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Introduction



Introduction (Statistical / Deep Generative Models)

1. A Generative model (GM) is a probability distribution p(x).

A statistical GM is a trainable probabilistic model, pθ(x).

A deep GM is a statistical generative model parametrized by a neural network.

2. A generative model needs

Data (x): Complex, unstructured samples such as images, speech, molecules, text, etc.

Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,

maximum likelihood, divergence), optimization algorithm, etc.

Credit: Aditya Grover
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Introduction (Key Questions)

1. A Representation: how do we parameterize the joint distribution of many random

variables?

2. A Learning: what is the right way to compare probability distributions?

3. A Inference: how do we invert (or encode) the generation process?

Credit: Aditya Grover
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Joint Distribution

Independent random variables

p(x1, x2) = p(x1) p(x2)

Joint Distribution
It’s convenient to model joint distributions by independent distributions

p(x1, x2)=p(x1)p(x2)

x2

p(x2|x1)=p(x2)

conditional ＝ marginal

x1

Dependent random variables

p(x1, x2) 6= p(x1) p(x2)

Joint Distribution
Real-word problems always involve dependent variables 

x2

conditional ≠ marginal

p(x1, x2)

p(x2|x1)

x1

How to Model Joint Distributions?

1. Solution 1: Modeling by independent latents (e.g., VAE)

Mapping independent variables → dependent ones

Strict assumption for high-dim data.

Often with low-dim latents

A good building block, but often not sufficient independent dependent

How to Model Joint Distributions?
Solution 1: Modeling by independent latents (e.g., VAE)
• mapping: independent ⇒ dependent
• strict assumption for high-dim data (e.g., 32x32x3 pixels)
• often with low-dim latents
• a good building block, but often not sufficient 

2. Solution 2: Modeling by conditional distributions
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Conditional Distribution Modeling

1. Suppose we have a dataset S = {x1, x2, . . . , xm} of n-dimensional points x.

2. For simplicity, we assume points are binary, i.e., x ∈ {0, 1}n.

3. Case 1: Partitioning the input representation space X
Using chain rule, we can factorize the joint distribution as

p(x) = p(x1, x2, . . . , xn) =
n∏

i=1

p(xi |x1, x2, . . . , xi−1) =
n∏

i=1

p(xi |x<i )

where x<i = [x1, x2, . . . , xi−1] denotes vector of random variables with index less than i .

The chain rule factorization can be expressed graphically as a Bayesian network.

x1 x2 . . . xd−1 xd
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Conditional Distribution Modeling

1. Suppose we have a dataset S = {x1, x2, . . . , xm} of n-dimensional points x.

2. For simplicity, we assume points are binary, i.e., x ∈ {0, 1}n.

3. Case 2: Partitioning the latent representation space Z (Ex. VQ-VAE)

Case Study: Conditional Distribution Modeling
Case 2: Partitioning the latent representation space z

Example: Autoregressive Models on VQ-VAE tokens 
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Generative models categories

Generative models

Explicit density

Tractable density Approximate density Unnormalized density

Implicit density

Autoregressive

Normalizing Flows

VAEs

Diffusion models

Energy-based

GANs

Directly learn

density

Learn approximation

of density, e.g.

lower bound

Learn unnormalized

density

compare real vs

generated samples
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Autoregressive models



A timeline of representative autoregressive models in vision

JOURNAL OF LATEX CLASS FILES, NOVEMBER 2024 3

Fig. 1: A timeline of representative autoregressive models in vision. We are witnessing rapid growth in this field. More
works can be found in our released GitHub page, which is updated daily.

of larger Mamba models for vision-based tasks. Token-wise
generation typically leverages transformer-based architec-
tures that are well-suited for handling sequential depen-
dencies across longer contexts, making them a powerful
alternative to pixel-wise methods for unconditional image
generation.

2.1.2 Class-conditional Image Generation
Class-conditional Image Generation refers to the task of gen-
erating images conditioned on specific class labels, where
the generated image corresponds to a designated category.
This task involves learning the joint distribution of images
and their corresponding classes, allowing the model to
generate realistic images that adhere to the characteristics
of the target class. By conditioning the image generation
process on class labels, models are able to create diverse and
high-quality images that belong to the specified category.
Autoregressive models accomplish this task by integrating
class information into the sequential generation process.
The Autoregressive Models for Class-Conditional Image
Generation can be categorized into three approaches:

Pixel-wise Generation refers to generating an image
pixel by pixel with each pixel conditioned on the class label
and previously generated pixels. For example, Conditional
PixelCNN [92] is an extension of the PixelCNN architecture
that models complex conditional distributions for image
generation, allowing it to generate diverse and realistic
images conditioned on class labels or latent embeddings.
The contribution includes a novel gated convolutional layer
architecture that improves the performance of PixelCNN
while reducing computational costs, and the model achieves

state-of-the-art results in generating high-quality images
from diverse classes such as animals, objects, and faces un-
der varying poses and lighting conditions. PixelCNN++ [91]
introduces several key improvements over the original Pix-
elCNN, including the use of a discretized logistic mixture
likelihood for pixel intensities, conditioning on whole pixels
rather than sub-pixels, and the addition of downsampling
to capture multi-resolution structures. These modifications
result in better generative performance and faster training,
achieving state-of-the-art log-likelihood scores on CIFAR-
10 and providing improved sample quality and efficiency.
Gated PixelCNN [90] is an extension of PixelCNN that en-
ables controllable image generation by conditioning on both
text descriptions and spatial structures, such as segmenta-
tion masks or keypoints, which improves the interpretability
and control of generated images, demonstrating the ability
to synthesize high-quality images from the Caltech-UCSD
Birds, MPII Human Pose, and MS-COCO datasets while
adhering to both text and structural constraints. Parallelized
PixelCNN [89] improves PixelCNN by allowing pixels to be
generated in parallel, significantly speeding up the image
sampling process. The approach leverages a coarse-to-fine
multiscale structure, enabling pixel groups to be generated
conditionally independent of others, reducing the computa-
tional complexity from O(N) to O(log N) and achieving com-
petitive performance in tasks like class-conditional image
generation and video generation. Image Transformer [88]
introduces a self-attention-based model for image gener-
ation, adapting the Transformer architecture from natural
language processing to vision tasks. By employing local self-
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Autoregressive models

1. The autoregressive constraint is a way to model sequential data.

2. Autoregressive = Auto + Regression

Auto: Self

using its own outputs as inputs for next perditions

Regression:

estimating relationship between variables

3. Autoregressive implies an inference-time behavior

4. Training-time is not necessarily autoregressive
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Autoregressive models inference

1. Factorization contains n factors and some factors contain many parameters: O(2n).

2. It is infeasible to learn such an exponential number of parameters.

3. AR models use (deep) neural network to parameterize these factors p(xi |x<i ).
Inference: Autoregressive

This figure implements this formulation:
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Autoregressive models

1. How to evaluate p(x1, . . . , x900)?

2. Multiply all the conditionals factors.

3. How to sample from p(x1, . . . , x900)?

Sample x̄1 ∼ p(x1).

Sample x̄2 ∼ p(x2|x1 = x̄1).

Sample x̄3 ∼ p(x3|x1 = x̄1, x2 = x̄2).

4. How many parameters? 1 + 2 + 3 + . . .+ n ≈ n2

2

x̂1 x̂2 x̂3 x̂4

x1 x2 x3 x4
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Autoregressive models training

1. Usually teacher-forcing are used for training.

2. Inputs are not from previous outputs

3. Inputs are from ground-truth data

Teacher-forcing
• Inputs are not from previous outputs
• Inputs are from ground-truth data 

Training: Teacher-Forcing 
Teacher-forcing
• Inputs are not from previous outputs
• Inputs are from ground-truth data 

Training: Teacher-Forcing 

ground-truth as inputs
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Common Architectures for Autoregression

Autoregression is not architecture-specific.

RNN
This figure implements this formulation:

Autoregression is not architecture-specific 

(showing training case for simplicity)

RNN
Common Architectures for Autoregression

See also my lecture at 6.8300: “11: Sequence Modeling”: https://drive.google.com/file/d/1lOYsyImXl3caWlsplfThyuvgz-8Vn7yR/view?usp=sharing

CNNRNN Attention
CNN

Common Architectures for Autoregression

See also my lecture at 6.8300: “11: Sequence Modeling”: https://drive.google.com/file/d/1lOYsyImXl3caWlsplfThyuvgz-8Vn7yR/view?usp=sharing

CNNRNN Attention

Attention

Common Architectures for Autoregression

See also my lecture at 6.8300: “11: Sequence Modeling”: https://drive.google.com/file/d/1lOYsyImXl3caWlsplfThyuvgz-8Vn7yR/view?usp=sharing

CNNRNN AttentionHamid Beigy (Sharif University of Technology) 14 / 36



Autoregressive models

1. Suppose conditional distributions p(xi |x<i ) correspond to Bernoulli random variables and

learn a function mapping x1, x2, . . . , xi−1 to the mean of this distribution as

pθi (xi |x<i ) = Bern(fi (x1, x2, . . . , xi−1))

θi denotes a set of parameters used to specify mean function fi : {0, 1}i−1 7→ [0, 1].

2. The number of parameters of an AR model equals to
∑n

i=1|θi |.

3. Tractable exact likelihood computations.

4. No complex integral over latent variables in likelihood

5. Slow sequential sampling process.

6. Cannot rely on latent variables.

Hamid Beigy (Sharif University of Technology) 15 / 36



Autoregressive models

1. In the simplest case, we can specify the function as a linear combination of the input

elements followed by a sigmoid non-linearity (to restrict the output to lie between 0 and 1).

2. This gives us the formulation of a fully-visible sigmoid belief network (FVSBN).

fi (x1, x2, . . . , xi−1) = σ


ai0 +

i−1∑

j=1

aijxj




where σ is sigmoid function and θi = {ai0, . . . , aii−1}.

3. At the output layer we want to predict n conditional probability distributions while at the

input layer we are given the n input variables.

x̂1 x̂2 x̂3 x̂4

x1 x2 x3 x4

4. The conditional variables xi |x1, . . . , xi−1 are Bernoulli with parameters

x̂i = p(xi = 1|x1, . . . , xi−1; θi ) = σ


ai0 +

i−1∑

j=1

aijxj



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FVSBN results (Gan et al. 2015)

1. Left: Training (Caltech 101 Silhouettes) Right: Samples from the model

FVSBN Results

Training data on the left (Caltech 101 Silhouettes). Samples from the
model on the right.
Figure from Learning Deep Sigmoid Belief Networks with Data
Augmentation, 2015.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 3 8 / 31
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Neural Autoregressive Density Estimator

1. To increase the expressiveness of an autoregressive generative model, we can use more

flexible parameterizations for the mean function such as MLP instead of logistic regression.

2. For example, consider the case of a neural network with one hidden layer.

3. The mean function for variable i can be expressed as

hi = σ(Aix<i + ci )

fi (x1, x2, . . . , xi−1) = σ
(
aihi + bi

)

where hi ∈ Rd is hidden layer activations of MLP.

4. Hence, we have the following architecture

5. Total number of parameters is dominated by matrices Ai and given by O(nd + n).Hamid Beigy (Sharif University of Technology) 18 / 36



Neural Autoregressive Density Estimator

1. The Neural Autoregressive Density Estimator (NADE) provides an alternate MLP-based

parameterization that is more statistically and computationally efficient than the given

approach (Larochelle and Murray 2011).

2. In NADE, parameters are shared across the functions used for evaluating the conditionals.

3. The hidden layer activations are specified as

hi = σ(W.,<ix<i + c)

x̂i = p(xi = 1|x1, . . . , xi−1;θi ) = σ(α(i)hi + bi )

4. θ = {W ∈ Rd×n, c ∈ Rd , {α(i) ∈ Rd}ni=1, {bi ∈ R}ni=1} is the full set of parameters.

5. The weight matrix W and the bias vector c are shared across the conditionals.
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Neural Autoregressive Density Estimator

1. Sharing parameters has two benefits:

The total number of parameters gets reduced from O(n2d) to O(nd).

Hidden unit activations can be evaluated in O(nd) time via

hi = σ(ai )

ai+1 = ai + W [., i ]xi

with the base case given by a1 = c.

2. Training of NADE is done by minimizing − 1
T

∑T
i=1 log p(xi )

3. Samples from NADE trained on a binary version of MNIST.

      36

The Neural Autoregressive Distribution Estimator

Figure 2: (Left): samples from NADE trained on a binary version of mnist. (Middle): probabilities from
which each pixel was sampled. (Right): visualization of some of the rows of W. This figure is better seen on a
computer screen.

set it to 0, to obtain:

0 =
@KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

@⌧k(i)

0 = �ck �Wk,·µ(i) + log

✓
⌧k(i)

1� ⌧k(i)

◆

⌧k(i)

1� ⌧k(i)
= exp(ck + Wk,·µ(i))

⌧k(i) =
exp(ck + Wk,·µ(i))

1 + exp(ck + Wk,·µ(i))

⌧k(i) = sigm

0
@ck +

X

j�i

Wkjµj(i) +
X

j<i

Wkjvj

1
A

where in the last step we have replaced the ma-
trix/vector multiplication Wk,·µ(i) by its explicit sum-
mation form and have used the fact that µj(i) = vj for
j < i.

Similarly, we set the derivative with respect to µj(i)
for j � i to 0 and obtain:

0 =
@KL(q(vi,v>i,h|v<i)||p(vi,v>i,h|v<i))

@µj(i)

0 = �bj � ⌧(i)>W·,j + log

✓
µj(i)

1� µj(i)

◆

µj(i)

1� µj(i)
= exp(bj + ⌧(i)>W·,j)

µj(i) =
exp(bj + ⌧(i)>W·,j)

1 + exp(bj + ⌧(i)>W·,j)

µj(i) = sigm

 
bj +

X

k

Wkj⌧k(i)

!

We then recover the mean-field updates of Equa-
tions 7 and 8.
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Deep NADE

1. The input to the network (DeepNADE) is the concatenation of the masked data and the

mask itself (Uria, Côté, et al. 2016).

2. This allows the network to identify cases when input data is truly zero from cases when

input data is zero because of the mask.

3. NADE also explored other autoencoder architectures such as convolutional neural networks

4. DeepNade with two hidden layers

Hamid Beigy (Sharif University of Technology) 21 / 36



Real-Valued NADE

1. The RNADE algorithm extends NADE to learn generative models over real-valued

data (Uria, Murray, and Larochelle 2013).

2. The conditionals are modeled via a continuous distribution such as mixture of K Gaussian.

p(xi |x<i ) =
K∑

j=1

πijN (µij , σ
2
ij)

Output of the network are parameters of a mixture model

for p(xk |x<k)

Means are µi,k = bµi
i,k + αµi

i,khi

Standard deviations are σi,k = exp
(
bσii,k + ασii,khi

)
Mixing weights are πi,k = softmax

(
bπi
i,k + απi

i,khi
)

REAL-VALUED NADE 
(Uria, Murray, Larochelle)

13

x1 x2 x3 x4

h hh(1) h
(4)(3)(2)

bx1 bx2 bx3 bx4

• RNADE: models real-valued observations by
‣ outputting the parameters 

of a mixture model for  

Means

Std. deviations

Mixing weights

p(xk|x<k)

�ik = exp(b�i

k + V�i

k,·h
(k))

µik = bµi

k + Vµi

k,·h
(k)

⇡ik = softmax(b⇡i

k + V⇡i

k,·h
(k))

3. Please study DocNADE.
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Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is an autoencoder that preserves autoregressive property (Germain et al. 2015).
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Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is a specially designed architecture to enforce the autoregressive property in the

autoencoder efficiently.

2. MADE removes the contribution of certain hidden units by using mask matrices so that

each input dimension is reconstructed only from previous dimensions in a given ordering in

a single pass.

3. In a multilayer fully-connected neural network, say, we have L hidden layers with weight

matrices W1, . . . ,WL and an output layer with weight matrix V . The output x̂ has

dimensions x̂i = p(xi |x1:i−1)

4. Without any mask, we have

h0 = x

hl = activationl(Wlhl−1 + bl)

x̂ = σ(VhL + c)

Hamid Beigy (Sharif University of Technology) 24 / 36



Masked Autoencoder for Distribution Estimation (MADE)

1. Without any mask, we have

h0 = x

hl = activationl(Wlhl−1 + bl)

x̂ = σ(VhL + c)

2. To zero out some connections between layers, we can simply element-wise multiply every

weight matrix by a binary mask matrix.

hl = activationl((Wl�MWl

)hl−1 + bl)

x̂ = σ((V�MV)hL + c)

3. Mask matrix is constructed by a labeling process.

RESULTS
• Binarize MNIST

63

MADE: Masked Autoencoder for Distribution Estimation

Table 4. Negative log-likelihood test results of different models on multiple datasets. The best result as well as any other result with an
overlapping confidence interval is shown in bold. Note that since the variance of DARN was not available, we considered it to be zero.

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoBernoullis 20.44 23.41 98.19 14.46 290.02 40.56 47.59 30.16
RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE (fixed order) 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 1hl (16 ord.) 13.19 12.58 82.31 9.69 272.39 27.32 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 ⇡28.17 ⇡46.10 ⇡28.83

MADE 13.12 11.90 83.63 9.68 280.25 28.34 47.10 28.53
MADE mask sampling 13.13 11.90 79.66 9.69 277.28 30.04 46.74 28.25

Figure 3. Left: Samples from a 2 hidden layer MADE. Right: Nearest neighbour in binarized MNIST.

Table 6. Negative log-likelihood test results of different models on
the binarized MNIST dataset.

Model � log p

RBM (500 h, 25 CD steps) ⇡ 86.34

In
tr

ac
ta

bl
e

DBM 2hl ⇡ 84.62
DBN 2hl ⇡ 84.55
DARN nh=500 ⇡ 84.71
DARN nh=500, adaNoise ⇡ 84.13

MoBernoullis K=10 168.95

Tr
ac

ta
bl

e

MoBernoullis K=500 137.64
NADE 1hl (fixed order) 88.33
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (128 orderings) 85.10

MADE 1hl (1 mask) 88.40
MADE 2hl (1 mask) 89.59
MADE 1hl (32 masks) 88.04
MADE 2hl (32 masks) 86.64

7. Conclusion
We proposed MADE, a simple modification of autoencoders
allowing them to be used as distribution estimators. MADE
demonstrates that it is possible to get direct, cheap estimates
of high-dimensional joint probabilities, from a single pass
through an autoencoder. Like standard autoencoders, our ex-
tension is easy to vectorize and implement on GPUs. MADE
can evaluate high-dimensional probably distributions with
better scaling than before, while maintaining state-of-the-art
statistical performance.

Acknowledgments
We thank Marc-Alexandre Côté for helping to implement
NADE in Theano and the whole Theano (Bastien et al.,
2012; Bergstra et al., 2010) team of contributors. We also
thank NSERC, Calcul Québec and Compute Canada.
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Masked Autoencoder for Structured Distribution Estimation (MASDE)

1. This method is used when the structure (Markov random field) of the data is

known (Khajenezhad, Madani, and Beigy 2021).

2. In structured distributions, the graph structure of the variables declares their conditional

dependencies.

3. Therefore, having a graph structure, each of the chain rule conditional terms might be

presentable by a conditional probability on a smaller set of variables.

4. For each i , we assume there is a subset Bi ⊆ {1, . . . , i − 1} such that p(xi |x<i ) = p(xi |xBi ).

5. Use an auoencoder that has the above autoregressive property and mask matrix is

constructed by a labeling process.

6. MASDE needs a smaller training set in comparison with its counterparts.IEE
E P

ro
of
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Fig. 2. Results of MADE, MASDE, and MAGSDE on the 4× 4 grid data set, using a fixed (grid-based) order of dimensions (left), ten uniformly random
permutations of dimensions (middle) and ten random selections among the 16 possible grid-based orders (right).

Fig. 3. Results of MADE, MASDE, and MASDE with random subsets
instead of the looking-back Markov blankets, on the sparse 20 dimensional
data set, using a fixed order of dimensions (left) and ten uniformly random
permutations of dimensions (right).

performance of MASDE and MAGSDE does not have a con-587

siderable change by increasing the number of hidden layers,588

but MADE has improved and also has become more robust589

Fig. 4. Results of MADE, MASDE, and MAGSDE with ten random
selections among the 16 possible grid-based dimension orders, on the 4× 4
grid data set with four (left) and six (right) hidden layers.

to the changes in the size of the hidden layers, despite that 590

the number of its parameters has been increased (comparing 591

the right column of Fig. 2 with Fig. 4). It shows that the 592
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PixelRNN

1. PixelRNN is a deep generative model for images (Oord, Kalchbrenner, and Kavukcuoglu

2016).

2. Dependency on previous pixels modeled using an RNN (LSTM).
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PixelCNN

1. The main drawback of PixelRNN is that training is very slow.

2. PixelCNN uses standard convolutional layers to capture a bounded receptive field and

compute features for all pixel positions at once (Oord, Kalchbrenner, Espeholt, et al.

2016).

3. In PixelCNN, pooling layers are not used.

4. Masks are adopted in the convolutions to restrict the model from violating the conditional

dependence.

5. Please also PixelCNN++ (Salimans et al. 2017).
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PixelCNN

1. The training set (CIFAR-10 (left)) and the samples generated by the PixelCNN (right).
Pixel Recurrent Neural Networks

Figure 7. Samples from models trained on CIFAR-10 (left) and ImageNet 32x32 (right) images. In general we can see that the models
capture local spatial dependencies relatively well. The ImageNet model seems to be better at capturing more global structures than the
CIFAR-10 model. The ImageNet model was larger and trained on much more data, which explains the qualitative difference in samples.

# layers: 1 2 3 6 9 12

NLL: 3.30 3.20 3.17 3.09 3.08 3.06

Table 3. Effect of the number of layers on the negative log likeli-
hood evaluated on the CIFAR-10 validation set (bits/dim).

5.5. MNIST

Although the goal of our work was to model natural images
on a large scale, we also tried our model on the binary ver-
sion (Salakhutdinov & Murray, 2008) of MNIST (LeCun
et al., 1998) as it is a good sanity check and there is a lot
of previous art on this dataset to compare with. In Table 4
we report the performance of the Diagonal BiLSTM model
and that of previous published results. To our knowledge
this is the best reported result on MNIST so far.

5.6. CIFAR-10

Next we test our models on the CIFAR-10 dataset
(Krizhevsky, 2009). Table 5 lists the results of our mod-
els and that of previously published approaches. All our
results were obtained without data augmentation. For the
proposed networks, the Diagonal BiLSTM has the best
performance, followed by the Row LSTM and the Pixel-
CNN. This coincides with the size of the respective recep-
tive fields: the Diagonal BiLSTM has a global view, the
Row LSTM has a partially occluded view and the Pixel-
CNN sees the fewest pixels in the context. This suggests
that effectively capturing a large receptive field is impor-
tant. Figure 7 (left) shows CIFAR-10 samples generated

Model NLL Test

DBM 2hl [1]: ⇡ 84.62
DBN 2hl [2]: ⇡ 84.55
NADE [3]: 88.33
EoNADE 2hl (128 orderings) [3]: 85.10
EoNADE-5 2hl (128 orderings) [4]: 84.68
DLGM [5]: ⇡ 86.60
DLGM 8 leapfrog steps [6]: ⇡ 85.51
DARN 1hl [7]: ⇡ 84.13
MADE 2hl (32 masks) [8]: 86.64
DRAW [9]:  80.97

PixelCNN: 81.30
Row LSTM: 80.54
Diagonal BiLSTM (1 layer, h = 32): 80.75
Diagonal BiLSTM (7 layers, h = 16): 79.20

Table 4. Test set performance of different models on MNIST
in nats (negative log-likelihood). Prior results taken from [1]
(Salakhutdinov & Hinton, 2009), [2] (Murray & Salakhutdinov,
2009), [3] (Uria et al., 2014), [4] (Raiko et al., 2014), [5] (Rezende
et al., 2014), [6] (Salimans et al., 2015), [7] (Gregor et al., 2014),
[8] (Germain et al., 2015), [9] (Gregor et al., 2015).

from the Diagonal BiLSTM.

5.7. ImageNet

Although to our knowledge the are no published results on
the ILSVRC ImageNet dataset (Russakovsky et al., 2015)
that we can compare our models with, we give our Ima-
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WaveNet

1. WaveNet is very similar to PixelCNN but applied to 1-D audio signals (Oord, Dieleman,

et al. 2016).

2. WaveNet consists of a stack of causal convolution which is a convolution operation

designed to respect the ordering.

3. Causal convolutions used for temporal data which ensures the model cannot violate the

ordering in which we model the data: the prediction p(xt+1|x1, . . . , xt).

4. The causal convolution in WaveNet is simply to shift the output by a number of

timestamps to the future so that the output is aligned with the last input element.
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WaveNet

1. One big drawback of convolution layer is a very limited size of receptive field.

2. WaveNet therefore adopts dilated convolution, where the kernel is applied to an

evenly-distributed subset of samples in a much larger receptive field of the input.
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Transformers model

1. The attention make it possible to do sequence to sequence modeling without recurrent

network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without using

sequence-aligned recurrent architecture.

Figure: Jay Alammar

3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.
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Reading

1. Chapter 22 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

2. Chapter 2 of Deep Generative Modeling (Tomczak 2024).

3. Papee A Survey on Vision Autoregressive Model (Jiang and Huang 2024).
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Questions?
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