
Envy-free Mechanisms with Minimum Number of Cuts

Reza Alijani‡, Majid Farhadi∗, Mohammad Ghodsi∗†, Masoud Seddighin∗, and Ahmad S. Tajik§
Sharif University of Technology∗, Duke University‡, University of Michigan – Ann Arbor§

Institute for Research in Fundamental Sciences (IPM) – School of Computer Science †
alijani@cs.duke.edu, {m farhadi, mseddighin}@ce.sharif.edu, ghodsi@sharif.edu, tajik@umich.edu

Abstract

We study the problem of fair division of a heterogeneous
resource among strategic players. Given a divisible hetero-
geneous cake, we wish to divide the cake among n players
in a way that meets the following criteria: (I) every player
(weakly) prefers his allocated cake to any other player’s share
(such notion is known as envy-freeness), (II) the mechanism
is strategy-proof (truthful), and (III) the number of cuts made
on the cake is minimal. We provide methods, namely expan-
sion process and expansion process with unlocking, for di-
viding the cake under different assumptions on the valuation
functions of the players.

1 Introduction
The problem of dividing a cake among a set of individuals
has been widely studied in the past 60 years. The subject
was first defined by Steinhaus (1948). The description of the
problem is as follows: given a heterogeneous cake and a set
of players, with potentially different tendencies to different
parts of the cake, how to cut the cake and distribute it among
the players in a fair manner?

Several notions are defined for measuring the fairness of
an allocation (see (Procaccia 2014) for details). One of the
most important notions is envy-freeness. An allocation of the
cake is envy-free if each player (weakly) prefers its allocated
share to any other player’s share.

Envy-free resource allocation has been vastly studied in
the literature. For two players, the famous method of cut
and choose guarantees envy-freeness of the allocation. For
three players, Selfridge and Conway designed a protocol for
finding an envy-free division of the cake. In their method,
a player may receive more than one piece (see (Procaccia
2013) for details). Brams and Taylor generalized this method
to an arbitrary number of players (1995). However, their
method doesn’t guarantee any upper bound on the number
of cuts. Recently, in (2016), Aziz and Mackenzie suggested
a bounded envy-free protocol for any number of players.

In some settings, the number of cuts is also important. In
several papers (e.g. (Stromquist 1980), (Barbanel and Brams
2004), (Stromquist 2007), (Bei et al. 2012)) the cake cut-
ting with minimum number of cuts has been studied. Each

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cut might have an additional cost. As an example, suppose
the cake models a processing time that must be fairly allo-
cated among a set of tasks. Every task-switch imposes an
overhead; minimizing total amount of overhead would be
equivalent to minimizing the number of cuts on the cake.
In addition, players may not have any value for very small
pieces made by a large number of cuts. In (Caragiannis, Lai,
and Procaccia 2011), this issue was illustrated by the adver-
tisement example: think of the cake as time and consider
the allocation of advertising time. In such a setting, a large
number of cuts can yield so small periods of time that are not
useful for advertising. In an allocation with small number of
cuts this problem is unlikely.

Stromquist, in (1980), proved the existence of an envy-
free division of the cake among n players with n − 1 cuts
which is the minimum number of cuts required to divide
a cake among n players. However, the proof is not con-
structive and does not yield a polynomial time algorithm. In
(2007), he showed that no finite protocol can find an envy-
free allocation with minimum number of cuts for n ≥ 3.
(Deng, Qi, and Saberi 2012) proved that the problem of find-
ing an envy-free allocation of the cake, with a minimum
number of cuts is PPAD-Complete. They also proposed an
FPTAS for the case of three players.

In a number of the recent papers (e.g. (Caragiannis, Lai,
and Procaccia 2011), (Brams et al. 2012), (Bei et al. 2012),
(Maya and Nisan 2012), (Chen et al. 2013), (Aziz and Ye
2014)) some restricted classes of valuation functions have
been studied. Piecewise constant and piecewise uniform val-
uation functions are two important special classes of valua-
tion functions which are very important in practice. One of
the important properties of these valuation functions is that
they can be described concisely. (Kurokawa, Lai, and Pro-
caccia 2013) proved that finding an envy-free allocation (in
Robertson-Webb model) when the valuation functions are
piecewise-uniform is as hard as solving the problem without
any restriction on the valuation functions.

Recently, some studies considered the problem from a
game theoretic viewpoint. Many cake cutting algorithms are
not truthful. For example, even the cut and choose method
which is relatively simple does not guarantee truthfulness. In
(Brânzei et al. 2016), the strategic outcome of the cake cut-
ting algorithms has been studied. They proved the existence
of an approximate subgame perfect Nash equilibrium for a

class of protocols. Another line of research which is more
related to our work, attempts to find truthful mechanisms.
Similar to fairness, there are different notions for the con-
cept of truthfulness. In (Brams et al. 2006), a weak notion
of truthfulness is defined: players don’t risk telling a lie, if
there exists a scenario (for other players valuations) in which
lying results in a lower payoff. As an example, they showed
that cut and choose protocol is weakly truthful. Maya and
Nisan (2012) designed truthful and Pareto-efficient mecha-
nisms to divide the cake between two players where each
player is interested in a subset of the cake, uniformly.

In (2013), Chen et al. considered a strong notion of truth-
fulness (denoted by strategy-proofness), in which the play-
ers’ dominant strategies are to reveal their true valuations
over the cake. They presented a strategy-proof mechanism
for the case when the valuation functions are piecewise uni-
form. They also designed a randomized algorithm that is
envy-free and truthful in expectation, for piecewise linear
valuation functions. However, their method for dividing the
cake uses Ω(n2m) cuts, where m is the number of pieces
in each valuation function. Aziz and Ye (2014) considered
the problem when valuation functions are piecewise con-
stant/uniform. Based on parametric network flows, they de-
signed an envy-free algorithm that is group strategy-proof 1

for piecewise uniform valuations. It is notable that their
method becomes equivalent to mechanism 1 from (Chen et
al. 2013), in the case of piecewise uniform valuations.

1.1 Our work
We investigate the problem of finding envy-free and truthful
mechanisms with a small number of cuts. By small, we mean
that the number of cuts does not exceed O(nm), where m
is the number of steps of each player’s (piecewise constant)
valuation function. To the best of our knowledge, this is the
first study that aims to approximate the number of cuts.

The basis of our method is a simple and elegant process
called expansion process. After describing the process, we
start with the case, where each player’s valuation function is
piecewise constant with only one step and preserves a spe-
cific property that we name ordering property. For this case,
we propose EFISM which is a polynomial time, strategy-
proof and envy-free allocation with n− 1 cuts (Theorem 2).

Next, we remove the ordering assumption and show that a
generalized form of the expansion process can find an envy-
free allocation that cuts the cake into at most 2n − 1 pieces
in polynomial time (Theorem 3). Furthermore, using a more
complex form of this process, we propose EFGISM, which
is a polynomial time algorithm that is truthful, envy-free and
cuts the cake into at most 2n− 1 pieces (Theorem 4).

In addition, we consider the case where the valuation
functions are piecewise constant with m pieces. When the
number of players is constant, we provide a poly(m) time
algorithm for envy-free division of the cake with n− 1 cuts.
Finally, we consider the case that the players possess a par-
ticular property, namely intersection property and show that

1Group strategy-proof means no group of players can misreport
their valuations, such that in the resulting allocation all of them
earn more payoff

under this assumption, a modification of the expansion pro-
cess yields a poly(m,n) time, envy-free algorithm that cuts
the cake in O(nm) locations.

2 Model Description and Preliminaries
In this paper, we use the term interval for two purposes: val-
uation functions and the shares allocated to the players. For
brevity, denote the former type of intervals by I and the lat-
ter by I . Also, we Suppose that for every valuation interval
Ii, Ii = [αi, βi] and for every share interval Ii, Ii = [ai, bi].

Given a set N of n players and a cake C. We represent
the cake by the interval [0, 1]. For every player pi ∈ N , a
valuation function νi : [0, 1]→ R is given.

For each pi ∈ N and interval I = [a, b], we define Vi(I)

as
∫ b
a
νi(x)dx. Our assumption is that the values of the play-

ers are normalized, such that Vi(C) = 1, for each player pi.
A piece of the cake, is a set of mutually disjoint sub-intervals
of [0, 1]. For a piece P , we define Vi(P) as

∑
I∈P Vi(I).

A valuation function ν is piecewise constant, if there ex-
ists a set Sν = {Iν1, Iν2, . . . , Iνk} of mutually disjoint in-
tervals, such that for any two points x, x′ in Iνi, ν(x) =
ν(x′) = ri and for any point x that does not belong to any
interval in Sv , ν(x) = 0. To put it simply, a piecewise con-
stant valuation consists of a finite number of intervals, such
that all the points in the same interval have the same value,
and for the points that do not belong to any interval, the val-
uation is 0. We say ν has k steps, if |Sν | = k.

A division of the cake among a set N of n players is
a set D = {P1, P2, . . . , Pn} of pieces, with each piece
Pi = {Ii,1, Ii,2, . . . , Ii,|Pi|} being a set of intervals with the
following two properties: (I) every pair of intervals are mu-
tually disjoint and (II) no piece of the cake is left behind:⋃
i,j Ii,j = C.
The number of cuts in divisionD is (

∑
i |Pi|)−1. A divi-

sion D = {P1, P2, . . . , Pn} is envy-free, if for every player
pi and piece Pj ∈ D the inequality Vi(Pi) ≥ Vi(Pj) holds.

The majority of this paper is focused on the case, where
each valuation function is a single interval. For this case, we
suppose that for every player pi ∈ N , Svi = {Ii}, where
Ii = [αi, βi]. Furthermore, denote by T the set of valua-
tion intervals, i.e., T = {I1, I2, . . . , In}. In this setting, the
envy-free notion for a division D can be interpreted as fol-
lows: for each player pi and k 6= i we have∑

j

|Ii,j ∩ Ii| ≥
∑
j

|Ik,j ∩ Ii|.

For a set of intervals X , we define DOM(X) as the mini-
mal interval that includes all members ofX as sub-intervals;
e.g., in the case that each valuation function is a single inter-
val, for a set T ⊆ T we have:

DOM(T) = [min
Ij∈T

αj ,max
Ii∈T

βi].

Furthermore, we define the density of X , denoted by Φ(X)
as: λ(X)/|X| where λ(X) is the total length of DOM(X)
that is covered by at least one interval in X . We call a set
X of intervals solid, if for every point x ∈ DOM(X), there

C

a

b

cd

DOM(T)

T = {a, b, c, d}

Φ(T) = |DOM(T)|/4

Figure 1: Domain and density

exists an interval I in X such that x ∈ I . For example, in
Fig 1, the set T is solid. When T is solid, we have:

λ(T) = |DOM(T)| = max
Ii∈T

βi − min
Ij∈T

αj

Our assumption is that every piece of the cake is valu-
able for at least one player. In the Appendix2, we show that
slightly modified versions of our algorithms can handle the
cases where this assumption does not hold.

3 The Expansion process
The main tool in our method for dividing the cake is a pro-
cedure called expansion process. The expansion process ex-
pands some associated intervals to the players, inside their
desired area. We use exp(T) to refer to the expansion pro-
cess on the set T of valuation intervals. We initiate the ex-
pansion process for T by associating a zero length inter-
val Ii at the beginning of its corresponding Ii ∈ T , i.e.,
Ii = [ai = αi, bi = αi]. Denote by S, the set of these In-
tevals. We expand the intervals in S concurrently, all from
the endpoint. The expansion is performed in a way that pre-
serves two invariants:(I) The expansion has the same speed
for all the intervals so as the lengths of the intervals remains
the same and (II) Ii always remains within Ii.

During the expansion, the endpoint of an interval Ii may
collide with the starting point of another interval Ij . In this
case, Ii pushes the starting point of Ij forward during the
expansion. The push continues to the end of the process. If
Ii pushes Ij , we say Ii is stuck in Ij . Note that by the way
we initiate the process, the intervals remain sorted according
to their corresponding αi’s. Also in the special case of equal
αi for two players, the one with smaller βi comes first.

Definition 1. During the expansion, an interval Ii becomes
locked, if the endpoint of Ii reaches βi.

Definition 2. A chain is a sequence of intervals
Iσ1

, Iσ2
, . . . , Iσk

, with the property that for 1 ≤ i < k, Iσi

is stuck in Iσi+1
. A chain is locked, if Iσk

is locked.

The size of a chain is the number of intervals in that chain.
By definition, a single interval is a chain of size 1.

The expansion ends when an interval becomes locked.
The termination condition ensures that the second invariant
is always preserved. In the Appendix , you can see a detailed
example of the expansion process.

2The long version with appendix is available at
www.cs.duke.edu/˜alijani/EMNC-AAAI2017.pdf

Definition 3. The expansion process for T is perfect, if the
associated intervals cover the entire DOM(T). If the process
terminates due to a locked interval before entirely covering
DOM(T), the process is imperfect.

Note that if an expansion process on T ends perfectly,
then for every associated interval Ii, we have |Ii| = Φ(T).

Despite the fact that we described the expansion process
continuously, it can be efficiently implemented via swiping
of the events (see the Appendix for more details).

Observation 1. During the expansion process, every inter-
val Ii is either being pushed by another interval, or its start-
ing point is still on αi.

4 EFISM: Special Interval Scheduling
In this section, we assume that the valuation function of each
player is a single interval. In addition, we suppose that the
intervals have the following property:

∀i, j αi ≤ αj ⇐⇒ βi ≤ βj (1)

In other words, no interval is a sub-interval of another (un-
less they start or end in the same place). For this case, we
present a polynomial time, envy-free, and truthful allocation
with n− 1 cuts. We name this algorithm as EFISM.

The idea in EFISM is repeatedly expanding the intervals
and removing the locked chains. Let T be the valuation
intervals corresponding to the players in N . We begin by
calling exp(T). As described in Section 3, the procedure
terminates either perfectly or imperfectly. In the first case
we are done. Otherwise, at least one chain is locked. Let
C = Iσ1

, Iσ2
, . . . , Iσk

be a locked chain in S with maximal
size. Since C is maximal, no interval gets stuck in Iσ1

. By
Observation 1, aσ1 is exactly on ασ1 . Let T be the set of
valuation intervals corresponding to the intervals in C .

Lemma 1. DOM(T) = [ασ1
, βσk

].

Now, we allocate each Iσi
to pσi

. Lemma 2 states that
such an allocation is envy-free for pσ1

, pσ2
, . . . , pσk

.

Lemma 2. For every interval Iσi
and Iσj

in C , we have
Vσi

(Iσi
) ≥ Vσi

(Iσj
).

Next, we remove players pσ1
, pσ2

, . . . , pσk
from N . We

also remove DOM(T) from C. By removing DOM(T), the
cake is divided into two sub-cakes: the piece to the right of
DOM(T) and the piece to the left of DOM(T), respec-
tively Cl and Cr. Let Nl (Nr) be the set of players with their
share inside Cl (Cr). Also, let Tl and Tr be the sets of valua-
tion intervals corresponding to Nl and Nr.

Now, we update the valuation functions of the players in
Cl and Cr. Specifically, for every player pi ∈ Nl with βi >
ασ1

we change the value of βi to ασ1
. Similarly, for every

player pj ∈ Nr with αj < βσk
we change αj to βσk

.
After removing the allocated piece along with its corre-

sponding players and updating the valuations, we perform
this expansion and removal independently for both Tl and
Tr. The process continues until all the players are removed.
In Algorithm 1, you can find a psudocode for EFISM. In ad-
dition, you can find a detailed example in the Appendix.

Algorithm 1 EFISM algorithm
function EFISM(C,N , T)

. C corresponds to the interval [a, b]
if C 6= ∅ then

exp(T) . Expansion process on T
C = Iσ1 , Iσ2 , . . . , Iσk

: a maximal locked chain
for 1 ≤ i ≤ k do

Allocate Iσi
to pσi

Cl = [a, ασ1
]

Cr = [βσk
, b]

for every pk ∈ N do
if ak < aσ1 then

βk = min(βk, ασ1)
Add pk, Ik to Nl, Tl respectively

else if bk > bσk
then

αk = max(αk, βσk
)

Add pk, Ik to Nr, Tr respectively
EFISM(Cl,Nl, Tl)
EFISM(Cr,Nr, Tr)

Theorem 2. EFISM is envy-free, truthful and cuts the cake
in exactly n− 1 locations.

Remark that removing the ordering property described in
the beginning of this section may result in an inappropriate
allocation. For example, consider the input described in Fig-
ure 2. Clearly, running EFISM on this input does not yield
an envy-free allocation; here pc envies pb. In addition, the
allocation does not allocate the entire cake, because a piece
between Ic and Ib is left over.

C

a b

c

Ic Ia Ib

Figure 2: EFISM for intervals without ordering property

5 Expansion Process with Unlocking
In this section, we introduce a more general form of the ex-
pansion process. The idea is the fact that during the expan-
sion process, there might be some cases that a locked chain
can become unlocked by re-permuting some of its intervals.
Definition 4. Let C = Iσ1

, Iσ2
, . . . , Iσk

be a maximal
locked chain. A permutation Iδ1 , Iδ2 , . . . , Iδr of the inter-
vals in C is said to be C -unlocking, if the following con-
ditions are held: (I) ∀i, Iδi ∈ C and δr = σk,(II) For
all 1 ≤ j ≤ r − 1, aδj ≥ αδj+1

and bδj < βδj+1
,(III)

αδ1 ≤ aδr and βδ1 > bδr .
The intuition behind the definition of unlocking permu-

tation is as follows: let Iδ1 , Iδ2 , . . . , Iδr be a C -unlocking
permutation, where C = Iσ1 , Iσ2 , . . . , Iσk

. Then, we can
change the order of intervals in C by placing Iδj in the loca-
tion of Iδj−1

for 1 < j ≤ r and placing Iδ1 in the location of
Iδr . By the definition of unlocking permutation, after such
operations Iδr (Iσk

) is no longer locked. Thus, Iσk
is not a

barrier for the expansion and the process can be continued.

e

b

c

d

a

C

Ia Ib Ic Id Ie

Figure 3: Example of a Permutation Graph. Here the
locked chain Ia, Ib, Ic, Id, Ie can be unlocked by permuta-
tion

(
Ia Ib Ic Id Ie
Ia Ie Ib Ic Id

)
Definition 5. A locked chain C = Iσ1

, Iσ2
, . . . , Iσk

is
strongly locked, if C admits no unlocking permutation that
contains Iσk

.

Definition 6. The expansion process with unlocking U -
exp(.) is strongly locked, if at least one of its chains is
strongly locked.

For a set T of valuation intervals, we use U -exp(T) to re-
fer to the expansion process with unlocking. The expansion
process with unlocking is in fact, the same as expansion pro-
cess with the exception that when the process is faced with
a locked chain, it tries to unlock the chain by an unlocking
permutation. If the chain becomes unlocked, the expansion
goes on. The process runs until either the entire DOM(T) is
allocated (perfect) or a strongly locked chain occurs (imper-
fect). In the Appendix you can find a detailed example.

It is worth mentioning that there may be multiple locked
intervals in a moment. In such situations, we separately try
to unlock each interval.

Definition 7. A permutation graph for a locked chain C is
a directed graph GC 〈V,E〉. For every interval Iσi

∈ C ,
there is a vertex vσi in V . The edges in E are in two types
El and Er, i.e., E = El ∪ Er. The edges in El and Er are
determined as follows: (I) For each Iσi and Iσj , the edge
(vσi , vσj) is in El, if i > j and ασi ≤ aσj .(II) For each Iσi

and Iσj , the edge (vσi , vσj) is in Er, if i < j and βσi > bσj .
See Figure 3 for an example of permutation graph.

A trivially necessary and sufficient condition for a chanin
C to be strongly locked is that GC contains no cycle con-
taining vσk

. However, regarding the special structure ofGC ,
we can define a stronger necessary and sufficient condition
for a strongly locked situation.

Definition 8. A directed cycle C in GC is one-way, if it
contains exactly one edge from Er.

Note that no cycle in GC can contain only the edges from
one of El or Er. In Lemma 3, we use one-way cycles to
give a necessary and sufficient condition for a chain to be
strongly locked.

Lemma 3. A chain C = Iσ1 , Iσ2 , . . . , Iσk
is strongly

locked, iff GC admits no one-way cycle that contains vσk
.

6 EFGISM: General Interval Scheduling
In this section, we assume that the valuation function for
each player is an interval, without any restriction on the start-
ing and ending points of the intervals.

For this case, we propose an envy-free and truthful allo-
cation that uses less than 2n cuts. Our algorithm for finding
a proper allocation is based on the expansion process with
unlocking. Generally speaking, we iteratively run U -exp(.)
process on the remaining players’ shares. This process al-
locates the entire cake, or stops in an strongly locked situ-
ation. We prove some desirable properties for this situation
and leverage those properties to allocate a piece of the cake
to the players in the locked chain. Next, we remove the sat-
isfied players and shrink the allocated piece (as defined in
Definition 9) and solve the problem recursively for remain-
ing players and the remaining part of the cake.

Definition 9 (shrink). Let C be a cake and I = [Is, Ie] be an
interval. By the term shrinking I , we mean removing I from
C and glueing the pieces to the left and right of I together.
More formally, every valuation interval [αi, βi] turns into
[f(αi), f(βi)], where

f(x) =


x x < Is
Is Is ≤ x ≤ Ie
x− Ie + Is Ie < x

(see Figure 4). As a warm-up, we ignore the truthfulness
property and show that the expansion process with unlock-
ing yields an envy-free allocation with 2(n− 1) cuts.

a

b

c

d

e

a

b

c

x

C

C

d

e

Figure 4: The cake C and the intervals a, b, c, d and e before
and after shrinking interval x

6.1 Envy-free allocation with 2(n− 1) cuts
For this case, our algorithm is as follows: In the beginning,
we run U -exp(T). The process either ends perfectly and
the allocation is found, or a strongly locked chain appears.
By the definition of strongly locked, we know that there
exists a locked chain with no unlocking permutation. Let
C = Iσ1 , Iσ2 , . . . , Iσk

be a maximal strongly locked chain.
Now, consider GC . By Lemma 3, GC contains no one-

way cycle. Let ` be the minimum index, such that there is a
directed path from vσk

to vσ`
using the edges in El.

Lemma 4. There is a directed path from vσk
to every vertex

vσ`′ with `′ > `, using edges in El.

b

a

Ia Ib Ia(cont)

b

a

Ib Ia

C

C

real share

Figure 5: b can increase his share by misreporting ab

Based on Lemma 4 and the fact that GC contains no one-
way cycle, there is no edge from vσ`′ to vσk

in Er for any
`′ ≥ `, which means:

∀`′ ≥ ` βσ`′ ≤ bσk
(2)

On the other hand, there is no path from vσk
to vσ`′ for

`′ < `, that is:

∀`′ ≥ ` ασ`′ > aσ`−1
(3)

We now allocate every interval Iσ`′ to pσ`′ for ` ≤ `′ ≤ k,
remove {pσ`

, pσ`+1
, . . . , pσk

} from N , and shrink the inter-
val [aσ`

, bσk
]. Next, we continue the expansion process with

the remaining players and cake. The iteration between ex-
pansion process with unlocking and allocating the cake in
the strongly locked situation goes on, until the entire cake is
allocated.

Theorem 3. The algorithm described above is envy-free,
and cuts the cake in at most 2(n− 1) locations.

6.2 EFGISM Method
It is worth mentioning that the allocation described in sec-
tion 6.1 is not truthful. Consider the example in Figure 5. It
can be observed that player b can increase his share by mis-
reporting αb. In this section, we try to resolve this issue. Our
strategy to deal with this difficulty is to run U -exp(.) only
for a special subset of players in every step. Lemma 5 plays
the key role in our method.

Lemma 5. Let T be a set of intervals, with the property that
for every T ′ ⊂ T , Φ(T ′) > Φ(T) (we call such set as irre-
ducible). Then we can divide DOM(T) into at most 2|T |−1
pieces and associate them to the intervals, such that:(I) the
total length of the pieces associated with any interval is ex-
actly Φ(T), (II) the pieces allocated to any interval is totally
within the interval.

Proof. We use induction on |T |. For |T | = 1 the claim triv-
ially holds: we can associate DOM(T) to the interval in T
that needs no cut. Suppose that the proposition is true for
|T | < k. We prove it for |T | = k. Consider U -exp(T). If
U -exp(T) ends perfectly, then we are done. Otherwise, let
C = Iσ1

, Iσ2
, . . . , Iσk

be a maximal strongly locked chain
after the process. Considering GC , let ` be the minimum in-
dex, such that there is a directed path from vσk

to vσ`
.

Lemma 6. ` > 1.

By Lemma 4, we know that equations (2) and (3) are held
for the chain C . Now, let

x = βσk
− (k − `+ 1) · Φ(T). (4)

Lemma 7. aσ`−1
< x < aσ`

.

We show that the piece [x, βσk
] can be allocated to players

pσ`
, pσ`+1

, . . . , pσk
using 2(k − ` + 1) − 2 cuts. For this,

consider the valuation intervals T ′ = I ′σ`
, I ′σ`+1

, . . . , I ′σk

such that:

∀`≤i≤k I ′σi
= (max(x, ασi), βσi)

Note that DOM(T ′) = [x, βσk
] and hence,

Φ(T ′) =
βσk
− x

k − `+ 1
=

bσk
− x

k − `+ 1
(5)

Regarding Equation (4), Φ(T ′) = Φ(T).

Lemma 8. For all T ′′ ⊂ T ′, we have Φ(T ′′) > Φ(T ′).

Lemma 8 shows that the set of intervals in T ′ admit
the properties described in Lemma 5. Furthermore, regard-
ing Lemma 6, T ′ is a proper subset of T . By induction
hypothesis, we know that we can cut DOM(T ′) into at
most 2(k − ` + 1) − 2 pieces and assign them to play-
ers pσ`

, pσ`+1
, . . . , pσk

such that both of the properties in
Lemma 5 are satisfied. Denote by NT the players with val-
uations in T . We shrink DOM(T ′) and remove the players
pσ`

, pσ`+1
, . . . , pσk

fromNT . Lemma 9 assures that the con-
ditions in Lemma 5 are held for the remaining cake and re-
maining players.

Lemma 9. Let T ′′ be the intervals related to the play-
ers in NT ′′ = NT \ {pσ`

, pσ`+1
, . . . , pσk

} after shrinking
DOM(T ′). Then, T ′′ is irreducible with Φ(T ′′) = Φ(T ′).

According to Lemma 9, we can use induction hypothesis
to show that the set T ′′ can be allocated to the players in
NT ′′ with 2(`− 1)− 2 cuts. The total number of cuts would
be 2(`− 1)− 2 + 2(k − `+ 1)− 2 = 2k − 4 cuts plus two
cuts on x and βσk

that results in 2k − 2 cuts.

Based on lemma 5, we introduce the algorithm EFGISM
as follows: among all subsets of N , we find a subset such
that their corresponding intervals has the minimum density
(and the set with minimum size, if there were multiple op-
tions). Let N be this subset and let T be the intervals corre-
sponding to the players in N . In Lemma 10, we show that T
(and consequently N) can be found in polynomial time.

Lemma 10. T can be found in polynomial time.

Since T has the minimum possible density, T is irre-
ducible. Hence, we can allocate to every player in N , a
piece from DOM(T) with the properties defined in Lemma
5. Next, we remove the players in N from N and shrink
DOM(T) from C. Now, we recursively assign the remain-
ing piece of the cake to remaining players using EFGISM.
In Algorithm 2 you can find a psudocode for EFGISM.

Algorithm 2 EFGISM algorithm
function EFGISM(N , T , C)

if C 6= ∅ then
T = arg minT ′⊆T Φ(T ′)
N = players with interval in T
Allocate(N,DOM(T)) . By Lemma 5
Shrink(C,DOM(T)) . T is also updated
EFGISM(N \N, T , C)

Theorem 4. EFGISM is envy-free and truthful and uses at
most 2(n− 1) cuts.

We credit the proof for truthfulness of EFGISM to (Chen
et al. 2013).

7 Piecewise Constant functions
In this section, we consider a more general case in which
the valuation functions of the players are piecewise con-
stant. Denote by m the maximum number of intervals that
every valuation function can have, that is, for every player
pi, |Si| ≤ m. Here, we assume that for every pi, |Si| = m.
This is without loss of generality, since we can break an in-
terval into several sub-intervals. Thus, for every player pi,
we suppose Si = {Ii,1, Ii,2, . . . , Ii,m}.

This section consists of two parts. In the first part, we
show that for a constant number of players, one can find
the envy-free allocation with n − 1 cuts in time poly(m).
Next, in the second part, we utilize the expansion process
with unlocking to devise a poly(n,m) time, envy-free algo-
rithm with O(nm) cuts on the cake.

Recall that finding an envy-free allocation with n−1 cuts
for n players is PPAD−complete even for the case of n = 3
(Deng, Qi, and Saberi 2012). In Theorem 5, we show that
for a constant number of players with piecewise constant
valuation, the problem can be solved in time poly(m).

Theorem 5. An envy-free allocation with n − 1 cuts can
be found for a constant number of players whose valua-
tion functions are piecewise constant with m steps in time
poly(m).

Proof. Firstly, note that from ((Stromquist 1980)) we know
there exists an envy-free allocation with n− 1 cuts. In such
an allocation there are n − 1 cutting points. Let 0 ≤ c1 ≤
c2 ≤ · · · ≤ cn−1 ≤ 1 be those cutting points and c0 = 0,
cn = 1 be the start and end of the cake. In addition, for each
player, their valuation function can be described by 2m con-
stant points (2 constant points for each step) and m constant
values which are the density value of each step. Therefore,
there are at most 2mn constant points on the cake in a way
that each player likes the cake between two consecutive con-
stant points uniformly. In other words, the density value of
the cake between two consecutive constant points is a con-
stant value, for each of the players.

Now, if we know the range of each cutting point (it can be
between which of the two consecutive constant points) then
we can write the value of the ith piece created by cutting
points ([ci−1, ci]) for each player j as a linear function of the
cutting points. However, in order to satisfy the envy-freeness

we also need to know how the pieces will be allocated to
the players. If we know all of these informations then we
can formulate the problem as a linear program (n(n − 1)
constraints for envy-freeness, n − 1 constraints guarantees
0 ≤ c1 ≤ c2 ≤ · · · ≤ cn−1 ≤ 1, and other constraints fix
the range of the cutting points). Any feasible solution of the
linear program is an envy-free allocation with n− 1 cuts.

If we can’t find a feasible solution for one linear program
then we need to check the next possibility of the range of the
cutting points and allocation of the pieces. In the worst case,
we need to check every possibility which means that we
need to solve n×(2mn+n−1)!

(2mn)! = O(mn) different linear pro-
grams. Finally, we know that such an allocation exists and
one of the linear programs finds a feasible solution. Hence,
for constant n, by solving polynomial number of different
linear programs, we can find an envy-free allocation.

In the second part, we exploit expansion method with un-
locking to find a proper allocation. Here, we assume that
the valuation functions have a special property, namely, in-
tersection property. Denote by Ri,j,k the set of intervals in
Sk that have a non-empty intersection with Ii,j . We sup-
pose that for every valuation interval Ii,j and every player
pk(k 6= i), |Ri,j,k| = 1. For this case, we prove Theorem 6.

Theorem 6. LetN be a set of players whose valuation func-
tions are piecewise constant withm steps. Assuming that the
intersection property holds, there exists a poly(m,n) time
allocation algorithm that is envy-free and cuts the cake in
O(nm) locations.

Proof. Consider an instance of the problem with nm play-
ers, where the valuation function of player pi,j is Ii,j . Now,
we execute EFGISM for this instance. By the properties of
EFGISM, we know that the resulting allocation is envy-free
and cuts the cake in at-most 2(nm−1) places. Let Pi,j be the
set of intervals allocated to pi,j in EFGISM. We show that
the allocation that allocates Pi =

⋃
1≤j≤m Pi,j to player pi

is also envy-free.
To prove envy-freeness, we use an structural property of

the expansion process: by the first invariant of the expan-
sion process, the final allocation would allocate to every
player pi,j a set of pieces that are totally within Ii,j . In
addition, note that for interval Ii,j , |Ri,j,k| = 1 for ev-
ery player pk. We have Vi(Pi) =

∑
1≤j≤m Vi(Pi,j) and

Vi(Pk) =
∑

1≤j≤m Vi(Pk,j). Furthermore, by intersection
property, at most one valuation interval of pk, say Ik,l has
a non-empty intersection with Ii,j . By the envy-freeness of
EFGISM, we know that pi,j prefers his share to the share
allocated to pk,l, That is Vi,j(Pi,j) ≥ Vi,j(Pk,l). Regard-
ing the fact that Ii,j ∩ Ik,l′ = ∅ for all l′ 6= l, we have
Vi,j(Pi,j) ≥

∑
l Vi,j(Pk,l). Thus,∑

j

Vi,j(Pi,j) ≥
∑
j

∑
l

Vi,j(Pk,l)

Vi(Pi) ≥
∑
j

∑
l

Vi,j(Pk,l).

The right hand side of above equation is at least Vi(Pk).

References
Aziz, H., and Mackenzie, S. 2016. A discrete and bounded
envy-free cake cutting protocol for four agents. In Proceed-
ings of the 48th Annual ACM SIGACT Symposium on Theory
of Computing, 454–464. ACM.
Aziz, H., and Ye, C. 2014. Cake cutting algorithms for
piecewise constant and piecewise uniform valuations. In
International Conference on Web and Internet Economics,
1–14. Springer.
Barbanel, J. B., and Brams, S. J. 2004. Cake division
with minimal cuts: envy-free procedures for three persons,
four persons, and beyond. Mathematical Social Sciences
48(3):251–269.
Bei, X.; Chen, N.; Hua, X.; Tao, B.; and Yang, E. 2012.
Optimal proportional cake cutting with connected pieces. In
AAAI.
Brams, S. J., and Taylor, A. D. 1995. An envy-free cake
division protocol. American Mathematical Monthly 9–18.
Brams, S. J.; Jones, M. A.; Klamler, C.; et al. 2006. Better
ways to cut a cake. Notices of the AMS 53(11):1314–1321.
Brams, S. J.; Feldman, M.; Lai, J. K.; Morgenstern, J.; and
Procaccia, A. D. 2012. On maxsum fair cake divisions. In
AAAI.
Brânzei, S.; Caragiannis, I.; Kurokawa, D.; and Procaccia,
A. D. 2016. An algorithmic framework for strategic fair
division. In Thirtieth AAAI Conference on Artificial Intelli-
gence.
Caragiannis, I.; Lai, J. K.; and Procaccia, A. D. 2011. To-
wards more expressive cake cutting. In IJCAI.
Chen, Y.; Lai, J. K.; Parkes, D. C.; and Procaccia, A. D.
2013. Truth, justice, and cake cutting. Games and Economic
Behavior 77(1):284–297.
Deng, X.; Qi, Q.; and Saberi, A. 2012. Algorithmic so-
lutions for envy-free cake cutting. Operations Research
60(6):1461–1476.
Kurokawa, D.; Lai, J. K.; and Procaccia, A. D. 2013. How
to cut a cake before the party ends. In AAAI.
Maya, A., and Nisan, N. 2012. Incentive compatible two
player cake cutting. In International Workshop on Internet
and Network Economics, 170–183. Springer.
Procaccia, A. D. 2013. Cake cutting: not just child’s play.
Communications of the ACM 56(7):78–87.
Procaccia, A. D. 2014. Cake cutting algorithms.
Steinhaus, H. 1948. The problem of fair division. Econo-
metrica 16(1).
Stromquist, W. 1980. How to cut a cake fairly. American
Mathematical Monthly 640–644.
Stromquist, W. 2007. Envy-free cake divisions cannot be
found by finite protocols. In Fair Division.

