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Introduction



oduction (Statistical / Deep Generative Models)

1. A Generative model (GM) is a probability distribution p(x).
o A statistical GM is a trainable probabilistic model, p,(x).
o A deep GM is a statistical generative model parametrized by a neural network.
2. A generative model needs
o Data (x): Complex, unstructured samples such as images, speech, molecules, text, etc.

o Prior knowledge: parametric form (e.g., Gaussian, mixture, softmax), loss function (e.g.,
maximum likelihood, divergence), optimization algorithm, etc.
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Introduction (Key Questions)
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1. A Representation: how do we parameterize the joint distribution of many random
variables?

2. A Learning: what is the right way to compare probability distributions?

3. A Inference: how do we invert (or encode) the generation process?

Credit: Aditya Grover
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Joint Distribution

Independent random variables Dependent random variables
p(x1,x2) = p(x1) p(x2) p(xi,x2) # p(x1) p(x2)
conditional = marginal conditional # marginal
plxol2y)=p(w,) p(zs]))

/\ ke o M ! T2

How to Model Joint Distributions?
1. Solution 1: Modeling by independent latents (e.g., VAE)

o Mapping independent variables — dependent ones

Strict assumption for high-dim data. A »

Often with low-dim latents

A good building block, but often not sufficient independent dependent

2. Solution 2: Modeling by conditional distributions
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Conditional Distribution Modeling

1. Suppose we have a dataset S = {x1, x2, ..., Xy} of n-dimensional points x.
2. For simplicity, we assume points are binary, i.e., x € {0,1}".
3. Case 1: Partitioning the input representation space X

o Using chain rule, we can factorize the joint distribution as
n n
Px) = p(xt, 3 -1 x0) = [ [ Pl . xi-1) = [ ploalxcr)
i=1 i=1

where x-; = [x1,x2, ..., xi—1] denotes vector of random variables with index less than /.

o The chain rule factorization can be expressed graphically as a Bayesian network.
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Conditional Distribution Modeling

1. Suppose we have a dataset S = {x1, x2, ..., Xy} of n-dimensional points x.
2. For simplicity, we assume points are binary, i.e., x € {0,1}".

3. Case 2: Partitioning the latent representation space Z (Ex. VQ-VAE)

p(x,z) = p(z)p(x | z)
with  p(z) = p(z1)p(22 | 21).--p(2n | 21, 22, <oy Zn—1)
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Generative models categories

[ Generative models j

T

[ Explicit density j [ Implicit density j

[ Tractable density j [Approximate density] [Unnormalized densityj

’Autoregressive ‘ ’VAEs ‘ guEnergy-based ‘

’Normalizing Flows ‘ ’DifFusion models ‘

Learn approximation : compare real vs
: L. >
of density, e.g. generated samples

lower bound
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Autoregressive models



A timeline of representative autoregressive models
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oregressive mo

1. The autoregressive constraint is a way to model sequential data.
2. Autoregressive = Auto + Regression

o Auto: Self

using its own outputs as inputs for next perditions

o Regression:
estimating relationship between variables
3. Autoregressive implies an inference-time behavior

4. Training-time is not necessarily autoregressive

Hamid Beigy (Sharif University of Technology) 10 / 36



Autoregressive models inference

1. Factorization contains n factors and some factors contain many parameters: O(2").
2. It is infeasible to learn such an exponential number of parameters.

3. AR models use (deep) neural network to parameterize these factors p(x;j|x<;).
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Autoregressive mo

1. How to evaluate p(x, ..., X900)?
2. Multiply all the conditionals factors.
3. How to sample from p(xi, ..., xo00)?
o Sample X1 ~ p(x1).
o Sample X ~ p(x2|x1 = X1).
e Sample X3 ~ p(xz|x1 = X1, % = X2).

4. How many parameters? 1 +2+3+ ...+ n~

() () () (2
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1. Usually teacher-forcing are used for training.

2. Inputs are not from previous outputs

3. Inputs are from ground-truth data

T2 Zs3 T4 Zs5 T6 0D x3 Xy Ts5 Te

T T2 T3 T4 5 T T2 z3 T4 Zs5

ground-truth as inputs
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Common Architectures for Auto

Autoregression is not architecture-specific.

RNN RNN
Z2 Z3 Ty Ts5 Te T2 x3 ZTyq Ty
X1 X9 T3 T4 Ts5 z T2 x3 Ty
CNN Attention
T2 T3 Ty Ty T2 3 T4 5
1 T2 x3 Ty X X9 X3 o
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Autoregressive models

1. Suppose conditional distributions p(x;|x~;) correspond to Bernoulli random variables and
learn a function mapping x1, xo, ..., x;_1 to the mean of this distribution as

po. (xi|x<;) = Bern(fi(x1,x2,...,Xi—1))

0; denotes a set of parameters used to specify mean function £ : {0,1}/~1 s [0,1].

2. The number of parameters of an AR model equals to >, |0;].
3. Tractable exact likelihood computations.
4. No complex integral over latent variables in likelihood

5. Slow sequential sampling process.

6. Cannot rely on latent variables.
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Autoregressive models

1. In the simplest case, we can specify the function as a linear combination of the input
elements followed by a sigmoid non-linearity (to restrict the output to lie between 0 and 1).

2. This gives us the formulation of a fully-visible sigmoid belief network (FVSBN).

i—1

i Z i
ﬁ(Xl,Xz,...,X,',l) =0 |a+ a;X;
=1
where o is sigmoid function and 0; = {a},...,al ;}.

3. At the output layer we want to predict n conditional probability distributions while at the
input layer we are given the n input variables.

4. The conditional variables x;|x1, ..., x;_1 are Bernoulli with parameters

i—1
s . _ i i
X,':p(X,':1|X1,...,X,',1,9,')—O' ap + E ajx;
j=1
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FVSBN results (Gan et al.

1. Left: Training (Caltech 101 Silhouettes)
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Neural Autoregressive Density Estimator

1. To increase the expressiveness of an autoregressive generative model, we can use more
flexible parameterizations for the mean function such as MLP instead of logistic regression.

2. For example, consider the case of a neural network with one hidden layer.
3. The mean function for variable / can be expressed as
h; = o(Aix<i +¢;)
fi(x1, %2, ..., Xi—1) = 0© (aih; + b,-)
where h; € R? is hidden layer activations of MLP.

4. Hence, we have the following architecture

Lo

(N ——p (0, = 1| @)
O~ —p (‘1‘,,j =1z, 2)
O~ —p (10, = 1] 20_,)
O D (2o, = 1o _~y)

\2/ 500 units —p ('1'()7x; -1 ‘ T, N)

784 units 784 units
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Neural Autoregressive Density Estimator

1. The Neural Autoregressive Density Estimator (NADE) provides an alternate MLP-based
parameterization that is more statistically and computationally efficient than the given
approach (Larochelle and Murray 2011).

2. In NADE, parameters are shared across the functions used for evaluating the conditionals.

3. The hidden layer activations are specified as

h;, = O’(W <iX<i +C)

)

X = p(X,' =1|x,...,x-1; 0’) = O’((I(i)h,' + b,)

4.0 ={W e R cc R {al) e RIV7_, {b; € R}, } is the full set of parameters.

5. The weight matrix W and the bias vector ¢ are shared across the conditionals.
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Neural Autoregressive Density Estimator

1. Sharing parameters has two benefits:
o The total number of parameters gets reduced from O(n*d) to O(nd).
o Hidden unit activations can be evaluated in O(nd) time via
h; = o(a;)
airr=a;+ W[, ilx
with the base case given by a; = c.
2. Training of NADE is done by minimizing —+ Z,T:1 log p(x;)
3. Samples from NADE trained on a binary version of MNIST.
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Deep NADE

1. The input to the network (DeepNADE) is the concatenation of the masked data and the
mask itself (Uria, Coté, et al. 2016).

2. This allows the network to identify cases when input data is truly zero from cases when
input data is zero because of the mask.

3. NADE also explored other autoencoder architectures such as convolutional neural networks

4. DeepNade with two hidden layers
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Real-Valued NADE

1. The RNADE algorithm extends NADE to learn generative models over real-valued
data (Uria, Murray, and Larochelle 2013).

2. The conditionals are modeled via a continuous distribution such as mixture of K Gaussian.

X/|X<l Zﬂ-u Hij, O )

o Output of the network are parameters of a mixture model

for plxlxcs)

o Means are jijx = b} + | hi

o Standard deviations are o/ x = exp <bf’k + af’_’kh,)

o Mixing weights are 7 x = softmax <bf’k + aZLh,-)

3. Please study DocNADE.
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Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is an autoencoder that preserves autoregressive property (Germain et al. 2015).

Autoencoder x Masks —— MADE

Hamid Beigy (Sharif University of Technology) 23 /36



Masked Autoencoder for Distribution Estimation (MADE)

1. MADE is a specially designed architecture to enforce the autoregressive property in the

autoencoder efficiently.

2. MADE removes the contribution of certain hidden units by using mask matrices so that
each input dimension is reconstructed only from previous dimensions in a given ordering in

a single pass.

3. In a multilayer fully-connected neural network, say, we have L hidden layers with weight
matrices W', ..., W! and an output layer with weight matrix V. The output X has

dimensions X = p(x;|x1.i_1)

4. Without any mask, we have

h° =x
h' = activation’(W'h'~! + b/)
% = o(Vht 4¢)
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Masked Autoencoder for Distribution Estimation (MADE)

1. Without any mask, we have

h? = x
h' = activation’(W'h'~1 + b')
% =o(Vht 4 ¢)

2. To zero out some connections between layers, we can simply element-wise multiply every
weight matrix by a binary mask matrix.
h' = activation’((W'@MW/)h’_:L +b)
% =o((VoMY)h! +¢)

3. Mask matrix is constructed by a labeling process.
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Masked Autoencoder for Structured Distribution Estimation (MASDE) fgﬁl

1. This method is used when the structure (Markov random field) of the data is
known (Khajenezhad, Madani, and Beigy 2021).

2. In structured distributions, the graph structure of the variables declares their conditional
dependencies.

3. Therefore, having a graph structure, each of the chain rule conditional terms might be

presentable by a conditional probability on a smaller set of variables.

4. For each i, we assume there is a subset B; C {1,...,7—1} such that p(x;|x<;) = p(xi|xs,)-

5. Use an auoencoder that has the above autoregressive property and mask matrix is

constructed by a labeling process.

6. MASDE needs a smaller training set in comparison with its counterparts.

KL Divergence

Size of the
Hidden Layers = 100
KL Divergence

01+ 01t
100 200 300 400 500 100 200 300 400 500

Train Size Train Size

Hamid Beigy (Sharif University of Technology) 26 / 36



PixelRNN

1. PixelRNN is a deep generative model for images (Oord, Kalchbrenner, and Kavukcuoglu
2016).

2. Dependency on previous pixels modeled using an RNN (LSTM).
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PixelCNN

1. The main drawback of PixelRNN is that training is very slow.

2. PixelCNN uses standard convolutional layers to capture a bounded receptive field and

compute features for all pixel positions at once (Oord, Kalchbrenner, Espeholt, et al.
2016).

3. In PixelCNN, pooling layers are not used.

4. Masks are adopted in the convolutions to restrict the model from violating the conditional
dependence.

Masked convolution

111

PixelCNN

5. Please also PixelCNN++ (Salimans et al. 2017).
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PixelCNN
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image Conv-1 Conv-2 Conv-15
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PixelCNN

1. The training set (CIFAR-10 (left)) and the samples generated by the PixelCNN (right).

e DAL s U1 TR Ve B Fad TR
ﬂlﬁﬁgggﬂ B L B TR

Hamid Beigy (Sharif University of Technology) 30/ 36



WaveNet

1. WaveNet is very similar to PixelCNN but applied to 1-D audio signals (Oord, Dieleman,
et al. 2016).

2. WaveNet consists of a stack of causal convolution which is a convolution operation
designed to respect the ordering.

3. Causal convolutions used for temporal data which ensures the model cannot violate the

ordering in which we model the data: the prediction p(x;y1]x1, ..., x¢).

4. The causal convolution in WaveNet is simply to shift the output by a number of
timestamps to the future so that the output is aligned with the last input element.

© © 0 © O ©0 © O ©0 © O © O O O Output

O 0O O O O O O O O O O O O O Hidden Layer
O O O O O O O O O O O O O Hidden Layer
O O O O O O O O O O O O Hidden Layer
®© ©¢ ©¢ ©6 ©¢ ©¢ 6 ¢ ¢ o o © nput
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WaveNet

1. One big drawback of convolution layer is a very limited size of receptive field.

2. WaveNet therefore adopts dilated convolution, where the kernel is applied to an
evenly-distributed subset of samples in a much larger receptive field of the input.

© © © . 0 0. 0 © 0. 0 0 0 0 0 0.9 suu

l Dilation = 8
@) O O @) O @) @) Hidden Layer

Dilation = 4
O 0 O m' o O O%'i Hiddon Layer
o o

Dilation = 2
O O O @) O O Hidden Layer
Dilation = 1
l l Input
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Transformers model

1. The attention make it possible to do sequence to sequence modeling without recurrent
network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without using
sequence-aligned recurrent architecture.
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3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.
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