Deep Generative Models

Flow-Matching Models

Hamid Beigy

Sharif University of Technology

May 24, 2025

- 1. Introduction
- 2. Ordinary differential equations
- 3. Neural ODE
- 4. Continuous flows
- 5. Flow matching
- 6. References

Introduction

Generative models categories

1. Assume that the observed variable x is a random sample from an underlying process, whose true distribution $p_d(x)$ is unknown.

- 2. We attempt to approximate this process with a chosen model, $p_{\theta}(\mathbf{x})$, with parameters θ such that $\mathbf{x} \sim p_{\theta}(\mathbf{x})$.
- 3. Learning is the process of searching for the parameter θ such that $p_{\theta}(\mathbf{x})$ well approximates $p_{d}(\mathbf{x})$ for any observed \mathbf{x} , i.e.

$$p_{ heta}(\mathbf{x}) pprox p_{\mathsf{d}}(\mathbf{x})$$

4. We wish $p_{\theta}(\mathbf{x})$ to be sufficiently flexible to be able to adapt to the data for obtaining sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover Hamid Beigy (Sharif University of Technology)

What is Normalizing Flows?

- 1. Normalizing Flow (NF) models are used for better and more powerful distribution approximation (Rezende and Mohamed 2015).
- 2. A normalizing flow transforms a simple distribution into a complex one by applying a sequence of invertible transformation functions.

- 3. Some methods for constructing normalizing flows
 - Coupling flows
 - Autoregressive flows
 - Residual flows

- 2. The function $F : \mathbb{R}^D \mapsto \mathbb{R}^D$ is called the residual block.
- 3. Under certain conditions on F, the residual connection f becomes invertible.

4. Flows composed of invertible residual connections are referred as residual flows.

Ordinary differential equations

Initial value problem is expressed as

$$\frac{d\mathbf{x}_t}{dt} = f_\theta(\mathbf{x}_t, t) \qquad \qquad \mathbf{x}_{t_0} = \mathbf{x}_0 \qquad \qquad \mathbf{x}_{t_1} = ?$$

Solution

$$\mathbf{x}_{t_1} = \mathbf{x}_{t_0} + \int_{t_0}^{t_1} f_{\theta}(\mathbf{x}_t, t) \mathrm{d}t$$

Ordinary differential equations

- 1. What if $\int_{t_0}^{t_1} f_{\theta}(\mathbf{x}_t, t) dt$ can not be analytically integrated?
- 2. We use approximation to $\int_{t_0}^{t_1} f_{\theta}(\mathbf{x}_t, t) dt$, i.e. numerical integration
 - Euler method
 - Runge-Kutta method

Hamid Beigy (Sharif University of Technology)

1. Consider an ODE of the form

$$\frac{dy(t)}{dt} = f(y(s), t) \qquad \qquad y(t_0) = y_0$$

where f(y(s), t) is a known function.

2. The exact solution to this ODE can be expressed in integral form:

$$y(t) = y_0 + \int_0^t f(y(s), s) ds$$

- 3. We want to approximate the solution near $t = t_0$.
- 4. We start with two pieces of information that we know about the solution:
 - We know the value of solution at $t = t_0$ from the initial condition.
 - We know the value of derivative at $t = t_0$ by plugging the initial condition into the differential equation.
- 5. Hence, the derivative equals to

$$\left.\frac{dy(t)}{dt}\right|_{t=t_0}=f(y_0,t_0)$$

1. These information are enough to write down the equation of tangent line to the solution at $t = t_0$ as

$$y(t) = y_0 + f(y_0, t_0) \times (t - t_0)$$

2. Now, consider the following figure

3. When t_1 is sufficiently close to t_0 , point y_1 on the tangent line should be fairly close to the actual value of the solution at t_1 .

1. We can find $y_1 = y(t_1)$ easily by plugging t_1 in the equation for tangent line as:

$$y_1 = y_0 + f(y_0, t_0) \times (t_1 - t_0)$$

- 2. When y_1 is accurate approximation of solution, it is used to estimate the tangent line at t_1 by constructing a line through the point (t_1, y_1) that has slope $f(y_1, t_1)$.
- 3. This estimation gives

$$y(t) = y_1 + f(y_1, t_1) \times (t - t_0)$$

- 4. Next, we approximate the solution at $t = t_2$ and proceed accordingly.
- 5. Then, we can obtain the next approximation as

$$y_{2} = y_{1} + f(y_{1}, t_{1}) \times (t_{2} - t_{1})$$

$$y_{3} = y_{2} + f(y_{2}, t_{2}) \times (t_{3} - t_{2})$$

$$\vdots$$

$$y_{n+1} = y_{n} + f(y_{n}, t_{n}) \times (t_{n+1} - t_{n})$$

- 6. Assume that step sizes t_0, t_1, t_2, \ldots are of a uniform size of h, i.e. $t_{n+1} t_n = h$, for all n.
- 7. The next approximation is $y_{n+1} = y_n + h \times f(y_n, t_n)$

Hamid Beigy (Sharif University of Technology)

Euler's method

Example

1. Let
$$\frac{dy(t)}{dt} = 2 - 2y(t) - e^{4t}$$
, where $y(0) = 1$.

- 2. Also let h = 0.1.
- 3. Then, we approximate values of solution at t = 0.1, 0.2, 0.3, 0.4, 0.5 and compare them with the exact solution of ODE, given by

$$y(t) = 1 + \frac{1}{2} (e^{-4t} - e^{-2t}).$$

4. We have $f(y(t), t) = 2 - 2y(t) - e^{4t}$. Then, we can approximate the solution as

$$y_1 = y_0 + h \times f(y_0, t_0) = 0.900$$

$$y_3 = y_1 + h \times f(y_1, t_1) = 0.850$$

$$y_3 = y_2 + h \times f(y_2, t_2) = 0.837$$

$$y_4 = y_3 + h \times f(y_3, t_3) = 0.835$$

$$y_5 = y_4 + h \times f(y_4, t_4) = 0.851$$

Euler's method

1. Now, extending the method to a vector field. Let ODE of form

$$rac{d\mathbf{y}(t)}{dt} = f(\mathbf{y}(t), t)$$
 $\mathbf{y}(t_0) = \mathbf{y}_0$

2. The Euler's method starts from t = 0 and proceeding with a step size of *h*, so

$$\mathbf{y}(t+h) = f(\mathbf{y}(t), t) \times h + \mathbf{y}(t)$$

Initial value problem is expressed as

$$\frac{d\mathbf{x}_t}{dt} = f_\theta(\mathbf{x}_t, t) \qquad \qquad \mathbf{x}_{t_0} = \mathbf{x}_0 \qquad \qquad \mathbf{x}_{t_1} = ?$$

Solution

$$\mathbf{x}_{t_1} = \mathbf{x}_{t_0} + \int_{t_0}^{t_1} f_{\theta}(\mathbf{x}_t, t) \mathrm{d}t$$

Neural ODE

Neural ODE

1. Initial value problem is expressed as

$$\frac{d\mathbf{x}_t}{dt} = f_\theta(\mathbf{x}_t, t) \qquad \qquad \mathbf{x}_{t_0} = \mathbf{x}_0 \qquad \qquad \mathbf{x}_{t_1} = ?$$

Exact

Numerical

$$\mathbf{x}_{t_1} = \mathbf{x}_{t_0} + \int_{t_0}^{t_1} f_{\theta}(\mathbf{x}_t, t) dt \qquad \qquad \mathbf{x}_{t_1} = ODESolver(f_{\theta}(\mathbf{x}_t, t), \mathbf{x}_{t_0}, t_0, t_1)$$

- 3. In neural ODE, f_{θ} is a neural network parametrized by θ (T. Q. Chen et al. 2018).
- 4. This is a paradigm shift:
 - In earlier methods, f_{θ} was pre-defined/hand-designed according to the domain.
 - In neural ODE, we want to estimate f_{θ} that suits our objective.

Neural ODE

ODE

1. Initial value problem is expressed as

$$rac{d \mathbf{x}_t}{dt} = f_ heta(\mathbf{x}_t, t) \qquad \mathbf{x}_{t_0} = \mathbf{x}_0$$

2. Using Euler discretization

$$\mathbf{x}_{n+1} = \mathbf{x}_n + hf_{\theta}(\mathbf{x}_n, n)$$

3. Forward propagation

 $\mathbf{x}_{t_1} = ODESolver(f_{\theta}(\mathbf{x}_t, t), \mathbf{x}_{t_0}, t_0, t_1)$

- 4. Update θ using gradient-based learning
- 5. How to compute gradient of loss function?
- 6. Back-propagate through ODESolver! High memory cost!!
- 7. Better method: Adjoint method

Residual networks

Hamid Beigy The output of a residual block is

1. Neural ODEs are reversible models.

2. They integrate forward/backward in time.

Continuous flows

Continuous flows are continuous version of normalizing flows (Grathwohl et al. 2019).

Generate Sample

$$\mathbf{x}_{k} = \psi_{k}(\mathbf{x}_{k-1}) = \mathbf{x}_{k-1} + \delta \mathbf{v}(\mathbf{x}_{k-1})$$

for some $\delta > 0$ and Lipschitz residual connection v.

2. By rearranging this equation, we obtain

$$v(\mathbf{x}_{k-1}) = rac{\mathbf{x}_k - \mathbf{x}_{k-1}}{\delta}$$

3. Setting $\delta = \frac{1}{\kappa}$ and $\kappa \to \infty$, then $\psi = \psi_{\kappa} \circ \psi_{\kappa-1} \circ \ldots \circ \psi_2 \circ \psi_1$ is given by ODE:

$$\frac{d\mathbf{x}_t}{dt} = \lim_{\delta \to 0} \frac{\mathbf{x}_{t+\delta} - \mathbf{x}_t}{\delta} = \lim_{\delta \to 0} \frac{\psi_t(\mathbf{x}_t) - \mathbf{x}_t}{\delta} = v(\mathbf{x}_t, t),$$

for $t \in [0, 1]$.

4. The flow of ODE $\psi_t: [0,1] \times \mathbb{R}^d \mapsto \mathbb{R}^d$ is defined such that

$$\frac{d\psi_t}{dt} = v(\psi_t(\mathbf{x}_0), t).$$

1. The flow of ODE is

$$\frac{d\psi_t}{dt} = v(\psi_t(\mathbf{x}_0), t).$$

where

- \mathbf{x}_t is the state of the system.
- $v(\mathbf{x}_t, t)$ is vector field, called **velocity field**.
- 2. At the time
 - 0 : $p_0(\mathbf{x}_0)$ is the the standard Gaussian distribution.
 - 1 : $p_1(x_1)$ is the distribution of data such. We need to be close to $p_d(x)$.

Continuous flows

1. The $\frac{d\psi_t}{dt} = v(\psi_t(\mathbf{x}_0), t)$ states that transformation ψ_t maps initial condition \mathbf{x}_0 to the solution at time t denoted by \mathbf{x}_t as:

$$\mathbf{x}_t \triangleq \psi_t(\mathbf{x}_0) = \mathbf{x}_0 + \int_0^t v(\mathbf{x}_s, s) ds$$
 (1)

- 2. This ODE is called an **initial value problem**, controlled by **velocity field** $v(\mathbf{x}_t, t)$.
- 3. Additionally, two important objects in continuous normalizing flow are
 - the flow $\psi_t(\mathbf{x})$ and
 - the probability path $p_t(\mathbf{x})$, which is the distribution of $\psi_t(\mathbf{x})$
- 4. The continuity equation (transport equation) links $p_t(\mathbf{x})$ and $v(\mathbf{x}_t, t)$.
- In probability, continuity equation is analogous to conservation of mass in fluid dynamics:

$$rac{\partial \, p_t(\mathbf{x})}{\partial t} +
abla \cdot \mathbf{j}(\mathbf{x}_t, t) = \mathbf{0},$$

6. $\mathbf{j}(\mathbf{x}_t, t) = v(\mathbf{x}_t, t) p_t(\mathbf{x})$ is the **probability flux** describing flow of probability density.

1. The continuity equation maintains conservation of probability:

$$\frac{\partial p_t(\mathbf{x})}{\partial t} + \nabla \cdot \mathbf{j}(\mathbf{x}_t, t) = 0,$$

2. The divergence of a *d*-dimensional vector field **g**:

$$\nabla \cdot \mathbf{g}(\mathbf{x}) = \sum_{k=1}^{d} \frac{\partial \mathbf{g}_{k}(\mathbf{x})}{\partial x_{k}} = \operatorname{tr}(J_{\mathbf{g}(\mathbf{x})})$$

where $J_{g(x)}$ is the Jacobian of vector field g(x).

- 3. $\nabla \cdot \mathbf{j}(\mathbf{x}_t, t)$ measures the rate at which probability density is expanding/contracting in a given region of space.
- 4. Multiplying the **continuity equation** with $\frac{1}{p_t(\mathbf{x})}$, results in:

$$\begin{aligned} \frac{1}{p_t(\mathbf{x}_t)} \frac{\partial p_t(\mathbf{x}_t)}{\partial t} + \frac{1}{p_t(\mathbf{x}_t)} \nabla \cdot (v(\mathbf{x}_t, t) \, p_t(\mathbf{x}_t)) &= 0, \\ \frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} + \langle \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), v(\mathbf{x}_t, t) \rangle + \nabla \cdot v(\mathbf{x}_t, t) &= 0, \\ \langle \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), v(\mathbf{x}_t, t) \rangle &= -\frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} - \nabla \cdot v(\mathbf{x}_t, t). \end{aligned}$$

Hamid Beigy (Sharif University of Technology)

1. The continuity equation maintains conservation of probability:

$$\langle \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), v(\mathbf{x}_t, t) \rangle = -\frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} - \nabla \cdot v(\mathbf{x}_t, t).$$

2. Calculating the total derivative of $\frac{d \log p_t(\mathbf{x}_t)}{dt}$:

$$\frac{d \log p_t(\mathbf{x}_t)}{dt} = \frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} + \langle \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), \frac{\partial \mathbf{x}_t}{\partial t} \rangle, \\
= \frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} + \langle \nabla_{\mathbf{x}} \log p_t(\mathbf{x}_t), v(\mathbf{x}_t, t) \rangle, \\
= \frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} - \frac{\partial \log p_t(\mathbf{x}_t)}{\partial t} - \nabla \cdot v(\mathbf{x}_t, t) \\
= -\nabla \cdot v(\mathbf{x}_t, t) \\
= -\operatorname{tr}\left(\frac{\partial v(\mathbf{x}_t, t)}{\partial \mathbf{x}_t}\right).$$

1. Computing the total change in log-density by integrating $\frac{d \log p_t(\mathbf{x}_t)}{dt}$ across time:

$$\int_0^1 \left(\frac{d \log p_t(\mathbf{x}_t)}{dt} + \operatorname{tr} \left(\frac{\partial v(\mathbf{x}_t, t)}{\partial \mathbf{x}_t} \right) \right) \mathrm{d}t = 0.$$

2. Simplifying the above integral:

$$\log p_1(\mathbf{x}_1) = \log p_0(\mathbf{x}_0) - \int_0^1 \operatorname{tr}\left(\frac{\partial v(\mathbf{x}_t, t)}{\partial \mathbf{x}_t}\right) \mathrm{d}t.$$

To compute log p_t(x_t), we can either solve both the time evolution of x_t and its log density log p_t(x_t) together,

$$\frac{d \begin{pmatrix} \mathbf{x}_t \\ \log p_t(\mathbf{x}_t) \end{pmatrix}}{dt} = \begin{pmatrix} v(\mathbf{x}_t, t) \\ -\nabla \cdot v(\mathbf{x}_t, t) \end{pmatrix}$$

or solve only for \mathbf{x}_t and then estimate $\log p_t(\mathbf{x}_t)$ using quadrature methods.

- 1. Parameterizing the vector field with a neural network with weights θ , $v_{\theta}(\mathbf{x}_t, t)$, leads to **neural ODE** (T. Q. Chen et al. 2018).
- 2. Let \mathbf{x}_0 be the initial condition for this ODE.
- 3. By integrating over time *t*, we solve it and get the output as given below.

$$\mathbf{x}_t = \int_0^t v_{ heta}(\mathbf{x}_s, s) \mathrm{d}s$$

Example: Gaussian to a Gaussian (1D)

- 1. How to map a 1D Gaussian to another one with different mean?
- 2. We can derive a one-shot (i.e. discrete) flow bridging between two Gaussian distributions.
- 3. We want derive a time-continuous flow $\psi_t(x)$, corresponding to integration of $v(x_t, t)$.
- 4. Let

$$p_0(x) = \mathcal{N}(0, 1)$$

 $p_1(x) = \mathcal{N}(\mu, 1)$

5. We can continuously bridge with a simple linear transformation $\psi_t(x_0) = x_0 + \mu t$ as

1. Every marginal $p_t(x)$ is a Gaussian, and also

 $\mathbb{E}_{p_0(x)}[\psi_t(x_0)] = \mu t$

2. This implies that $\mathbb{E}_{\rho_0(x)}[\psi_1(x_0)] = \mu = \mathbb{E}_{\rho_1(x)}[x_1]$ and

$$\begin{split} & \text{var}_{\,\rho_0(x)}[\psi_t(x_0)] = 1 \\ & \text{var}_{\,\rho_0(x)}[\psi_1(x_0)] = 1 = \text{var}_{\,\rho_1(x)}[x_1] \end{split}$$

3. The probability path $p_t(x)]x = \mathcal{N}(\mu t, 1)$ bridges $p_0(x)$ and $p_1(x)$.

1. Now determine the vector field $v(x_t, t)$, which satisfies

$$\frac{d\psi_t(x_0)}{dt} = v(x_t, t)$$

2. We can plug $\psi(x_0, t) = x_0 + \mu t$ in on the left hand side to get

$$egin{aligned} rac{d\psi_t(x_0)}{dt} &= rac{d(x_0+\mu t)}{dt} = \mu \ v(x_t,t) &= v(x_0+\mu t,t) \end{aligned}$$

3. It is easy to see that one such solution is the constant vector field

$$v(x_t,t)=\mu$$

4. We can also define $v(x_t, t)$ such that $p_0(x) \xrightarrow{v(x_t, t)} p_1(x)$ and derive the corresponding $\psi_t(x_0)$ by solving the ODE.

Training continuous flows

- 1. To construct flow, we maximize the log-likelihood of $p_t(\mathbf{x})$.
- 2. Maximizing the log-likelihood minimizes $D_{KL}(p_d(\mathbf{x}) \parallel p_t(\mathbf{x}))$.
- 3. The log-likelihood of $p_t(\mathbf{x})$ can be written as

$$\begin{split} \mathsf{LL}(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{d}}(\mathbf{x})}[\log p_{1}(\mathbf{x})] \\ &= \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{d}}(\mathbf{x})} \bigg[\log p_{0}(\mathbf{x}_{0}) - \int_{0}^{1} \mathsf{tr}\bigg(\frac{\partial v(\mathbf{x}_{t}, t)}{\partial \mathbf{x}_{t}}\bigg) \mathrm{d}t\bigg], \end{split}$$

- 4. Expectation is taken over data distribution, log $p_1(\mathbf{x})$ represents parametric distribution.
- 5. Maximizing the log-likelihood requires:
 - Expensive numerical ODE simulations at training time!
 - Estimators for the divergence to scale nicely with high dimension.
- 6. Change of variables:

$$\log p_1(\mathbf{x}) - \log p_0(\mathbf{x}) = \log \det \left(\frac{dv_{ heta}}{d\mathbf{x}_t}
ight)$$

7. Instantaneous change of variables:

$$\frac{\partial \log p_t(\mathbf{x})}{\partial t} = -\operatorname{tr}\left(\frac{\partial v_{\theta}(\mathbf{x}_t, t)}{\partial \mathbf{x}_t}\right)$$

- 1. This expectation necessitates expensive numerical ODE simulations during training.
- 2. This numerical ODE simulations affect the scalability of estimators when dealing with high dimensions.
- 3. Continuous normalizing flows are highly expressive because they parameterize a wide variety of flows and can represent many probability distributions.
- 4. Training CNFs can be very slow due to the need for ODE integration at each iteration.

- Blue distribution: Noise distribution $p_0(\mathbf{x})$.
- Red distribution: Data distribution $p_1(\mathbf{x}) \approx p_d(\mathbf{x})$.
- Dashed distribution: The probability path $p_t(\mathbf{x})$.

Calculating the log-likelihood for CNFs

- 1. Unlike in discrete time normalizing flows, we do not require invertibility of v,
- 2. Hence, we cannot invert the transformation to obtain x_0 for given datapoint x_1 .
- 3. Under some conditions, we can uniquely solve the following problem (Grathwohl et al. 2019).

$$\begin{bmatrix} \mathbf{x}_0 \\ \ln p_1(\mathbf{x}_1) - \ln p_0(\mathbf{x}_0) \end{bmatrix} = \int_1^0 \begin{bmatrix} v_\theta(\mathbf{x}_t, t) \\ -\operatorname{tr}\left(\frac{\partial v_\theta(\mathbf{x}_t, t)}{\partial \mathbf{x}_t}\right) \end{bmatrix} \mathrm{d}t$$

with initial conditions:

$$\begin{bmatrix} \mathbf{x}_1 \\ \ln p_1(\mathbf{x}_d) - \ln p_1(\mathbf{x}_1) \end{bmatrix} = \begin{bmatrix} \mathbf{x}_d \\ 0, \end{bmatrix}$$

where \mathbf{x}_1 is a datapoint \mathbf{x}_d .

- 4. We do the following steps:
 - Take a datapoint $\mathbf{x}_1 = \mathbf{x}_d$.
 - Solve the above integral by applying a solver to find x_0 and keeping track of traces over time.
 - Calculate the log-likelihood by adding $\ln p_0(\mathbf{x}_0)$ to the sum of negative traces $-\operatorname{tr}\left(\frac{\partial v_{\theta}(\mathbf{x}_t,t)}{\partial \mathbf{x}_t}\right)$.

Continuous flows

Negative log-likelihood on test data for density estimation models:

	POWER	GAS	HEPMASS	MINIBOONE	BSDS300	MNIST	CIFAR10
Real NVP	-0.17	-8.33	18.71	13.55	-153.28	1.06*	3.49*
Glow	-0.17	-8.15	18.92	11.35	-155.07	1.05*	3.35*
FFJORD	-0.46	-8.59	14.92	10.43	-157.40	0.99* (1.05 [†])	3.40*
MADE	3.08	-3.56	20.98	15.59	-148.85	2.04	5.67
MAF	-0.24	-10.08	17.70	11.75	-155.69	1.89	4.31
TAN	-0.48	-11.19	15.12	11.01	-157.03	-	-
MAF-DDSF	-0.62	-11.96	15.09	8.86	-157.73	-	-

Flow matching

Flow matching

- 1. The main benefits of continuous flows are
 - Constraints are much less than in the discrete case:

for the solution of the ODE to be unique, only needs v to be Lipschitz continuous in x and continuous in t.

- Inverting the flow can be achieved by solving the ODE in reverse.
- Computing the likelihood does not require inverting the flow, nor to compute a log determinant;

only the trace of the Jacobian is required, that can be approximated using the Hutchinson trick. Please study it.

$$tr(\mathbf{A}) = \mathbb{E}_{\boldsymbol{\epsilon}}[\boldsymbol{\epsilon}^{\mathsf{T}}\mathbf{A}\boldsymbol{\epsilon}]$$

where $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.

- 2. However, training a neural ODE with log-likelihood does not scale well to high-dimensional spaces, and the process tends to be unstable, likely due
 - to numerical approximations and
 - to the (infinite) number of possible probability paths.

Flow matching

- 1. Flow matching is a simulation-free way to train CNF models.
- 2. We directly formulate a regression objective w.r.t. $v_{\theta}(\mathbf{x}_t, t)$ of the form

$$\mathcal{L}_{\textit{fm}}(heta) = \mathbbm{E}_{t \sim U(0,1) \atop \mathbf{x} \sim P_t(\mathbf{x})} \left[\| v_{ heta}(\mathbf{x}_t, t) - v(\mathbf{x}_t, t) \|^2
ight]$$

3. This requires knowledge of a valid $v(\mathbf{x}_t, t)$ (we assume we know it!).

- 4. This objective function can not be minimized, due to inaccessibility of $v(\mathbf{x}_t, t)$, similar to the basic score matching.
- 5. This is where Conditional Flow Matching (CFM) comes.

Hamid Beigy (Sharif University of Technology)

- 1. CFM was introduced by three simultaneous papers through different approaches:
 - conditional matching (Lipman, R. T. Q. Chen, et al. 2023).
 - rectifying flows (X. Liu, Gong, and Q. Liu 2023).
 - stochastic interpolants (Albergo and Vanden-Eijnden 2023).
- 2. The transport equation relates a vector field $v(\mathbf{x}_t, t)$ to a probability path $p_t(\mathbf{x})$ as

$$rac{\partial \, p_t(\mathbf{x})}{\partial t} = -
abla \cdot v(\mathbf{x}_t, t) \, p_t(\mathbf{x})$$

3. Thus, constructing $v(\mathbf{x}_t, t)$ or $p_t(\mathbf{x})$ is equivalent.

2. The conditional ODE becomes

$$\frac{d\mathbf{x}_t}{dt} = v(\mathbf{x}_t, t \mid \mathbf{z})$$

3. Then, the objective function becomes

$$\mathcal{L}_{\textit{cfm}}(heta) = \mathbb{E}_{\substack{t \sim U(0,1) \\ \mathbf{x} \sim p_{\mathbf{f}}(\mathbf{x}), \ \mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}} \left[\| v_{ heta}(\mathbf{x}_t, t) - v(\mathbf{x}_t, t \mid \mathbf{z}) \|^2
ight]$$

Theorem (Lipman, R. T. Q. Chen, et al. 2023) If for all $\mathbf{x} \in \mathbb{R}^d$, we have $p_t(\mathbf{x}) > 0$ and $t \in [0, 1]$, then $\mathcal{L}_{cfm}(\theta) = \mathcal{L}_{fm}(\theta) + c$, where c is independent of θ . Therefore, we have $\nabla_{\theta} \mathcal{L}_{cfm}(\theta) = \nabla_{\theta} \mathcal{L}_{fm}(\theta)$.

- 4. We can use CFM instead of FM.
- 5. What this conditioning z should be, and what is its distribution?

There are multiple options (Tong et al. 2024).

- 1. How to obtain conditional distributions $p_t(\mathbf{x} \mid \mathbf{z})$?
- 2. The continuity equation allows us to calculate the probability path. But, we need to know the vector field.
- 3. How to avoid it?
 - First, consider the form of $p_t(\mathbf{x} \mid \mathbf{z})$.
 - Then, use form of $p_t(\mathbf{x} \mid \mathbf{z})$ and derive the vector field $v(\mathbf{x}, t \mid \mathbf{z})$.
- CFM expresses probability path as a marginal over a joint involving a latent variable z ~ p_z(z):

$$p_t(\mathbf{x}_t) = \int p_{\mathbf{z}}(\mathbf{z}) p_{t \mid \mathbf{z}}(\mathbf{x}_t \mid \mathbf{z}) d\mathbf{z}$$

- Term $p_{t|z}(\mathbf{x}_t | \mathbf{z})$ is called **conditional probability path**.
- Term $p_{t|z}(\mathbf{x}_t | \mathbf{z})$ satisfies some boundary conditions at t = 0 and t = 1 such that $p_t(\mathbf{x}_t)$ be a valid path interpolating between $p_0(\mathbf{x}_0)$ and $p_d(\mathbf{x})$.
- 5. Regarding z, we can think of it as extra information like data x_1 or anything else like a class label, a piece of text, an audio signal, or an additional image.

$$p_t(\mathbf{x}_t) = \int p_d(\mathbf{x}_1) p_{t\mid 1}(\mathbf{x}_t \mid \mathbf{x}_1) \mathrm{d}\mathbf{x}_1$$

2. Conditional probability path $p_{t|1}(\mathbf{x}_t | \mathbf{x}_1)$ needs to satisfy the boundary conditions

$$\begin{aligned} p_0(\mathbf{x} \mid \mathbf{x}_1) &= p_0(\mathbf{x}) & \text{reference distribution, usually} \quad p_0(\mathbf{x}) &= \mathcal{N}(0, \mathbf{I}) \\ p_1(\mathbf{x} \mid \mathbf{x}_1) &= \mathcal{N}(\mathbf{x}_1, \sigma_{\min}^2 \mathbf{I}) \\ \sigma_{\min} &> 0 & \text{small value} \end{aligned}$$

3. Choosing reference distribution as $p_0(\mathbf{x}) = \mathcal{N}(0, \mathbf{I})$.

$$\frac{\partial p_t(\mathbf{x} \mid \mathbf{x}_1)}{\partial t} = -\nabla \cdot (v(\mathbf{x}, t \mid \mathbf{x}_1) p_t(\mathbf{x} \mid \mathbf{x}_1))$$

2. Lipman et al. (2023) introduced the notion of **conditional flow matching** (CFM) uses $v(\mathbf{x}, t | \mathbf{x}_1)$ to express marginal vector $v(\mathbf{x}, t)$ as

$$\begin{aligned} \mathbf{v}(\mathbf{x},t) &= \mathbb{E}_{\mathbf{x}_1 \sim p_1 \mid t}(\mathbf{x}) [\mathbf{v}(\mathbf{x},t \mid \mathbf{x}_1)] \\ &= \int \mathbf{v}(\mathbf{x},t \mid \mathbf{x}_1) \frac{p_t(\mathbf{x} \mid \mathbf{x}_1) \, p_d(\mathbf{x}_1)}{p_t(\mathbf{x})} \mathrm{d}\mathbf{x}_1 \end{aligned}$$

3. We need to show that the marginal vector field $v(\mathbf{x}, t)$ satisfies the transport equation:

$$\frac{\partial p_t(\mathbf{x})}{\partial t} = -\nabla \cdot (v(\mathbf{x}, t) p_t(\mathbf{x}))$$

Conditional Flow Matching

The $\frac{\partial p_t(\mathbf{x})}{\partial t}$ can be written as

$$\begin{aligned} \frac{\partial p_t(\mathbf{x})}{\partial t} &= \frac{\partial}{\partial t} \int p_t(\mathbf{x} \mid \mathbf{x}_1) p_d(\mathbf{x}_1) d\mathbf{x}_1 \\ &= \int \frac{\partial}{\partial t} (p_t(\mathbf{x} \mid \mathbf{x}_1)) p_d(\mathbf{x}_1) d\mathbf{x}_1 \\ &= -\int \nabla \cdot (v(\mathbf{x}, t \mid \mathbf{x}_1) p_t(\mathbf{x} \mid \mathbf{x}_1)) p_d(\mathbf{x}_1) d\mathbf{x}_1 \\ &= -\int \nabla \cdot (v(\mathbf{x}, t \mid \mathbf{x}_1) p_t(\mathbf{x} \mid \mathbf{x}_1) p_d(\mathbf{x}_1)) d\mathbf{x}_1 \\ &= -\nabla \cdot \int v(\mathbf{x}, t \mid \mathbf{x}_1) p_t(\mathbf{x} \mid \mathbf{x}_1) p_d(\mathbf{x}_1) d\mathbf{x}_1 \\ &= -\nabla \cdot \left(\int v(\mathbf{x}, t \mid \mathbf{x}_1) \frac{p_t(\mathbf{x} \mid \mathbf{x}_1) p_d(\mathbf{x}_1)}{p_t(\mathbf{x})} p_t(\mathbf{x}) d\mathbf{x}_1 \right) \\ &= -\nabla \cdot \left(\int v(\mathbf{x}, t \mid \mathbf{x}_1) \frac{p_t(\mathbf{x} \mid \mathbf{x}_1) p_d(\mathbf{x}_1)}{p_t(\mathbf{x})} p_t(\mathbf{x}) d\mathbf{x}_1 \right) \\ &= -\nabla \cdot \left(\underbrace{\int v(\mathbf{x}, t \mid \mathbf{x}_1) \frac{p_t(\mathbf{x} \mid \mathbf{x}_1) p_d(\mathbf{x}_1)}{p_t(\mathbf{x})} d\mathbf{x}_1}_{v(\mathbf{x}, t)} \right) \\ &= -\nabla \cdot \left(\underbrace{\int v(\mathbf{x}, t \mid \mathbf{x}_1) \frac{p_t(\mathbf{x} \mid \mathbf{x}_1) p_d(\mathbf{x}_1)}{p_t(\mathbf{x})} d\mathbf{x}_1}_{v(\mathbf{x}, t)} \right) \end{aligned}$$

Conditional Flow Matching

The relation between $\psi_t(\mathbf{x}_0)$ and $\psi_t(\mathbf{x}_0 \mid \mathbf{x}_1)$

Conditional Flow Matching

Relation between $v(\mathbf{x}_0, t)$ and $v(\mathbf{x}_0, t \mid \mathbf{x}_1)$

1. Let $\mu = 10$ and

$$p_0(\mathbf{x}) = \mathcal{N}([-\mu, 0], \mathbf{I})$$

$$p_1(\mathbf{x}) = \mathcal{N}([+\mu, 0], \mathbf{I})$$

$$\psi_t(\mathbf{x}_0 \mid \mathbf{x}_1) = (1 - t)\mathbf{x}_0 + t\mathbf{x}_1$$

2. Example conditional paths $\psi_t(\mathbf{x}_0 \mid \mathbf{x}_1)$

- 3. We are interested in learning the marginal paths $\psi_t(\mathbf{x}_0)$ for initial points $\mathbf{x}_0 \sim p_0(\mathbf{x})$.
- 4. Then, we use \mathbf{x}_0 to generate samples $\psi_1(\mathbf{x}_0)$.

1. Example marginal paths $\psi_1(\mathbf{x}_0)$:

- 2. Pick a point $\mathbf{x}_0 \sim p_0(\mathbf{x})$, and compute a MC estimator for $v(\mathbf{x}, t)$ at different t along path $\psi_1(\mathbf{x}_0)$.
- 3. We look at

$$\begin{aligned} v(\psi_1(\mathbf{x}_0), t) &= \mathbb{E}_{p_{1|t}(\mathbf{x})}[v(\psi_1(\mathbf{x}_0), t \mid \mathbf{x}_1)] \\ &\approx \frac{1}{n} \sum_{i=1}^n v(\psi_1(\mathbf{x}_0), t \mid \mathbf{x}_1^{(i)}) \qquad \text{with} \qquad \mathbf{x}_1^{(i)} \sim p_{1|t}(\mathbf{x}_1 \mid \psi_1(\mathbf{x}_0)) \end{aligned}$$

4. In practice we don not have access to the posterior $p_{1|t}(\mathbf{x}_1 \mid \psi_1(\mathbf{x}_0))$. Hamid Beigy (Sharif University of Technology)

1. We had

$$egin{aligned} & v(\mathbf{x},t) = \ \mathbb{E}_{\mathbf{x}_1 \sim \ p_1 \mid t}(\mathbf{x}) [v(\mathbf{x},t \mid \mathbf{x}_1)] \ & = \int v(\mathbf{x},t \mid \mathbf{x}_1) rac{p_t(\mathbf{x} \mid \mathbf{x}_1) \ p_d(\mathbf{x}_1)}{p_t(\mathbf{x})} \mathrm{d}\mathbf{x}_1 \end{aligned}$$

2. Now consider the loss of flow matching as

$$\mathcal{L}_{fm}(\theta) = \mathbb{E}_{t \sim U(0,1) \atop \mathbf{x} \sim p_t(\mathbf{x})} \left[\| v_{\theta}(\mathbf{x}_t, t) - v(\mathbf{x}_t, t) \|^2 \right]$$

3. Using $v(\mathbf{x}, t) = \mathbb{E}_{\mathbf{x}_1 \sim p_1 + t}[v(\mathbf{x}, t \mid \mathbf{x}_1)]$, we obtain

$$\mathcal{L}_{cfm}(\theta) = \mathbb{E}_{\mathbf{x} \sim P_{t}(\mathbf{x}), \mathbf{x}_{1} \sim P_{t}(\mathbf{x})} \left[\| v_{\theta}(\mathbf{x}_{t}, t) - v(\mathbf{x}_{t}, t \mid \mathbf{x}_{1}) \|^{2} \right]$$

4. This implies that we can use $\mathcal{L}_{cfm}(\theta)$ for training parametric vector field $v_{\theta}(\mathbf{x}, t)$

Hamid Beigy (Sharif University of Technology)

Gaussian probability paths

- 1. Consider a practical example of conditional vector field and corresponding probability path.
- 2. Suppose we want conditional vector field which generates a path of Gaussian, i.e.

$$p_t(\mathbf{x} \mid \mathbf{x}_1) = \mathcal{N}(\mu_t(\mathbf{x}_1), \sigma_t^2(\mathbf{x}_1)\mathbf{I})$$

for some mean $(\mu_t(\mathbf{x}_1))$ and standard deviation $\sigma_t(\mathbf{x}_1)$.

- 3. In general, there is no unique ODE that generates these distributions.
- 4. However, the following theorem shows that there is a unique vector field that leads to those!

Theorem (Lipman, R. T. Q. Chen, et al. 2023)

The unique vector field with initial conditions $p_0(\mathbf{x}) = \mathcal{N}(\mu_0, \sigma_0^2 \mathbf{I})$ that generates $p_t(\mathbf{x} \mid \mathbf{x}_1) = \mathcal{N}(\mu_t(\mathbf{x}_1), \sigma_t^2(\mathbf{x}_1)\mathbf{I})$ has the following form:

$$v(\mathbf{x}, t \mid \mathbf{x}_1) = \frac{\sigma'_t(\mathbf{x}_1)}{\sigma_t(\mathbf{x}_1)}(\mathbf{x} - \mu_t(\mathbf{x}_1)) + \mu'_t(\mathbf{x}_1)$$

where

- $\mu'_t(\mathbf{x}_1)$ denote the time derivate of $\mu_t(\mathbf{x}_1)$.
- $\sigma'_t(\mathbf{x}_1)$ denote the time derivate of $\sigma'_t(\mathbf{x}_1)$.

Result: If we consider a class of conditional probability paths in the form of Gaussian, we can analytically calculate the conditional vector field as long as the means and the standard deviations are differentiable.

Proof of theorem (Lipman, R. T. Q. Chen, et al. 2023).

1. Let

$$\psi_t(\mathbf{x} \mid \mathbf{x}_1) = \mu_t(\mathbf{x}_1) + \sigma_t(\mathbf{x}_1)\mathbf{x}$$

2. We want to determine $v(\mathbf{x} \mid \mathbf{x}_1)$ such that

$$\frac{d}{dt}\psi_t(\mathbf{x}) = v(\psi_t(\mathbf{x}), t \mid \mathbf{x}_1)$$

3. The left hand side is

$$egin{aligned} &rac{d}{dt}\psi_t(\mathbf{x}) = rac{d}{dt}(\mu_t(\mathbf{x}_1) + \sigma_t(\mathbf{x}_1)\mathbf{x}) \ &= rac{d\mu_t(\mathbf{x}_1)}{dt} + rac{d\sigma_t(\mathbf{x}_1)}{dt}\mathbf{x} \ &= \mu_t'(\mathbf{x}_1) + \sigma_t'(\mathbf{x}_1)\mathbf{x} \end{aligned}$$

1. Thus, we obtain

$$\mu_t'(\mathbf{x}_1) + \sigma_t'(\mathbf{x}_1)\mathbf{x} = v(\psi_t(\mathbf{x} \mid \mathbf{x}_1), t \mid \mathbf{x}_1)$$

2. Suppose that $v(\psi_t(\mathbf{x} \mid \mathbf{x}_1), t \mid \mathbf{x}_1)$ is of the form

$$v(\psi_t(\mathbf{x} \mid \mathbf{x}_1), t \mid \mathbf{x}_1) = h(t, \psi_t(\mathbf{x}), \mathbf{x}_1) \mu'_t(\mathbf{x}_1) + g(t, \psi_t(\mathbf{x}), \mathbf{x}_1) \sigma'_t(\mathbf{x}_1)$$

for some functions h and g.

3. In the previous equation, we had

$$h(t, \psi_t(\mathbf{x}), \mathbf{x}_1) = 1$$
 $g(t, \psi_t(\mathbf{x}), \mathbf{x}_1) = \mathbf{x}$

4. The simplest solution to this equation is

$$h(t, \mathbf{x}, \mathbf{x}_1) = 1 \qquad \qquad g(t, \mathbf{x}, \mathbf{x}_1) = \psi_t^{-1}(\mathbf{x}) = \frac{\mathbf{x} - \mu_t(\mathbf{x}_1)}{\sigma_t(\mathbf{x}_1)}$$

such that $g(t,\psi_t(\mathbf{x}),\mathbf{x}_1)=\psi_t{}^{-1}(\psi_t(\mathbf{x}))=\mathbf{x}$, resulting in

$$v(\mathbf{x}, t \mid \mathbf{x}_1) = \frac{\sigma_t'(\mathbf{x}_1)}{\sigma_t(\mathbf{x}_1)}(\mathbf{x} - \mu_t(\mathbf{x}_1)) + \mu_t'(\mathbf{x}_1)$$

Hamid Beigy (Sharif University of Technology)

Example: Linear interpolation

1. A simple choice for the mean $\mu_t(\mathbf{x}_1)$ and standard deviation $\sigma_t(\mathbf{x}_1)$ is the linear interpolation as:

$$\begin{aligned} \mu_t(\mathbf{x}_1) &\triangleq t\mathbf{x}_1 & \mu'_t(\mathbf{x}_1) = \mathbf{x}_1 \\ \sigma_t(\mathbf{x}_1) &\triangleq (1-t) + t\sigma_{min} & \sigma'_t(\mathbf{x}_1) = -1 + \sigma_{min} \end{aligned}$$

such that

$$\begin{aligned} (\mu_0(\mathbf{x}_1) + \sigma_0(\mathbf{x}_1)\mathbf{x}_1) &\sim \ p_0(\mathbf{x}) \\ (\mu_1(\mathbf{x}_1) + \sigma_1(\mathbf{x}_1)\mathbf{x}_1) &\sim \ p_1(\mathbf{x}) = \mathcal{N}(\mathbf{x}_1, \sigma_{\min}^2 \mathbf{I}) \end{aligned}$$

2. Also for some $\mu > 0$, let

$$egin{aligned} p_0(\mathbf{x}) &= \mathcal{N}([-\mu,0],\mathbf{I}) \ p_1(\mathbf{x}) &= \mathcal{N}([+\mu,0],\mathbf{I}) \ \psi_t(\mathbf{x}_0 \mid \mathbf{x}_1) &= (1-t)\mathbf{x}_0 + t\mathbf{x}_1 \end{aligned}$$

1. Writing $\sigma_t(\mathbf{x}_1)$ as $\sigma_t(\mathbf{x}_1) = 1 - (1 - \sigma_{min})$, the conditional vector field becomes as

$$\begin{aligned} v(\mathbf{x}, t \mid \mathbf{x}_{1}) &= \frac{-(1 - \sigma_{min})}{1 - (1 - \sigma_{min})t} (\mathbf{x} - t\mathbf{x}_{1}) + \mathbf{x}_{1} \\ &= \frac{1}{(1 - t) + t\sigma_{min}} \left[-(1 - \sigma_{min})(\mathbf{x} - t\mathbf{x}_{1}) + (1 - (1 - \sigma_{min})t)\mathbf{x}_{1} \right] \\ &= \frac{1}{(1 - t) + t\sigma_{min}} \left[-(1 - \sigma_{min})\mathbf{x} + \mathbf{x}_{1} \right] \\ &= \frac{\mathbf{x}_{1} - (1 - \sigma_{min})\mathbf{x}}{1 - (1 - \sigma_{min})t} \end{aligned}$$

2. Example paths from $p_0(\mathbf{x})$ to $p_1(\mathbf{x})$ following

the true vector field $v(\mathbf{x}, t)$

the conditional vector field $v(\mathbf{x}, t \mid \mathbf{x}_1)$

The results from (Lipman, R. T. Q. Chen, et al. 2023)

Training:

- 1. Sample $t \sim U(0,1)$ and $\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})$.
- 2. Calculate $\mu_t(\mathbf{z})$ and $\sigma_t(\mathbf{z})$
- 3. Sample from $\mathbf{x}_t \sim \mathcal{N}(\mu_t(\mathbf{z}), \sigma_t^2(\mathbf{z})\mathbf{I})$
- 4. Calculate the vector field $v(\mathbf{x}_t, t \mid \mathbf{z})$
- 5. Calculate $\nabla_{\theta} \mathcal{L}_{cfm}(\theta)$ and update θ .

Sampling:

- 1. Sample $\mathbf{x}_0 \sim p_0(\mathbf{x})$.
- 2. Run forward Euler method from t = 0 to t = 1 with step size h

$$\mathbf{x}_{t+h} = \mathbf{x}_t + h \times v_{\theta}(\mathbf{x}_t, t)$$

Hamid Beigy (Sharif University of Technology)

There are two issues arising from crossing conditional paths.

- 1. ODE hard to integrate and slow sampling at inference
- 2. Consider $v(\mathbf{x}_t, t \mid \mathbf{x}_1)$ with two data samples $\mathbf{x}_1^{(1)}$ and $\mathbf{x}_1^{(2)}$.
- 3. SGD approximates the CFM loss as:

$$\mathcal{L}_{cfm}(\theta) \approx \frac{1}{2} \| v_{\theta}(\mathbf{x}_{t}^{(1)}, t) - v(\mathbf{x}_{t}^{(1)}, t, | \mathbf{x}_{t}^{(1)}) \|^{2} + \frac{1}{2} \| v_{\theta}(\mathbf{x}_{t}^{(2)}, t) - v(\mathbf{x}_{t}^{(2)}, t, | \mathbf{x}_{t}^{(2)}) \|^{2}$$

4. We are attempting to align $v_{\theta}(\mathbf{x}_t, t)$ with two different vector fields.

This can lead to increased variance in the gradient estimate, and thus slower convergence.
 Hamid Beigy (Sharif University of Technology) 53 / 56

References

Reading

- 1. Chapter 9 of Deep Generative Modeling (Tomczak 2024).
- 2. Flow Matching for Generative Modeling (Lipman, R. T. Q. Chen, et al. 2023).
- 3. Improving and generalizing flow-based generative models with minibatch optimal transport (Tong et al. 2024).
- 4. Introduction to Flow Matching and Diffusion Models (Holderrieth and Erives 2025).
- 5. Flow Matching Guide and Code (Lipman, Havasi, et al. 2024).
- 6. An Introduction to Flow Matching (Fjelde, Mathieu, and Dutordoir 2024).

References i

- Albergo, Michael S. and Eric Vanden-Eijnden (2023). "Building Normalizing Flows with Stochastic Interpolants". In: International Conference on Learning Representations.
- Chen, Tian Qi et al. (2018). "Neural Ordinary Differential Equations". In: Advances in Neural Information Processing Systems, pp. 6572–6583.
- Fjelde, Tor, Emile Mathieu, and Vincent Dutordoir (2024). An Introduction to Flow Matching. URL: https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html.
- Grathwohl, Will et al. (2019). "FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models". In: International Conference on Learning Representations.
- Holderrieth, Peter and Ezra Erives (2025). Introduction to Flow Matching and Diffusion Models. URL: https://diffusion.csail.mit.edu/.
- Lipman, Yaron, Ricky T. Q. Chen, et al. (2023). "Flow Matching for Generative Modeling". In: International Conference on Learning Representations.
- Lipman, Yaron, Marton Havasi, et al. (2024). Flow Matching Guide and Code. arXiv: 2412.06264 [cs.LG]. URL: https://arxiv.org/abs/2412.06264.
- Liu, Xingchao, Chengyue Gong, and Qiang Liu (2023). "Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow". In: International Conference on Learning Representations.
- Rezende, Danilo Jimenez and Shakir Mohamed (2015). "Variational Inference with Normalizing Flows". In: International Conference on Machine Learning. Vol. 37, pp. 1530–1538.

References ii

 Tomczak, Jakub M. (2024). Deep Generative Modeling. Springer.

Tong, Alexander et al. (2024). "Improving and generalizing flow-based generative models with minibatch optimal transport". In: *Transactions on Machine Learning Research* 2024.

Questions?