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Introduction



Generative models categories

Generative models

Explicit density

Tractable density Approximate density Unnormalized density

Implicit density

Autoregressive

Normalizing Flows
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Diffusion models

Energy-based

GANs

Directly learn

density

Learn approximation

of density, e.g.

lower bound

Learn unnormalized

density

compare real vs

generated samples
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pd(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pd(x) for any observed x, i.e.

pθ(x) ≈ pd(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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What is Normalizing Flows?

1. Normalizing Flow (NF) models are used for better and more powerful distribution

approximation (Rezende and Mohamed 2015).

2. A normalizing flow transforms a simple distribution into a complex one by applying a

sequence of invertible transformation functions.

3. Some methods for constructing normalizing flows

Coupling flows

Autoregressive flows

Residual flows
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Residual flows

1. A residual network is a composition of residual connections, which are functions of the

form f (z) = z + F (z).

2. The function F : RD 7→ RD is called the residual block.

3. Under certain conditions on F , the residual connection f becomes invertible.

4. Flows composed of invertible residual connections are referred as residual flows.
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Ordinary differential equations

Initial value problem is expressed as

dxt
dt

= fθ(xt , t) xt0 = x0 xt1 =?

Solution

xt1 = xt0 +

∫ t1

t0

fθ(xt , t)dt

Example

Let

dt
dt

= 2t x0 = 2 x1 =?

We have

x1 = x0 +

∫ 1

0

2tdt

= 2 + t2
∣∣∣
1

0

= 2 + 1− 0 = 3
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Ordinary differential equations

Example

Let

dxt
dt

= 2xt x0 = 2 x1 =?

We have
∫

1

2x
dx =

∫
tdt

1

2
log x =

1

2
t2 + c0

xt = cet
2

x0 = 3 ⇒ c = 2

xt = 2et
2 ⇒ x1 = 5.436

1. What if
∫ t1
t0
fθ(xt , t)dt can not be analytically integrated?

2. We use approximation to
∫ t1
t0
fθ(xt , t)dt , i.e. numerical integration

Euler method

Runge-Kutta method
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Euler’s method

1. Consider an ODE of the form

dy(t)

dt
= f (y(s), t) y(t0) = y0

where f (y(s), t) is a known function.

2. The exact solution to this ODE can be expressed in integral form:

y(t) = y0 +

∫ t

0

f (y(s), s)ds

3. We want to approximate the solution near t = t0.

4. We start with two pieces of information that we know about the solution:

We know the value of solution at t = t0 from the initial condition.

We know the value of derivative at t = t0 by plugging the initial condition into the

differential equation.

5. Hence, the derivative equals to

dy(t)

dt

∣∣∣∣
t=t0

= f (y0, t0)
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Euler’s method

1. These information are enough to write down the equation of tangent line to the solution

at t = t0 as

y(t) = y0 + f (y0, t0)× (t − t0)

2. Now, consider the following figure

3. When t1 is sufficiently close to t0, point y1 on the tangent line should be fairly close to the

actual value of the solution at t1.
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Euler’s method

1. We can find y1 = y(t1) easily by plugging t1 in the equation for tangent line as:

y1 = y0 + f (y0, t0)× (t1 − t0)

2. When y1 is accurate approximation of solution, it is used to estimate the tangent line at t1
by constructing a line through the point (t1, y1) that has slope f (y1, t1).

3. This estimation gives

y(t) = y1 + f (y1, t1)× (t − t0)

4. Next, we approximate the solution at t = t2 and proceed accordingly.

5. Then, we can obtain the next approximation as

y2 = y1 + f (y1, t1)× (t2 − t1)

y3 = y2 + f (y2, t2)× (t3 − t2)

...

yn+1 = yn + f (yn, tn)× (tn+1 − tn)

6. Assume that step sizes t0, t1, t2, . . . are of a uniform size of h, i.e. tn+1 − tn = h, for all n.

7. The next approximation is yn+1 = yn + h × f (yn, tn)
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Euler’s method

Example

1. Let dy(t)
dt = 2− 2y(t)− e4t , where y(0) = 1.

2. Also let h = 0.1.

3. Then, we approximate values of solution at t = 0.1, 0.2, 0.3, 0.4, 0.5 and compare them

with the exact solution of ODE, given by

y(t) = 1 +
1

2

(
e−4t − e−2t

)
.

4. We have f (y(t), t) = 2− 2y(t)− e4t . Then, we can approximate the solution as

y1 = y0 + h × f (y0, t0) = 0.900

y3 = y1 + h × f (y1, t1) = 0.850

y3 = y2 + h × f (y2, t2) = 0.837

y4 = y3 + h × f (y3, t3) = 0.835

y5 = y4 + h × f (y4, t4) = 0.851

Hamid Beigy (Sharif University of Technology) 11 / 56



Euler’s method

Example

Comparison of exact solution (continuous line) and approximation (discrete dots) for h = 0.1.

1. Now, extending the method to a vector field. Let ODE of form

dy(t)

dt
= f (y(t), t) y(t0) = y0

2. The Euler’s method starts from t = 0 and proceeding with a step size of h, so

y(t + h) = f (y(t), t)× h + y(t)
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Ordinary differential equations

Initial value problem is expressed as

dxt
dt

= fθ(xt , t) xt0 = x0 xt1 =?

Solution

xt1 = xt0 +

∫ t1

t0

fθ(xt , t)dt

Any ODE solver
Differential
Initial value

Initial time

Final time
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Neural ODE



Neural ODE

1. Initial value problem is expressed as

dxt
dt

= fθ(xt , t) xt0 = x0 xt1 =?

2. Solution

Exact Numerical

xt1 = xt0 +
∫ t1
t0
fθ(xt , t)dt xt1 = ODESolver(fθ(xt , t), xt0 , t0, t1)

3. In neural ODE, fθ is a neural network parametrized by θ (T. Q. Chen et al. 2018).

4. This is a paradigm shift:

In earlier methods, fθ was pre-defined/hand-designed according to the domain.

In neural ODE, we want to estimate fθ that suits our objective.
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Neural ODE

ODE

1. Initial value problem is expressed as

dxt
dt

= fθ(xt , t) xt0 = x0

2. Using Euler discretization

xn+1 = xn + hfθ(xn, n)

3. Forward propagation

xt1 = ODESolver(fθ(xt , t), xt0 , t0, t1)

4. Update θ using gradient-based learning

5. How to compute gradient of loss

function?

6. Back-propagate through ODESolver!

High memory cost!!

7. Better method: Adjoint method

Residual networks

1. The output of a residual block is

xn+1 = ResBlock(xn)

= xn + v(xn)

2. Output of residual network

ŷ = ResNet(x)

3. ResNet is stacked ResBlocks

4. Update θ using gradient-based learning
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Neural ODE

1. Neural ODEs are reversible models.

Neural ODE

Neural ODE

2. They integrate forward/backward in time.
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Continuous flows



Continuous flows

Continuous flows are continuous version of normalizing flows (Grathwohl et al. 2019).

Neural ODE

Noise distributionData distribution

Sample from target distribution  Sample from data distribution 

Likelihood estimation

Generate Sample
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Continuous flows

1. In residual flows, the transformation is expressed as

xk = ψk(xk−1) = xk−1 + δv(xk−1)

for some δ > 0 and Lipschitz residual connection v .

2. By rearranging this equation, we obtain

v(xk−1) =
xk − xk−1

δ

3. Setting δ = 1
K and K →∞, then ψ = ψK ◦ ψK−1 ◦ . . . ◦ ψ2 ◦ ψ1 is given by ODE:

dxt
dt

= lim
δ→0

xt+δ − xt
δ

= lim
δ→0

ψt(xt)− xt
δ

= v(xt , t),

for t ∈ [0, 1].

4. The flow of ODE ψt : [0, 1]× Rd 7→ Rd is defined such that

dψt

dt
= v(ψt(x0), t).
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Continuous flows

1. The flow of ODE is

dψt

dt
= v(ψt(x0), t).

where

xt is the state of the system.

v(xt , t) is vector field, called velocity field.

2. At the time

0 : p0(x0) is the the standard Gaussian distribution.

1 : p1(x1) is the distribution of data such. We need to be close to pd(x).
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Continuous flows

1. The dψt

dt = v(ψt(x0), t) states that transformation ψt maps initial condition x0 to the

solution at time t denoted by xt as:

xt , ψt(x0) = x0 +

∫ t

0

v(xs , s)ds (1)

2. This ODE is called an initial value problem, controlled by velocity field v(xt , t).

3. Additionally, two important objects in continuous normalizing flow are

the flow ψt(x) and

the probability path pt(x), which is the distribution of ψt(x)

4. The continuity equation (transport equation) links pt(x) and v(xt , t).

5. In probability, continuity equation is analogous to conservation of mass in fluid

dynamics:

∂ pt(x)

∂t
+∇ · j(xt , t) = 0,

6. j(xt , t) = v(xt , t) pt(x) is the probability flux describing flow of probability density.
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Continuous flows

1. The continuity equation maintains conservation of probability:

∂ pt(x)

∂t
+∇ · j(xt , t) = 0,

2. The divergence of a d-dimensional vector field g:

∇ · g(x) =
d∑

k=1

∂gk(x)

∂xk
= tr

(
Jg(x)

)

where Jg(x) is the Jacobian of vector field g(x).

3. ∇ · j(xt , t) measures the rate at which probability density is expanding/contracting in a

given region of space.

4. Multiplying the continuity equation with 1
pt(x)

, results in:

1

pt(xt)

∂ pt(xt)

∂t
+

1

pt(xt)
∇ · (v(xt , t) pt(xt)) = 0,

∂ log pt(xt)

∂t
+ 〈∇x log pt(xt), v(xt , t)〉+∇ · v(xt , t) = 0,

〈∇x log pt(xt), v(xt , t)〉 = −∂ log pt(xt)

∂t
−∇ · v(xt , t).
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Continuous flows

1. The continuity equation maintains conservation of probability:

〈∇x log pt(xt), v(xt , t)〉 = −∂ log pt(xt)

∂t
−∇ · v(xt , t).

2. Calculating the total derivative of d log pt(xt)
dt :

d log pt(xt)

dt
=
∂ log pt(xt)

∂t
+ 〈∇x log pt(xt),

∂xt
∂t
〉,

=
∂ log pt(xt)

∂t
+ 〈∇x log pt(xt), v(xt , t)〉,

=
∂ log pt(xt)

∂t
− ∂ log pt(xt)

∂t
−∇ · v(xt , t)

= −∇ · v(xt , t)

= − tr

(
∂v(xt , t)

∂xt

)
.
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Continuous flows

1. Computing the total change in log-density by integrating d log pt(xt)
dt across time:

∫ 1

0

(
d log pt(xt)

dt
+ tr

(
∂v(xt , t)

∂xt

))
dt = 0.

2. Simplifying the above integral:

log p1(x1) = log p0(x0)−
∫ 1

0

tr

(
∂v(xt , t)

∂xt

)
dt.

3. To compute log pt(xt), we can either solve both the time evolution of xt and its log

density log pt(xt) together,

d

(
xt

log pt(xt)

)

dt
=

(
v(xt , t)

−∇ · v(xt , t)

)

or solve only for xt and then estimate log pt(xt) using quadrature methods.
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Continuous flows

1. Parameterizing the vector field with a neural network with weights θ, vθ(xt , t), leads to

neural ODE (T. Q. Chen et al. 2018).

2. Let x0 be the initial condition for this ODE.

3. By integrating over time t, we solve it and get the output as given below.

xt =

∫ t

0

vθ(xs , s)ds

Neural ODE
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Example: Gaussian to a Gaussian (1D)

1. How to map a 1D Gaussian to another one with different mean?

2. We can derive a one-shot (i.e. discrete) flow bridging between two Gaussian distributions.

3. We want derive a time-continuous flow ψt(x), corresponding to integration of v(xt , t).

4. Let

p0(x) = N (0, 1)

p1(x) = N (µ, 1)

5. We can continuously bridge with a simple linear transformation ψt(x0) = x0 + µt as
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Example: Gaussian to a Gaussian (1D)

1. Every marginal pt(x) is a Gaussian, and also

E p0(x)[ψt(x0)] = µt

2. This implies that E p0(x)[ψ1(x0)] = µ = E p1(x)[x1] and

var p0(x)[ψt(x0)] = 1

var p0(x)[ψ1(x0)] = 1 = var p1(x)[x1]

3. The probability path pt(x)]x = N (µt, 1) bridges p0(x) and p1(x).
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Example: Gaussian to a Gaussian (1D)

1. Now determine the vector field v(xt , t), which satisfies

dψt(x0)

dt
= v(xt , t)

2. We can plug ψ(x0, t) = x0 + µt in on the left hand side to get

dψt(x0)

dt
=

d(x0 + µt)

dt
= µ

v(xt , t) = v(x0 + µt, t)

3. It is easy to see that one such solution is the constant vector field

v(xt , t) = µ

4. We can also define v(xt , t) such that p0(x)
v(xt ,t)−−−−→ p1(x) and derive the corresponding

ψt(x0) by solving the ODE.
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Training continuous flows

1. To construct flow, we maximize the log-likelihood of pt(x).

2. Maximizing the log-likelihood minimizes DKL( pd(x) || pt(x)).

3. The log-likelihood of pt(x) can be written as

LL(θ) = Ex∼ pd(x)
[log p1(x)]

= Ex∼ pd(x)

[
log p0(x0)−

∫ 1

0

tr

(
∂v(xt , t)

∂xt

)
dt

]
,

4. Expectation is taken over data distribution, log p1(x) represents parametric distribution.

5. Maximizing the log-likelihood requires:

Expensive numerical ODE simulations at training time!

Estimators for the divergence to scale nicely with high dimension.

6. Change of variables:

log p1(x)− log p0(x) = log det

(
dvθ
dxt

)

7. Instantaneous change of variables:

∂ log pt(x)

∂t
= − tr

(
∂vθ(xt , t)

∂xt

)
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Training continuous flows

1. This expectation necessitates expensive numerical ODE simulations during training.

2. This numerical ODE simulations affect the scalability of estimators when dealing with high

dimensions.

3. Continuous normalizing flows are highly expressive because they parameterize a wide

variety of flows and can represent many probability distributions.

4. Training CNFs can be very slow due to the need for ODE integration at each iteration.

Blue distribution: Noise distribution p0(x).

Red distribution: Data distribution p1(x) ≈ pd(x).

Dashed distribution: The probability path pt(x).
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Calculating the log-likelihood for CNFs

1. Unlike in discrete time normalizing flows, we do not require invertibility of v ,

2. Hence, we cannot invert the transformation to obtain x0 for given datapoint x1.

3. Under some conditions, we can uniquely solve the following problem (Grathwohl et al.

2019).

[
x0

ln p1(x1)− ln p0(x0)

]
=

∫ 0

1

[
vθ(xt , t)

− tr
(
∂vθ(xt ,t)
∂xt

)
]
dt

with initial conditions:
[

x1
ln p1(xd)− ln p1(x1)

]
=

[
xd
0,

]

where x1 is a datapoint xd.

4. We do the following steps:

Take a datapoint x1 = xd .

Solve the above integral by applying a solver to find x0 and keeping track of traces over time.

Calculate the log-likelihood by adding ln p0(x0) to the sum of negative traces − tr
(
∂vθ(xt ,t)
∂xt

)
.
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Continuous flows

Under review as a conference paper at ICLR 2019

Algorithm 1 Unbiased stochastic log-density estimation using the FFJORD model

Require: dynamics f✓, start time t0, stop time t1, minibatch of samples x.
✏ sample unit variance(x.shape) . Sample ✏ outside of the integral
function faug([zt, log pt], t): . Augment f with log-density dynamics.

ft  f✓(z(t), t) . Evaluate dynamics
g  ✏T @f

@z

��
z(t)

. Compute vector-Jacobian product with automatic differentiation
eTr = matrix multiply(g, ✏) . Unbiased estimate of Tr(@f

@z ) with ✏T @f
@z ✏

return [ft,� eTr] . Concatenate dynamics of state and log-density
end function
[z,�logp] odeint(faug , [x,~0], t0, t1) . Solve the ODE, ie.

R t1
t0

faug([z(t), log p(z(t))], t) dt

log p̂(x) log pz0(z) - �logp . Add change in log-density
return log p̂(x)

4 EXPERIMENTS Data Glow FFJORD

Figure 2: Comparison of trained FFJORD and
Glow models on 2-dimensional distributions in-
cluding multi-modal and discontinuous densities.

We demonstrate the power of FFJORD on a va-
riety of density estimation tasks as well as ap-
proximate inference within variational autoen-
coders (Kingma & Welling, 2014). Experi-
ments were conducted using a suite of GPU-
based ODE-solvers and an implementation of
the adjoint method for backpropagation 1. In
all experiments the Runge-Kutta 4(5) algorithm
with the tableau from Shampine (1986) was
used to solve the ODEs. We ensure tolerance
is set low enough so numerical error is negligi-
ble; see Appendix C.

We used Hutchinson’s trace estimator (7) dur-
ing training and the exact trace when report-
ing test results. This was done in all experi-
ments except for our density estimation models
trained on MNIST and CIFAR10 where com-
puting the exact Jacobian trace was not compu-
tationally feasible. There, we observed that the
variance of the log-likelihood over the valida-
tion set induced by the trace estimator is less
than 10�4.

The dynamics of FFJORD are defined by a neural network f which takes as input the current state
z(t) 2 RD and the current time t 2 R. We experimented with several ways to incorporate t as an
input to f , such as hyper-networks, but found that simply concatenating t on to z(t) at the input to
every layer worked well and was used in all of our experiments.

4.1 DENSITY ESTIMATION ON TOY 2D DATA

We first train on 2 dimensional data to visualize the model and the learned dynamics.2 In Figure 2,
we show that by warping a simple isotropic Gaussian, FFJORD can fit both multi-modal and even
discontinuous distributions. The number of evaluations of the ODE solver is roughly 70-100 on all
datasets, so we compare against a Glow model with 100 discrete layers.

The learned distributions of both FFJORD and Glow can be seen in Figure 2. Interestingly, we
find that Glow learns to stretch the single mode base distribution into multiple modes but has trouble
modeling the areas of low probability between disconnected regions. In contrast, FFJORD is capable

1We plan on releasing the full code, including our GPU-based implementation of ODE solvers and the
adjoint method, upon publication.

2Videos of the learned dynamics can be found at https://imgur.com/a/Rtr3Mbq.

5
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Continuous flowsUnder review as a conference paper at ICLR 2019

Samples

Data

Figure 3: Samples and data from our image models. MNIST on left, CIFAR10 on right.

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST CIFAR10

Real NVP -0.17 -8.33 18.71 13.55 -153.28 1.06* 3.49*
Glow -0.17 -8.15 18.92 11.35 -155.07 1.05* 3.35*
FFJORD -0.46 -8.59 14.92 10.43 -157.40 0.99* (1.05†) 3.40*

MADE 3.08 -3.56 20.98 15.59 -148.85 2.04 5.67
MAF -0.24 -10.08 17.70 11.75 -155.69 1.89 4.31
TAN -0.48 -11.19 15.12 11.01 -157.03 - -
MAF-DDSF -0.62 -11.96 15.09 8.86 -157.73 - -

Table 2: Negative log-likehood on test data for density estimation models; lower is better. In nats
for tabular data and bits/dim for MNIST and CIFAR10. *Results use multi-scale convolutional
architectures. †Results use a single flow with a convolutional encoder-decoder architecture.

of modeling disconnected modes and can also learn convincing approximations of discontinuous
density functions (middle row in Figure 2).

4.2 DENSITY ESTIMATION ON REAL DATA

We perform density estimation on five tabular datasets preprocessed as in Papamakarios et al. (2017)
and two image datasets; MNIST and CIFAR10. On the tabular datasets, FFJORD performs the best
out of reversible models by a wide margin but is outperformed by recent autoregressive models. Of
those, FFJORD outperforms MAF (Papamakarios et al., 2017) on all but one dataset and manages
to outperform TAN Oliva et al. (2018) on the MINIBOONE dataset. These models require O(D)
sequential computations to sample from while the best performing method, MAF-DDSF (Huang
et al., 2018), cannot be sampled from analytically.

On MNIST we find that FFJORD can model the data as well as Glow and Real NVP by integrating
a single flow defined by one neural network. This is in contrast to Glow and Real NVP which must
compose many flows together to achieve similar performance. When we use multiple flows in a
multiscale architecture (like those used by Glow and Real NVP) we obtain better performance on
MNIST and comparable performance to Glow on CIFAR10. Notably, FFJORD is able to achieve
this performance while using less than 2% as many parameters as Glow. We also note that Glow
uses a learned base distribution whereas FFJORD and Real NVP use a fixed Gaussian. A summary
of our results on density estimation can be found in Table 2 and samples can be seen in Figure 3.
Full details on architectures used, our experimental procedure, and additional samples can be found
in Appendix B.1.

In general, our approach is slower than competing methods, but we find the memory-efficiency of
the adjoint method allows us to use much larger batch sizes than those methods. On the tabular
datasets we used a batch sizes up to 10,000 and on the image datasets we used a batch size of 900.

4.3 VARIATIONAL AUTOENCODER

We compare FFJORD to other normalizing flows for use in variational inference. We train a
VAE (Kingma & Welling, 2014) on four datasets using a FFJORD flow and compare to VAEs with
no flow, Planar Flows (Rezende & Mohamed, 2015), Inverse Autoregressive Flow (IAF) (Kingma
et al., 2016), and Sylvester normalizing flows (Berg et al., 2018). To provide a fair comparison, our
encoder/decoder architectures and learning setup exactly mirror those of Berg et al. (2018).
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Table 2: Negative log-likehood on test data for density estimation models; lower is better. In nats
for tabular data and bits/dim for MNIST and CIFAR10. *Results use multi-scale convolutional
architectures. †Results use a single flow with a convolutional encoder-decoder architecture.

of modeling disconnected modes and can also learn convincing approximations of discontinuous
density functions (middle row in Figure 2).

4.2 DENSITY ESTIMATION ON REAL DATA

We perform density estimation on five tabular datasets preprocessed as in Papamakarios et al. (2017)
and two image datasets; MNIST and CIFAR10. On the tabular datasets, FFJORD performs the best
out of reversible models by a wide margin but is outperformed by recent autoregressive models. Of
those, FFJORD outperforms MAF (Papamakarios et al., 2017) on all but one dataset and manages
to outperform TAN Oliva et al. (2018) on the MINIBOONE dataset. These models require O(D)
sequential computations to sample from while the best performing method, MAF-DDSF (Huang
et al., 2018), cannot be sampled from analytically.

On MNIST we find that FFJORD can model the data as well as Glow and Real NVP by integrating
a single flow defined by one neural network. This is in contrast to Glow and Real NVP which must
compose many flows together to achieve similar performance. When we use multiple flows in a
multiscale architecture (like those used by Glow and Real NVP) we obtain better performance on
MNIST and comparable performance to Glow on CIFAR10. Notably, FFJORD is able to achieve
this performance while using less than 2% as many parameters as Glow. We also note that Glow
uses a learned base distribution whereas FFJORD and Real NVP use a fixed Gaussian. A summary
of our results on density estimation can be found in Table 2 and samples can be seen in Figure 3.
Full details on architectures used, our experimental procedure, and additional samples can be found
in Appendix B.1.

In general, our approach is slower than competing methods, but we find the memory-efficiency of
the adjoint method allows us to use much larger batch sizes than those methods. On the tabular
datasets we used a batch sizes up to 10,000 and on the image datasets we used a batch size of 900.

4.3 VARIATIONAL AUTOENCODER

We compare FFJORD to other normalizing flows for use in variational inference. We train a
VAE (Kingma & Welling, 2014) on four datasets using a FFJORD flow and compare to VAEs with
no flow, Planar Flows (Rezende & Mohamed, 2015), Inverse Autoregressive Flow (IAF) (Kingma
et al., 2016), and Sylvester normalizing flows (Berg et al., 2018). To provide a fair comparison, our
encoder/decoder architectures and learning setup exactly mirror those of Berg et al. (2018).

6
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Flow matching



Flow matching

1. The main benefits of continuous flows are

Constraints are much less than in the discrete case:

for the solution of the ODE to be unique, only needs v to be Lipschitz continuous in x

and continuous in t.

Inverting the flow can be achieved by solving the ODE in reverse.

Computing the likelihood does not require inverting the flow, nor to compute a log

determinant;

only the trace of the Jacobian is required, that can be approximated using the

Hutchinson trick. Please study it.

tr(A) = Eε[εᵀAε]

where ε ∼ N (0, I).

2. However, training a neural ODE with log-likelihood does not scale well to high-dimensional

spaces, and the process tends to be unstable, likely due

to numerical approximations and

to the (infinite) number of possible probability paths.
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Flow matching

1. Flow matching is a simulation-free way to train CNF models.

2. We directly formulate a regression objective w.r.t. vθ(xt , t) of the form

Lfm(θ) = E t∼U(0,1)
x∼ pt (x)

[
‖vθ(xt , t)− v(xt , t)‖2

]

3. This requires knowledge of a valid v(xt , t) (we assume we know it!).

4. This objective function can not be minimized, due to inaccessibility of v(xt , t), similar to

the basic score matching.

5. This is where Conditional Flow Matching (CFM) comes.
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Conditional Flow Matching

1. CFM was introduced by three simultaneous papers through different approaches:

conditional matching (Lipman, R. T. Q. Chen, et al. 2023).

rectifying flows (X. Liu, Gong, and Q. Liu 2023).

stochastic interpolants (Albergo and Vanden-Eijnden 2023).

2. The transport equation relates a vector field v(xt , t) to a probability path pt(x) as

∂ pt(x)

∂t
= −∇ · v(xt , t) pt(x)

3. Thus, constructing v(xt , t) or pt(x) is equivalent.

Probability path Velocity field
𝕩

flow
𝕩

Continuity equation

Pushforward 
𝕩 ODE

 S
olv

ing
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Conditional Flow Matching

1. Let z ∈ Rd be a random variable sampled from a given distribution pz(z).

2. The conditional ODE becomes

dxt
dt

= v(xt , t | z)

3. Then, the objective function becomes

Lcfm(θ) = E t∼U(0,1)
x∼ pt (x), z∼ pz(z)

[
‖vθ(xt , t)− v(xt , t | z)‖2

]

Theorem (Lipman, R. T. Q. Chen, et al. 2023)

If for all x ∈ Rd , we have pt(x) > 0 and t ∈ [0, 1], then Lcfm(θ) = Lfm(θ) + c , where c is

independent of θ. Therefore, we have ∇θ Lcfm(θ) = ∇θ Lfm(θ).

4. We can use CFM instead of FM.

5. What this conditioning z should be, and what is its distribution?

There are multiple options (Tong et al. 2024).
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Conditional Flow Matching

1. How to obtain conditional distributions pt(x | z)?

2. The continuity equation allows us to calculate the probability path. But, we need to know

the vector field.

3. How to avoid it?

First, consider the form of pt(x | z).

Then, use form of pt(x | z) and derive the vector field v(x, t | z).

4. CFM expresses probability path as a marginal over a joint involving a latent variable

z ∼ pz(z):

pt(xt) =

∫
pz(z) pt | z(xt | z)dz

Term pt | z(xt | z) is called conditional probability path.

Term pt | z(xt | z) satisfies some boundary conditions at t = 0 and t = 1 such that pt(xt) be

a valid path interpolating between p0(x0) and pd(x).

5. Regarding z, we can think of it as extra information like data x1 or anything else like a

class label, a piece of text, an audio signal, or an additional image.
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Conditional Flow Matching

1. Since we have access to samples x1 ∼ pd(x), it is good idea to condition on z = x1:

pt(xt) =

∫
pd(x1) pt | 1(xt | x1)dx1

2. Conditional probability path pt | 1(xt | x1) needs to satisfy the boundary conditions

p0(x | x1) = p0(x) reference distribution, usually p0(x) = N (0, I)

p1(x | x1) = N (x1, σ
2
minI)

σmin > 0 small value

3. Choosing reference distribution as p0(x) = N (0, I).
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Conditional Flow Matching

1. Conditional probability path satisfies transport equation with conditional vector field

v(x, t | x1)

∂ pt(x | x1)

∂t
= −∇ · (v(x, t | x1) pt(x | x1))

2. Lipman et al. (2023) introduced the notion of conditional flow matching (CFM) uses

v(x, t | x1) to express marginal vector v(x, t) as

v(x, t) = Ex1∼ p1 | t(x)[v(x, t | x1)]

=

∫
v(x, t | x1)

pt(x | x1) pd(x1)

pt(x)
dx1

3. We need to show that the marginal vector field v(x, t) satisfies the transport equation:

∂ pt(x)

∂t
= −∇ · (v(x, t) pt(x))
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Conditional Flow Matching

The ∂ pt(x)
∂t can be written as

∂ pt(x)

∂t
=

∂

∂t

∫
pt(x | x1) pd(x1)dx1

=

∫
∂

∂t
( pt(x | x1)) pd(x1)dx1

= −
∫
∇ · (v(x, t | x1) pt(x | x1)) pd(x1)dx1

= −
∫
∇ · (v(x, t | x1) pt(x | x1) pd(x1))dx1

= −∇ ·
∫

v(x, t | x1) pt(x | x1) pd(x1)dx1

= −∇ ·
(∫

v(x, t | x1)
pt(x | x1) pd(x1)

pt(x)
pt(x) dx1

)

= −∇ ·




∫
v(x, t | x1)

pt(x | x1) pd(x1)

pt(x)
dx1

︸ ︷︷ ︸
v(x,t)

pt(x)




= −∇ · (v(x, t) pt(x))
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Conditional Flow Matching

The relation between ψt(x0) and ψt(x0 | x1)
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Conditional Flow Matching

Relation between v(x0, t) and v(x0, t | x1)

Solve 
with 

Solve 
with 
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Example: Gaussian to Gaussian (2D)

1. Let µ = 10 and

p0(x) = N ([−µ, 0], I)

p1(x) = N ([+µ, 0], I)

ψt(x0 | x1) = (1− t)x0 + tx1

2. Example conditional paths ψt(x0 | x1)

3. We are interested in learning the marginal paths ψt(x0) for initial points x0 ∼ p0(x).

4. Then, we use x0 to generate samples ψ1(x0).
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Example: Gaussian to Gaussian (2D)

1. Example marginal paths ψ1(x0):

2. Pick a point x0 ∼ p0(x), and compute a MC estimator for v(x, t) at different t along path

ψ1(x0).

3. We look at

v(ψ1(x0), t) = E p1 | t(x)[v(ψ1(x0), t | x1)]

≈ 1

n

n∑

i=1

v(ψ1(x0), t | x(i)1 ) with x
(i)
1 ∼ p1 | t(x1 | ψ1(x0))

4. In practice we don not have access to the posterior p1 | t(x1 | ψ1(x0)).
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Conditional Flow Matching

1. We had

v(x, t) = Ex1∼ p1 | t(x)[v(x, t | x1)]

=

∫
v(x, t | x1)

pt(x | x1) pd(x1)

pt(x)
dx1

2. Now consider the loss of flow matching as

Lfm(θ) = E t∼U(0,1)
x∼ pt (x)

[
‖vθ(xt , t)− v(xt , t)‖2

]

3. Using v(x, t) = Ex1∼ p1 | t(x)[v(x, t | x1)], we obtain

Lcfm(θ) = E t∼U(0,1)
x∼ pt (x), x1∼ pd(x1)

[
‖vθ(xt , t)− v(xt , t | x1)‖2

]

4. This implies that we can use Lcfm(θ) for training parametric vector field vθ(x, t)
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Gaussian probability paths

1. Consider a practical example of conditional vector field and corresponding probability path.

2. Suppose we want conditional vector field which generates a path of Gaussian, i.e.

pt(x | x1) = N (µt(x1), σ2
t (x1)I)

for some mean (µt(x1) and standard deviation σt(x1).

3. In general, there is no unique ODE that generates these distributions.

4. However, the following theorem shows that there is a unique vector field that

leads to those!

Theorem (Lipman, R. T. Q. Chen, et al. 2023)

The unique vector field with initial conditions p0(x) = N (µ0, σ
2
0I) that generates

pt(x | x1) = N (µt(x1), σ2
t (x1)I) has the following form:

v(x, t | x1) =
σ′t(x1)

σt(x1)
(x− µt(x1)) + µ′t(x1)

where

µ′
t(x1) denote the time derivate of µt(x1).

σ′
t(x1) denote the time derivate of σ′

t(x1).

Hamid Beigy (Sharif University of Technology) 46 / 56



Gaussian probability paths

Result: If we consider a class of conditional probability paths in the form of Gaussian,

we can analytically calculate the conditional vector field as long as the means and the

standard deviations are differentiable.

Proof of theorem (Lipman, R. T. Q. Chen, et al. 2023).

1. Let

ψt(x | x1) = µt(x1) + σt(x1)x

2. We want to determine v(x | x1) such that

d

dt
ψt(x) = v(ψt(x), t | x1)

3. The left hand side is

d

dt
ψt(x) =

d

dt
(µt(x1) + σt(x1)x)

=
dµt(x1)

dt
+

dσt(x1)

dt
x

= µ′t(x1) + σ′t(x1)x
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Gaussian probability paths

1. Thus, we obtain

µ′t(x1) + σ′t(x1)x = v(ψt(x | x1), t | x1)

2. Suppose that v(ψt(x | x1), t | x1) is of the form

v(ψt(x | x1), t | x1) = h(t, ψt(x), x1)µ′t(x1) + g(t, ψt(x), x1)σ′t(x1)

for some functions h and g .

3. In the previous equation, we had

h(t, ψt(x), x1) = 1 g(t, ψt(x), x1) = x

4. The simplest solution to this equation is

h(t, x, x1) = 1 g(t, x, x1) = ψt
−1(x) =

x− µt(x1)

σt(x1)

such that g(t, ψt(x), x1) = ψt
−1(ψt(x)) = x, resulting in

v(x, t | x1) =
σ′t(x1)

σt(x1)
(x− µt(x1)) + µ′t(x1)
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Example: Linear interpolation

1. A simple choice for the mean µt(x1) and standard deviation σt(x1) is the linear

interpolation as:

µt(x1) , tx1 µ′t(x1) = x1

σt(x1) , (1− t) + tσmin σ′t(x1) = −1 + σmin

such that

(µ0(x1) + σ0(x1)x1) ∼ p0(x)

(µ1(x1) + σ1(x1)x1) ∼ p1(x) = N (x1, σ
2
minI)

2. Also for some µ > 0, let

p0(x) = N ([−µ, 0], I)

p1(x) = N ([+µ, 0], I)

ψt(x0 | x1) = (1− t)x0 + tx1
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Example: Linear interpolation

1. Writing σt(x1) as σt(x1) = 1− (1− σmin), the conditional vector field becomes as

v(x, t | x1) =
−(1− σmin)

1− (1− σmin)t
(x− tx1) + x1

=
1

(1− t) + tσmin

[
− (1− σmin)(x− tx1) + (1− (1− σmin)t)x1

]

=
1

(1− t) + tσmin

[
− (1− σmin)x + x1

]

=
x1 − (1− σmin)x

1− (1− σmin)t

2. Example paths from p0(x) to p1(x) following

the true vector field v(x, t) the conditional vector field v(x, t | x1)
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Conditional Flow Matching Results

The results from (Lipman, R. T. Q. Chen, et al. 2023)Preprint

Figure 15: Conditional generation 64⇥64!256⇥256. Flow Matching OT upsampled images from
validation set.
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Training/Sampling Conditional Flow Matching

Training:

1. Sample t ∼ U(0, 1) and z ∼ pz(z).

2. Calculate µt(z) and σt(z)

3. Sample from xt ∼ N (µt(z), σ2
t (z)I)

4. Calculate the vector field v(xt , t | z)

5. Calculate ∇θ Lcfm(θ) and update θ.

Sampling:

1. Sample x0 ∼ p0(x).

2. Run forward Euler method from t = 0 to t = 1 with step size h

xt+h = xt + h × vθ(xt , t)
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Conditional Flow Matching Problems

There are two issues arising from crossing conditional paths.

1. ODE hard to integrate and slow sampling at inference

2. Consider v(xt , t | x1) with two data samples x
(1)
1 and x

(2)
1 .

3. SGD approximates the CFM loss as:

Lcfm(θ) ≈ 1

2
‖vθ(x

(1)
t , t)− v(x

(1)
t , t, | x(1)t )‖2 +

1

2
‖vθ(x

(2)
t , t)− v(x

(2)
t , t, | x(2)t )‖2

4. We are attempting to align vθ(xt , t) with two different vector fields.

5. This can lead to increased variance in the gradient estimate, and thus slower convergence.
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