002, pp.
461-483.

J.L. Bentley and Th. Ottmann, Algorithms for Reporting and Counting Geometric
Intersections, IEEE Transactions on Computers, 28, pp. 643-647, 1979.

D. Kirkpatrick, Optimal Search in Planar Subdivisions, SIAM Journal of Computing,
12, 1, pp. 28-35, 1983.

D.T. Lee and F.P. Preparata, Location of a Point in a Planar Subdivision and its
Applications, SIAM Journal of Computing, 6, 3, pp. 594-606, 1977.

F.P. Preparata, A New Approach to Planar Point Location, SIAM Journal of Com-
puting, 10, 3, pp. 473-482, 1931.

N. Sarnak and R. Tarjan, Planar Point Location Using Persistent Search Trees,
Communications of the ACM, 29, 7, pp. 669-679, 1986.

R. Seidel, A Simple and Fast Incremental Randomized Algorithm for Computing
Trapezoidal Decomposition and for Triangulating Polygons, Comput. Geom. Theory
Appl. 1:51-64, 1991.

229

