
Deep Generative Models

Diffusion Models

Hamid Beigy

Sharif University of Technology

May 11, 2025

Table of contents

1. Introduction

2. Diffusion models

3. Denoising diffusion probabilistic models

4. Score-based generative models

5. Continuous time models using differential equations

6. Latent Diffusion Models

7. Summary

8. References

Hamid Beigy (Sharif University of Technology) 1 / 60

Introduction

Generative models categories

Generative models

Explicit density

Tractable density Approximate density Unnormalized density

Implicit density

Autoregressive

Normalizing Flows

VAEs

Diffusion models

Energy-based

GANs

Directly learn

density

Learn approximation

of density, e.g.

lower bound

Learn unnormalized

density

compare real vs

generated samples

Hamid Beigy (Sharif University of Technology) 2 / 60

Generative models

1. Assume that the observed variable x is a random sample from an underlying process,

whose true distribution pd(x) is unknown.

2. We attempt to approximate this process with a chosen model, pθ(x), with parameters θ

such that x ∼ pθ(x).

3. Learning is the process of searching for the parameter θ such that pθ(x) well approximates

pd(x) for any observed x, i.e.

pθ(x) ≈ pd(x)

4. We wish pθ(x) to be sufficiently flexible to be able to adapt to the data for obtaining

sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
Hamid Beigy (Sharif University of Technology) 3 / 60

Diffusion models

What is Diffusion?

1. Diffusion is a fundamental natural phenomenon observed in various systems, including

physics, chemistry, and biology.

2. Diffusion is a natural physical phenomenon where particles and energy move from a region

of higher concentration to that of lower concentration.

3. At microscopic level, diffusion is driven by random and chaotic movement of particles.

4. This phenomenon is referred to as Brownian motion.

5. This process takes place as systems seek to reach equilibrium, a state where particle

concentrations are evenly dispersed throughout the system.

6. The concept of diffusion in AI models is similar to the physical process of diffusion.

Hamid Beigy (Sharif University of Technology) 4 / 60

What Is Diffusion in the Context of Machine Learning?

1. Diffusion models in Machine Learning function by learning how to reverse a diffusion

process.

2. This process begins with a distribution of random noise and then gradually

transforms it into a structured data such as an image.

3. Training a model in such a way allows us to pass randomly sampled noise to the model

and constructs a new data point.

4. The process itself can be broken down into two main phases:

Forward diffusion

Reverse diffusion

Hamid Beigy (Sharif University of Technology) 5 / 60

What Is Forward Diffusion?

1. Forward diffusion is the process of deconstructing some original data point.

2. Noise is added to the original data point through multiple iterations.

3. In each iteration, we add a small amount of noise until we reach a pure noise state.

4. At this point, we can no longer recognize the original data point.

5. A degree of randomness is introduced at each step as a byproduct of the noise addition.

6. However, the entire process is still designed to be both predictable and reversible.

Hamid Beigy (Sharif University of Technology) 6 / 60

What Is Reverse Diffusion?

1. The reverse diffusion process aims to reverse what was done during forward diffusion.

2. The data is reconstructed from a noisy state back to its original form or a new coherent

form through multiple steps.

3. The reverse process is possible because of the precise knowledge of the amount and nature

of noise added at each step.

4. This information makes the reverse diffusion possible and enables the reconstruction of the

data from the pure noise generated as a result of the forward diffusion.

5. This process is important because performing inference with a trained model is equivalent

to performing reverse diffusion.

Hamid Beigy (Sharif University of Technology) 7 / 60

Training and sampling

1. The training objective of diffusion models is by

maximizing the log-likelihood of the sample generated (at the end of the reverse

process) belonging to the original data distribution.

2. To generate samples from diffusion models,

the reverse diffusion, diffusion models can generate new data samples by starting

from a point in the simple distribution and diffusing it step-by-step to the desired

complex data distribution.

Hamid Beigy (Sharif University of Technology) 8 / 60

Denoising diffusion probabilistic models

Denoising diffusion probabilistic models

1. Denoising Diffusion Probabilistic Models (DDPM) are based on a Markov

model (Ho, Jain, and Abbeel 2020):

2. In this model

We don’t know how to sample from q(x0) = pd(x).

We know how to sample from q(xT).

We know how to go from x0 to xT .

We learn how to go from xT to x0.

Hamid Beigy (Sharif University of Technology) 9 / 60

Forward diffusion process

1. Given a training point (x ∼ q(x)), in forward process, we add small amount of Gaussian

noise to the sample in T steps, producing a sequence of noisy samples x1, . . . , xT .

2. Data sample x0 gradually loses its distinguishable features as the step t becomes larger.

3. Eventually when T →∞, xT is equivalent to an isotropic Gaussian distribution.

4. The forward process is defined as

q(xt | xt−1) = N (xt ;
√

1− βtxt−1, βt I)

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1)

5. The term q(xt | xt−1) is known as the forward diffusion kernel (FDK).

6. The step sizes / diffusion rates βt are controlled by a variance schedule {βt ∈ (0, 1)}T
t=1.

Hamid Beigy (Sharif University of Technology) 10 / 60

Forward diffusion process

1. A property of this process is that we can sample xt at any arbitrary time step t in a closed

form using reparameterization trick.

2. Since q(xt | xt−1) = N (xt ;
√

1− βtxt−1, βt I), we can sample at step t as

xt =
√

1− βtxt−1 +
√
βtε

ε ∼ N (0, I)

3. In practice, the authors of DDPMs used a linear variance scheduler and defined

βt ∈ [0.0001, 0.02] and set the total time steps T = 1000.

4. Experimental results shows that cosine schedule works better than linear (linear (top) and

cosine (bottom) schedules).

Hamid Beigy (Sharif University of Technology) 11 / 60

Forward diffusion process

1. Recall: When we merge two Gaussians with different variance, N (0, σ2
1I) and N (0, σ2

2I),

the new distribution is N (0, (σ2
1 + σ2

2)I) and the merged standard deviation is√
(1− αt) + αt(1− αt−1) =

√
1− αtαt−1.

2. Let αt = 1− βt and αt =
∏t

i=1 αi .

xt =
√
αtxt−1 +

√
1− αtεt−1 where εt−1, εt−2, · · · ∼ N (0, I)

=
√
αtαt−1xt−2 +

√
1− αtαt−1εt−2 where εt−2 is merge of two Gaussians.

=
...

=
√
αtx0 +

√
1− αtε

q(xt | x0) = N (xt ;
√
αtx0, (1− αt)I)

3. Usually, we use a larger update step when the sample gets noisier, β1 < β2 < · · · < βT

and hence α1 > · · · > αT .

Hamid Beigy (Sharif University of Technology) 12 / 60

Reverse diffusion process

1. If we can reverse the forward process and sample from q(xt−1 | xt), we will be able to

recreate the true sample from a Gaussian noise input xT ∼ N (0, I).

2. if βt is small enough, q(xt−1 | xt) will also be Gaussian.

3. Unfortunately, we cannot easily estimate q(xt−1 | xt) because it needs to use the entire

dataset.

4. Therefore we need to learn a model pθ(x) to approximate these conditional probabilities

for running the reverse diffusion process.

pθ(x0:T) = p(xT)
T∏

t=1

pθ(xt−1 | xt)

pθ(xt−1 | xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

5. The term pθ(xt−1 | xt) is known as the reverse diffusion kernel (RDK).

Hamid Beigy (Sharif University of Technology) 13 / 60

Reverse diffusion process

Hamid Beigy (Sharif University of Technology) 14 / 60

Reverse diffusion process

1. Using Bayes’ rule to calculate q(xt−1 | xt) from q(xt | xt−1):

q(xt−1 | xt) =
q(xt | xt−1) q(xt−1)

q(xt)

2. Since we do not have access to the marginals q(xt−1) and q(xt) would be as follows

q(xt−1 | xt) =
q(xt | xt−1)

∫
x0

q(xt−1 | x0) q(x0)dx0∫
x0

q(xt | x0) q(x0)dx0

3. This means that we will need to not only represent the distribution q(x0), but also be able

to integrate over it.

4. Only for t > 0 and conditionally on the starting-point x0, all variables are Gaussians.

5. As a result, we will not be able to calculate q(xt−1 | xt) directly, but need to do

something else.

6. The idea is instead to find a suitable approximation to q(xt−1 | xt) and let that

approximation define the reverse process.

Hamid Beigy (Sharif University of Technology) 15 / 60

Reverse diffusion process

1. The reverse conditional probability is tractable when conditioned on x0:

q(xt−1 | xt , x0) = N (xt−1; ũ(xt , x0), β̃t I)

2. By using Bayes’ rule, we obtain:

q(xt−1 | xt , x0) = q(xt | xt−1, x0)
q(xt−1 | x0)

q(xt | x0)

∝ exp

(
−1

2

((
xt −

√
αtxt−1

)2

βt
+

(xt−1 −
√
αt−1x0)

2

1− αt−1
−
(
xt −

√
αtx0

)2

1− αt

))

= exp

(
−1

2

(
x2

t − 2
√
αtxtxt−1+αtx2

t−1

βt
+

x2
t−1−2

√
αt−1x0xt−1+αt−1x2

0

1− αt−1

))

× exp

(
1

2

(
(xt −

√
αtx0)2

1− αt

))

= exp

(
−1

2

((
αt

βt
+

1

1− αt−1

)
x2

t−1 −
(

2
√
αt

βt
xt +

2
√
αt−1

1− αt−1
x0

)
xt−1

))

× exp

(
−1

2
C (xt , x0)

)

where C (xt , x0) is some function not involving xt−1 and details are omitted.

Hamid Beigy (Sharif University of Technology) 16 / 60

Reverse diffusion process

1. Let αt = 1− βt and αt =
∏T

i=1 αi .

2. Following the standard Gaussian density function, the mean and variance can be

parameterized as

β̃t =
1

αt

βt
+ 1

1−αt−1

=
1

αt−αt +βt

βt (1−αt−1)

= βt
1− αt−1

1− αt

µ̃t(xt , x0) =

√
αt

βt
xt +

√
αt−1

1−αt−1
x0

αt

βt
+ 1

1−αt−1

=

(√
αt

βt
xt +

√
αt−1

1− αt−1
x0

)
1− αt−1

1− αt
· βt

=

√
αt(1− αt−1)

1− αt
xt +

√
αt−1βt

1− αt
x0

3. Since xt =
√
αtx0 +

√
1− αtε, we can represent x0 = 1√

αt

(
xt −

√
1− αtεt

)
and plug it

into the last equation. We obtain:

µ̃t =

√
αt(1− αt−1)

1− αt
xt +

√
αt−1βt

1− αt

1√
αt

(
xt −

√
1− αtεt

)

=
1√
αt

(
xt −

1− αt√
1− αt

εt

)

Hamid Beigy (Sharif University of Technology) 17 / 60

Reverse diffusion process

1. We don’t have q(x0), but we only have access to samples from it.

2. We use these samples (x ∼ pd(x)) to approximate q(x0).

3. An alternative way is to use Bayes theorem and create a step-wise noise reduction process

p(xt−1 | xt) to approximate q(xt−1 | xt).

4. Since the reverse process must have the same functional form as the forward process, each

reverse step can be parameterized as a Gaussian, and the parameters can be learned by

fitting a neural network.

5. This means that we only have to estimate the mean and variance of the distribution

p(xt−1 | xt) to draw samples from it.

6. Let a neural network parameterized by θ represent this distribution (produce parameters µ

and Σ, we have

pθ(xt−1 | xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

7. The neural network takes as input the sample at time t (xt) in addition to the time step t

itself, in order to account for the variance schedule of the forward process.

Hamid Beigy (Sharif University of Technology) 18 / 60

Reverse diffusion process

1. Like the forward process, the reverse process is a Markov chain, and we can write the joint

probability of a sequence of samples as a product of conditionals and the marginal

probability of xT ,

pθ(x0:T) = pθ(xT)
T∏

t=1

pθ(xt−1 | xt)

2. Here, we have : pθ(xT) = q(xT) = N (xT ; 0, I).

3. This means that the generation process starts with Gaussian noise, followed by sampling

from the learned individual steps of the reverse process.

4. While the original data-samples do not have zero off-diagonal covariance, the noise added

to the original samples was diagonal.

5. This means that we can assume that the variance of the removed noise is also diagonal:

Σ = σI for some scalar value σ.

6. When Σ is diagonal, then mean and variance of each dimension can be estimated

separately, and the multivariate density function can be described in terms of a product of

univariate Gaussian.

Hamid Beigy (Sharif University of Technology) 19 / 60

Reverse diffusion process

1. If the variance is given, we need to predict the mean.

2. We will predict only the mean of the reversed diffusion process-distribution, while the

variance follows a schedule parameterized by t.

<latexit sha1_base64="HXfO7+v6I/ST4J9vIwJ1ZeU8GrQ=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9gGdoWTSTBuaSYYkI5ahv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk+zE2ozDKnqZ9t1+tuXV3BrRMvILUoECzX/3yB5KkMRWGcKx1z3MTE2RYGUY4nVb8VNMEkzEe0p6lAsdUB9ks8xSdWGWAIqnsEwbN1N8bGY61nsShncwz6kUvF//zeqmJroOMiSQ1VJD5oSjlyEiUF4AGTFFi+MQSTBSzWREZYYWJsTVVbAne4peXSfus7l3WL+7Pa42boo4yHMExnIIHV9CAO2hCCwgk8Ayv8Oakzovz7nzMR0tOsXMIf+B8/gAsHJHJ</latexit>x0
<latexit sha1_base64="htIaKelZo42ToBiPF29XiQw/ARg=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyIr2XRjcsK9gGdoWTSTBuaSYYkI5ahv+HGhSJu/Rl3/o2ZdhbaeiBwOOde7skJE860cd1vp7Syura+Ud6sbG3v7O5V9w/aWqaK0BaRXKpuiDXlTNCWYYbTbqIojkNOO+H4Nvc7j1RpJsWDmSQ0iPFQsIgRbKzk+zE2ozDKnqZ9r1+tuXV3BrRMvILUoECzX/3yB5KkMRWGcKx1z3MTE2RYGUY4nVb8VNMEkzEe0p6lAsdUB9ks8xSdWGWAIqnsEwbN1N8bGY61nsShncwz6kUvF//zeqmJroOMiSQ1VJD5oSjlyEiUF4AGTFFi+MQSTBSzWREZYYWJsTVVbAne4peXSfus7l3WL+7Pa42boo4yHMExnIIHV9CAO2hCCwgk8Ayv8Oakzovz7nzMR0tOsXMIf+B8/gAtoJHK</latexit>x1

<latexit sha1_base64="qlW/hlpEID26h2YkjlGGuTBum8s=">AAAB83icbVDLSgMxFL3js9ZX1aWbYBFclZnia1l047KCfUBnKJk004ZmkiHJiGXob7hxoYhbf8adf2OmnYW2HggczrmXe3LChDNtXPfbWVldW9/YLG2Vt3d29/YrB4dtLVNFaItILlU3xJpyJmjLMMNpN1EUxyGnnXB8m/udR6o0k+LBTBIaxHgoWMQINlby/RibURhlT9N+vV+pujV3BrRMvIJUoUCzX/nyB5KkMRWGcKx1z3MTE2RYGUY4nZb9VNMEkzEe0p6lAsdUB9ks8xSdWmWAIqnsEwbN1N8bGY61nsShncwz6kUvF//zeqmJroOMiSQ1VJD5oSjlyEiUF4AGTFFi+MQSTBSzWREZYYWJsTWVbQne4peXSbte8y5rF/fn1cZNUUcJjuEEzsCDK2jAHTShBQQSeIZXeHNS58V5dz7moytOsXMEf+B8/gAvJJHL</latexit>x2
<latexit sha1_base64="WUGfJUatT32LsO7tY2ynq1+4uX0=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgxpKIr2XRjcsK9gFtKJPppB06mYSZSbGE/IkbF4q49U/c+TdO2iy09cDA4Zx7uWeOH3OmtON8W6WV1bX1jfJmZWt7Z3fP3j9oqSiRhDZJxCPZ8bGinAna1Exz2oklxaHPadsf3+V+e0KlYpF41NOYeiEeChYwgrWR+rbdC7Ee+UH6lPVTfeZmfbvq1JwZ0DJxC1KFAo2+/dUbRCQJqdCEY6W6rhNrL8VSM8JpVuklisaYjPGQdg0VOKTKS2fJM3RilAEKImme0Gim/t5IcajUNPTNZJ5TLXq5+J/XTXRw46VMxImmgswPBQlHOkJ5DWjAJCWaTw3BRDKTFZERlphoU1bFlOAufnmZtM5r7lXt8uGiWr8t6ijDERzDKbhwDXW4hwY0gcAEnuEV3qzUerHerY/5aMkqdg7hD6zPH7vAk7w=</latexit>xt�1

<latexit sha1_base64="Z5+jjzyWZiXd8VjqgFVPltCIELI=">AAAB9XicbVDLSsNAFL2pr1pfVZdugkVwVRLxtSy6cVnBPqCNZTKdtEMnkzBzo5aQ/3DjQhG3/os7/8ZJ24W2Hhg4nHMv98zxY8E1Os63VVhaXlldK66XNja3tnfKu3tNHSWKsgaNRKTaPtFMcMkayFGwdqwYCX3BWv7oOvdbD0xpHsk7HMfMC8lA8oBTgka674YEh36QPmW9FLNeueJUnQnsReLOSAVmqPfKX91+RJOQSaSCaN1xnRi9lCjkVLCs1E00iwkdkQHrGCpJyLSXTlJn9pFR+nYQKfMk2hP190ZKQq3HoW8m85R63svF/7xOgsGll3IZJ8gknR4KEmFjZOcV2H2uGEUxNoRQxU1Wmw6JIhRNUSVTgjv/5UXSPKm659Wz29NK7WpWRxEO4BCOwYULqMEN1KEBFBQ8wyu8WY/Wi/VufUxHC9ZsZx/+wPr8AV/Ekxk=</latexit>xt
<latexit sha1_base64="7J4KQhlm8162T0JRBcroLbtzCAY=">AAAB9XicbVC7TsMwFL0pr1JeBUYWiwqJqUoQBcYKFsYi9SW1oXJcp7XqOJHtAFWU/2BhACFW/oWNv8FpM0DLkSwdnXOv7vHxIs6Utu1vq7Cyura+UdwsbW3v7O6V9w/aKowloS0S8lB2PawoZ4K2NNOcdiNJceBx2vEmN5nfeaBSsVA09TSiboBHgvmMYG2k+36A9djzk6d0kDTTQbliV+0Z0DJxclKBHI1B+as/DEkcUKEJx0r1HDvSboKlZoTTtNSPFY0wmeAR7RkqcECVm8xSp+jEKEPkh9I8odFM/b2R4ECpaeCZySylWvQy8T+vF2v/yk2YiGJNBZkf8mOOdIiyCtCQSUo0nxqCiWQmKyJjLDHRpqiSKcFZ/PIyaZ9VnYtq7e68Ur/O6yjCERzDKThwCXW4hQa0gICEZ3iFN+vRerHerY/5aMHKdw7hD6zPHy8kkvk=</latexit>xT

<latexit sha1_base64="DAFWzN+f75BnLhkSjcppZ+DEZjY=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsz4XhbduKxgH9AZSibNtKFJZkgyYhn6G25cKOLWn3Hn35hpZ6HVA4HDOfdyT06YcKaN6345paXlldW18nplY3Nre6e6u9fWcaoIbZGYx6obYk05k7RlmOG0myiKRchpJxzf5H7ngSrNYnlvJgkNBB5KFjGCjZV8X2AzCqPscdo/7Vdrbt2dAf0lXkFqUKDZr376g5ikgkpDONa657mJCTKsDCOcTit+qmmCyRgPac9SiQXVQTbLPEVHVhmgKFb2SYNm6s+NDAutJyK0k3lGvejl4n9eLzXRVZAxmaSGSjI/FKUcmRjlBaABU5QYPrEEE8VsVkRGWGFibE0VW4K3+OW/pH1S9y7q53dntcZ1UUcZDuAQjsGDS2jALTShBQQSeIIXeHVS59l5c97noyWn2NmHX3A+vgEwqJHM</latexit>x3

… …

……

<latexit sha1_base64="rNP3gDqibubE5Lrwni0MYD56wn4=">AAAB+XicbVDLSsNAFL3xWesr6tLNYBHcWBLxtXBRcOOyQl/QhjKZTtqhk0mYmRRLyJ+4caGIW//EnX/jpM1CWw8MHM65l3vm+DFnSjvOt7Wyura+sVnaKm/v7O7t2weHLRUlktAmiXgkOz5WlDNBm5ppTjuxpDj0OW374/vcb0+oVCwSDT2NqRfioWABI1gbqW/bvRDrkR+kT1k/bZy7Wd+uOFVnBrRM3IJUoEC9b3/1BhFJQio04VipruvE2kux1IxwmpV7iaIxJmM8pF1DBQ6p8tJZ8gydGmWAgkiaJzSaqb83UhwqNQ19M5nnVIteLv7ndRMd3HopE3GiqSDzQ0HCkY5QXgMaMEmJ5lNDMJHMZEVkhCUm2pRVNiW4i19eJq2LqntdvXq8rNTuijpKcAwncAYu3EANHqAOTSAwgWd4hTcrtV6sd+tjPrpiFTtH8AfW5w+JEpOW</latexit>xT�1

<latexit sha1_base64="FcYPlXr+HWaJgA+wnUgl1nbtWz8=">AAAB+3icbVDLSsNAFJ34rPUV69JNsAgupCTia+Gi4MZlBfuAJoTJdNoOnUyGmRtpCfkVNy4UceuPuPNvnLZZaOuBC4dz7uXeeyLJmQbX/bZWVtfWNzZLW+Xtnd29ffug0tJJqghtkoQnqhNhTTkTtAkMOO1IRXEccdqORndTv/1ElWaJeISJpEGMB4L1GcFgpNCuyDDzz3ygY8ikYonK89CuujV3BmeZeAWpogKN0P7yewlJYyqAcKx113MlBBlWwAinedlPNZWYjPCAdg0VOKY6yGa3586JUXpOP1GmBDgz9fdEhmOtJ3FkOmMMQ73oTcX/vG4K/ZsgY0KmQAWZL+qn3IHEmQbh9JiiBPjEEEwUM7c6ZIgVJmDiKpsQvMWXl0nrvOZd1S4fLqr12yKOEjpCx+gUeega1dE9aqAmImiMntErerNy68V6tz7mrStWMXOI/sD6/AHYq5T3</latexit>p
p
r
i
o
r

<latexit sha1_base64="aCHYnZ89+RnBzHs/79HhheqG1U8=">AAAB/XicbVDJSgNBEO1xjXGLy83LYBA8SJgRt4OHgBePEcwCyTD0dCpJk56ZprtGEofBX/HiQRGv/oc3/8bOctDEBwWP96qoqhdIwTU6zre1sLi0vLKaW8uvb2xubRd2dms6ThSDKotFrBoB1SB4BFXkKKAhFdAwEFAP+jcjv/4ASvM4usehBC+k3Yh3OKNoJL+wL/20ddJCGGDK4lAKGGSZXyg6JWcMe564U1IkU1T8wlerHbMkhAiZoFo3XUeil1KFnAnI8q1Eg6SsT7vQNDSiIWgvHV+f2UdGadudWJmK0B6rvydSGmo9DAPTGVLs6VlvJP7nNRPsXHkpj2SCELHJok4ibIztURR2mytgKIaGUKa4udVmPaooQxNY3oTgzr48T2qnJfeidH53VixfT+PIkQNySI6JSy5JmdySCqkSRh7JM3klb9aT9WK9Wx+T1gVrOrNH/sD6/AFnIJXX</latexit>

p
c
o
m

p
le

x

<latexit sha1_base64="Onyft5uAGsGx3C7ZmOJ/NYEuxGI=">AAACvHicbVFbi9NAFJ7Ey671VvXRl8EirLCWRHRVirLoi77ICnZ3oVPCyWTSDJ1JwszJYhnzJ/XJf+OkzYPd9sAwH98537mmtZIWo+hvEN64eev2weGdwd179x88HD56fG6rxnAx5ZWqzGUKVihZiilKVOKyNgJ0qsRFuvzc+S+uhLGyKn/gqhZzDYtS5pIDeioZ/mETWieOpZXK7Er7zzEsBELbMiVyPGIasEhz97NNHL6M219bRMuMXBT44gNd0xyU+9YO9isndLBVRjft/sK7ejym2Fc69lmsXGhIkHW4D/rqVZsANkmGo2gcrY3ugrgHI9LbWTL8zbKKN1qUyBVYO4ujGucODEquhM/cWFEDX8JCzDwsQQs7d+vlt/S5ZzKaV8a/Euma/V/hQNtuQB/Z9Wqv+zpyn2/WYP5u7mRZNyhKvimUN4piRbtL0kwawVGtPABupO+V8gIMcPT3HvglxNdH3gXnr8bxyfjN99ej00/9Og7JU/KMHJGYvCWn5As5I1PCg/dBEhSBDD+GWbgM9SY0DHrNE7Jl4dU/ToPceA==</latexit>

p✓ (xt�1|xt) = N (xt�1; µ✓ (xt, t) , �t I)

Figure 4: The general idea of the reverse di↵usion process is to go backwards in time, starting with
a sample xT ⇠ pprior and end up with x0 that (approximately) comes from pcomplex. Compare this
to the forward process in Figure 1 to realise that the major di↵erence between the forward and the
backward process is that when the forward process was defined by Equation (2), the reverse needs to
be learned, cf. Equation (12).

covariance can improve the quality of the generated samples, but this is not something we will focus
on here. We will rather predict only the mean of the reversed di↵usion process-distribution, while
the variance follows a schedule parameterised by t. The general process of the reverse process is thus
as shown in Figure 4. We start by a sample from pprior, use Equation (12) powered by the neural
network with parameters ✓, and eventually obtain x0. We will discuss two di↵erent reverse processes,
namely the Denoising Di↵usion Probabilistic Model [Ho et al., 2020, Nichol and Dhariwal, 2021] and
Denoising Di↵usion Implicit Models [Song et al., 2020]. However, we will first discuss how to define
the loss function of the neural network.

2.3 The loss

What objective are we optimising when training the neural network to learn Equation (12)? All
generative models attempt to learn the distribution of their training data, so it would make sense to
maximise the likelihood assigned to x0 by the model. Calculating this would require us to marginalise
over all steps from t = T down to t = 1,

p✓(x0) =

Z
p✓(x0:T)dx1:T . (14)

Maximising Equation (14) gives the process p✓ over xT ! xT�1 . . .x1 ! x0 that has the largest log
likelihood of producing the observed x0 from the noise xT . However, evaluating the above expression
involves integrating over all possible trajectories from noise to the data manifold, which is intractable.
Instead we can maximise a lower bound of the log likelihood, taking a page out of the book of variational
autoencoders.

To get to these results we will first discuss some results regarding variational inference (Section 2.3.1)
and the VAE (Section 2.3.2). Unfortunately, some of the syntax used by the community behind these
results di↵er from what is used elsewhere in this document. Nevertheless, we have been true to the
original lingo in our description, and then try to “translate” the core concepts and ideas back to our
language in Section 2.3.3.

2.3.1 Variational Lower Bound

Imagine that we are given a process z! x that can generate data samples x from latent variables z.
The latent variable can e.g. contain information about the properties of an image, and through the
process, denoted p(x|z), the properties manifest into an actual image x. We would like to know the
reverse process, i.e. how to obtain z from x. Knowing the distribution of z, we could try to use Bayes’

6

Hamid Beigy (Sharif University of Technology) 20 / 60

Training the model

1. What objective are we optimizing when training the neural network to learn the following

function?

pθ(xt−1 | xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

2. All generative models attempt to learn the distribution of their training data. Hence, it

would make sense to maximize the likelihood assigned to x0 by the model.

3. Calculating this would require us to marginalize overall steps from t = T down to t = 1

pθ(x0) =

∫
pθ(x1:T)dx1:T

4. Maximizing this gives the process pθ(x) over xT → xT−1 → . . . x1 → x0 that has the

largest log likelihood of producing the observed x0 from the noise xT .

5. However, evaluating this expression involves integrating over all possible trajectories from

noise to the data manifold, which is intractable.

Hamid Beigy (Sharif University of Technology) 21 / 60

Training the model

1. Since q(xt−1 | x) is unknown, the problem setting is very similar to VAE.

2. Thus we can use the variational lower bound to optimize the negative log-likelihood.

− log pθ(x0) ≤ − log pθ(x0) + DKL(q(x1:T | x0) || pθ(x1:T | x0))

= − log pθ(x0) + E q(x1:T | x0)

[
log

q(x1:T | x0)

pθ(x0:T)/ pθ(x0)

]

= − log pθ(x0) + E q(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)
+ log pθ(x0)

]

= E q(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)

]

3. Let LVLB be variational lower bound, then we have

LVLB = E q(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)

]

≥ −E q(x0)[log pθ(x0)]

4. It is also straightforward to get the same result using Jensen’s inequality. Derive it as a

homework.

Hamid Beigy (Sharif University of Technology) 22 / 60

Training the model

1. To convert each term in the equation to be analytically computable, the objective can be

further rewritten to be a combination of several KL-divergence and entropy terms: See

Appendix B of (Sohl-Dickstein et al. 2015).

LVLB = E q(x0:T)

[
log

q(x1:T | x0)

pθ(x0:T)

]

= Eq

[
log

∏T
t=1 q(xt | xt−1)

pθ(xT)
∏T

t=1 pθ(xt−1 | xt)

]

= Eq

[
− log pθ(xT) +

T∑

t=1

log
q(xt | xt−1)

pθ(xt−1 | xt)

]

= Eq

[
− log pθ(xT) +

T∑

t=2

log
q(xt | xt−1)

pθ(xt−1 | xt)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq

[
− log pθ(xT) +

T∑

t=2

log

(
q(xt−1 | xt , x0)

pθ(xt−1 | xt)
× q(xt | x0)

q(xt−1 | x0)

)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq

[
− log pθ(xT) +

T∑

t=2

log
q(xt−1 | xt , x0)

pθ(xt−1 | xt)
+

T∑

t=2

log
q(xt | x0)

q(xt−1 | x0)
+ log

q(x1|x0)

pθ(x0 | x1)

]

Hamid Beigy (Sharif University of Technology) 23 / 60

Training the model

1. By simplifying the equation, we obtain

LVLB = Eq

[
− log pθ(xT) +

T∑

t=2

log
q(xt−1 | xt , x0)

pθ(xt−1 | xt)
+

T∑

t=2

log
q(xt | x0)

q(xt−1 | x0)
+ log

q(x1|x0)

pθ(x0 | x1)

]

= Eq

[
− log pθ(xT) +

T∑

t=2

log
q(xt−1 | xt , x0)

pθ(xt−1 | xt)
+ log

q(xT | x0)

q(x1 | x0)
+ log

q(x1 | x0)

pθ(x0 | x1)

]

= Eq

[
log

q(xT | x0)

pθ(xT)
+

T∑

t=2

log
q(xt−1 | xt , x0)

pθ(xt−1|xt)
− log pθ(x0 | x1)

]

= Eq


DKL(q(xT | x0) || pθ(xT))︸ ︷︷ ︸

LT




+ Eq




T∑

t=2

DKL(q(xt−1 | xt , x0) || pθ(xt−1 | xt))︸ ︷︷ ︸
Lt−1


Eq


− log pθ(x0 | x1)︸ ︷︷ ︸

L0




2. Consider each component in the variational lower bound loss

LVLB = LT + LT−1 + · · ·+ L0 where

LT = DKL(q(xT | x0) || pθ(xT)) L0 = − log pθ(x0 | x1)

Lt = DKL(q(xt | xt+1, x0) || pθ(xt | xt+1)) for 1 ≤ t ≤ T − 1

Hamid Beigy (Sharif University of Technology) 24 / 60

Training the model

1. Every KL term in LVLB (except for L0) compares two Gaussian distributions and therefore

they can be computed in closed form instead of high variance Monte Carlo estimates.

2. LT is constant and can be ignored during training because q(x) has no learnable

parameters and xT is a Gaussian noise.

3. L0 was modeled using a separate discrete decoder derived from N (x0;µθ(x1, 1),Σθ(x1, 1))

(Ho, Jain, and Abbeel 2020).

4. We need to learn a neural network to approximate the conditioned probability distributions

in the reverse diffusion process pθ(xt−1 | xt) = N (xt−1;µθ(xt , t),Σθ(xt , t)).

5. Using Σθ(xt , t) = σ2
t I. we would like to train µθ to predict µ̃t = 1√

αt

(
xt − 1−αt√

1−αt
εt

)
.

6. Since xt is available as input at training time, we can reparameterize the Gaussian noise

term instead to make it predict εt from the input xt at time step:

µθ(xt , t) =
1√
αt

(
xt −

1− αt√
1− αt

εθ(xt , t)

)

xt−1 = N
(

xt−1;
1√
αt

(
xt −

1− αt√
1− αt

εθ(xt , t)

)
,Σθ(xt , t)

)

Hamid Beigy (Sharif University of Technology) 25 / 60

Training the model

1. For estimating pθ(xt−1 | xt) = N (xt−1;µθ(xt , t), σ2
t I), the loss term Lt is parameterized

to minimize the difference from µ̃ as

Lt = Ex0,ε

[
1

2‖Σθ(xt , t)‖2
2

‖µ̃t(xt , x0)− µθ(xt , t)‖2

]

= Ex0,ε

[
1

2‖Σθ‖2
2

∥∥∥∥
1√
αt

(
xt −

1− αt√
1− αt

εt

)
− 1√

αt

(
xt −

1− αt√
1− αt

εθ(xt , t)

)∥∥∥∥
2
]

= Ex0,ε

[
(1− αt)2

2αt(1− ᾱt)‖Σθ‖2
2

‖εt − εθ(xt , t)‖2

]

= Ex0,ε

[
(1− αt)2

2αt(1− αt)‖Σθ‖2
2

∥∥εt − εθ(
√
αtx0 +

√
1− αtεt , t)

∥∥2

]

Hamid Beigy (Sharif University of Technology) 26 / 60

Training the model

1. Training the diffusion model works better with a simplified objective that ignores the

weighting term (Ho, Jain, and Abbeel 2020):

Lsimple
t = Et∼[1,T],x0,ε

[
‖εt − εθ(xt , t)‖2

]

2. The final simple objective is Lsimple = Lsimple
t + C , where C is a constant not depending on

θ.

Hamid Beigy (Sharif University of Technology) 27 / 60

Score-based generative models

Score-based generative models

1. In EBMs, we discussed how to fit EBMs using score matching.

2. It adjusts the parameters of EBM so that the score function of the model, ∇x log pθ(x),

matches the score function of the data, ∇x log pd(x).

3. An alternative to fitting a scalar energy function and computing its score is to directly

learn the score function.

4. This is called a score-based generative model (SGM).

5. We can optimize score function sθ(x) using

basic score matching,

denoising score matching, or

sliced score matching.

Hamid Beigy (Sharif University of Technology) 28 / 60

Score-based generative models (example)
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

25.3. SCORE-BASED GENERATIVE MODELS (SGMS)

(a) (b)

(c) (d)

Figure 25.5: Fitting a score-based generative model to the 2d Swiss roll dataset. (a) Training set. (b) Learned
score function trained using the basic score matching. (c) Superposition of learned score function and empirical
density. (d) Langevin sampling applied to the learned model. We show 3 different trajectories, each of length
25. Generated by score_matching_swiss_roll.ipynb.

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

(a) Training set. (b) Learned score function trained (MLP with 2 hidden layers, each with 128

hidden units) using the basic score matching. (c) Superposition of learned score function and

empirical density. (d) Langevin sampling applied to the learned model.
Hamid Beigy (Sharif University of Technology) 29 / 60

Score matching problems

1. In general, score matching can have difficulty when there are regions of low data density.

2. Let pd(x) = π p0(x) + (1− π) p1(x).

3. Let S0 = {x | p0(x) > 0} and S1 = {x | p1(x) > 0} be the supports of p0(x) and p1(x),

respectively.

4. When sets S0 and S1 are disjoint from each other, the score of pd(x) is

∇x log pd(x) =





∇x log p0(x) x ∈ S0

∇x log p1(x) x ∈ S1

5. The score, ∇x log pd(x), does not depend on the weight π.

6. Hence, score matching cannot correctly recover the true distribution.

7. As a result, Langevin sampling will have difficulty traversing between modes.

Hamid Beigy (Sharif University of Technology) 30 / 60

Adding noise at multiple scales

1. We can overcome this difficulty by perturbing training data with different scales of noise as

qσ(x̃ | x) = N (x̃ | x, σ2I)

qσ(x̃) =

∫
pd(x) qσ(x̃ | x)dx

2. For a large noise perturbation, different modes are connected due to added noise, and the

estimated weights between them are therefore accurate.

3. For a small noise perturbation, different modes are more disconnected, but the

noise-perturbed distribution is closer to the original unperturbed data distribution.

Hamid Beigy (Sharif University of Technology) 31 / 60

Score approximation

1. The score will be approximated by a deep neural network sθ(x) ≈ ∇x log pd(x), where

sθ(x) : RD 7→ RD .

2. The objective is to minimize the expectation of the L2 norm of the difference between the

true score and the approximated one as

θ∗ = arg minθ E pd(x)

[
‖∇x log pθ(x)− sθ(x)‖2

2

]

3. This requires to have access to the score ground truth and thus makes the optimization

infeasible as we do not have them.

4. It has been shown that the objective is equivalent to

θ∗ = arg minθ E pd(x)

[
tr(∇xsθ(x)) +

∥∥∥∥
1

2
∇xsθ(x)

∥∥∥∥
2

2

]

5. This can be solved by typical gradient descent algorithms coupled with automatic

differentiation, it is computationally exorbitant as it requires computing the Jacobian of

sθ(x) with respect to x.

6. Several techniques emerged to deal with this problem such as denoising score matching or

sliced score matching.
Hamid Beigy (Sharif University of Technology) 32 / 60

Inaccurate score estimation

1. The score estimation sθ(x) is trained by minimizing an expected loss over the true

distribution

θ∗ = arg minθ E pd(x)

[
‖∇x log pd(x)− sθ(x)‖2

2

]

= arg minθ

∫
pd(x)‖∇x log pd(x)− sθ(x)‖2

2dx

2. In practice it consists in randomly sampling a sample of the data set and computing the

loss afterwards.

3. The data set does not fully fill the space in which its samples live but only a tiny fraction

of it. Hence, we have inaccurate score estimation.

Hamid Beigy (Sharif University of Technology) 33 / 60

Noise Conditional Score-Based Model

1. How can we bypass the difficulty of accurate score estimation in regions of low data

density?

2. When the noise magnitude is sufficiently large, it can populate low data density regions to

improve the accuracy of estimated scores.

3. How do we choose an appropriate noise scale for the perturbation process?

4. Larger noise can obviously cover more low density regions for better score estimation, but

it over-corrupts the data and alters it significantly from the original distribution.

5. Smaller noise causes less corruption of the original data distribution, but does not

cover the low density regions as well as we would like.

Hamid Beigy (Sharif University of Technology) 34 / 60

Noise Conditional Score-Based Model

1. To achieve the best of both worlds, multiple scales of noise perturbations simultaneously

are used.

2. Let we always perturb the data with isotropic Gaussian noise, and let there be a total of L

increasing standard deviations σ1 < σ2 < . . . < σL.

3. We first perturb the data distribution pd(x) with each of the Gaussian noise N (0, σ2
i I) for

i = 1, 2, . . . , L to obtain a noise-perturbed distribution

pσi (x) =

∫
pd(y)N (x; y, σ2

i I)dy

4. We can easily draw samples from pσi (x) by sampling x ∼ pd(x) and computing x + σi z

with z ∼ N (0, I).

5. Next, estimate the score function of each noise-perturbed distribution, ∇x log pσi (x), by

training a Noise Conditional Score-Based Network, when parameterized with a neural

network) with score matching, such that sθ(x, i) ≈ ∇x log pσi (x) for all i = 1, 2, . . . , L.

Hamid Beigy (Sharif University of Technology) 35 / 60

Noise Conditional Score-Based Model

Hamid Beigy (Sharif University of Technology) 36 / 60

Noise Conditional Score-Based Model

1. The training objective for sθ(x, i) is a weighted sum of Fisher divergences for all noise

scales.

θ∗ = arg minθ

L∑

i=1

λ(i)E pσi
(x)

[
‖∇x log pσi (x)− sθ(x, i)‖2

2

]

2. where λ(i) ∈ R+ is a positive weighting function, often chosen to be λ(i) = σ2
i .

3. This objective function can be optimized with score matching, exactly as in optimizing the

naive score-based model sθ(x).

Hamid Beigy (Sharif University of Technology) 37 / 60

Noise Conditional Score-Based Model

Hamid Beigy (Sharif University of Technology) 38 / 60

Continuous time models using differential

equations

Introduction

1. Adding multiple noise scales is critical to the success of score-based generative models.

2. By generalizing the number of noise scales to infinity, we obtain

higher quality samples,

exact log-likelihood computation, and

controllable generation.

3. When the number of noise scales approaches infinity, we essentially perturb the data

distribution with continuously growing levels of noise.

4. In this case, the noise perturbation procedure is a continuous-time stochastic process.

Hamid Beigy (Sharif University of Technology) 39 / 60

ODE & Numerical methods

1. Consider the following ODE

dxt

dt
= f (xt , t)

with some initial condition x0.

2. We can solve this ODE using numerical methods. For example, Euler’s method starts from

t = 0 and proceeding to t = 1 with step ∆t.

xt+∆t − xt = f (xt , t)×∆t

3. Sometimes, it necessary to run from t = 1 to t = 0. By applying Euler’s method

backwards, we obtain

xt = xt+∆t − f (xt+∆t , t + ∆t)×∆t

4. In general, we can think SDEs as ODEs whose trajectories are random and distributed

according to pt(x) at each t.

Hamid Beigy (Sharif University of Technology) 40 / 60

Stochastic differential equations

1. SEDs could be defined as

dxt = f (xt , t)︸ ︷︷ ︸
Drift

dt + g(t)︸︷︷︸
Diffusion

dw(t)

2. w(t) is a standard Wiener process.

3. f (xt , t) ∈ Rd
+ and g(t) ∈ R.

4. An important property of this SDE is the existence of a corresponding ODE whose

solutions follow the same distribution if we start with data point x0.

5. The SDE dx = etdw perturbs data with a Gaussian noise of mean zero and exponentially

growing variance, such as

N (0, σ2
1I),N (0, σ2

2I), . . . ,N (0, σ2
LI)

when

σ1 < σ2 < · · · < σL

Hamid Beigy (Sharif University of Technology) 41 / 60

Wiener process

1. The Wiener process is a real-valued continuous-time stochastic process that describes the

mathematical properties of the one-dimensional Brownian motion.

2. The Wiener process wt is characterized by the following properties:

w0 = 0

w has independent increments:

for every t > 0 and u ≥ 0, wt+u − wt are independent of the past values ws for all s < t.

w has Gaussian increments: (wt+u − wt) ∼ N (0, u).

wt is almost surely continuous in t.

3. The Wiener process also called Brownian noise.

Hamid Beigy (Sharif University of Technology) 42 / 60

Continuous time models using differential equations

Published as a conference paper at ICLR 2021

Figure 1: Solving a reverse-
time SDE yields a score-based
generative model. Transform-
ing data to a simple noise dis-
tribution can be accomplished
with a continuous-time SDE.
This SDE can be reversed if we
know the score of the distribu-
tion at each intermediate time
step, rx log ptpxq.

et al., 2020). To enable new sampling methods and further extend the capabilities of score-based
generative models, we propose a unified framework that generalizes previous approaches through the
lens of stochastic differential equations (SDEs).

Specifically, instead of perturbing data with a finite number of noise distributions, we consider a
continuum of distributions that evolve over time according to a diffusion process. This process
progressively diffuses a data point into random noise, and is given by a prescribed SDE that does not
depend on the data and has no trainable parameters. By reversing this process, we can smoothly mold
random noise into data for sample generation. Crucially, this reverse process satisfies a reverse-time
SDE (Anderson, 1982), which can be derived from the forward SDE given the score of the marginal
probability densities as a function of time. We can therefore approximate the reverse-time SDE by
training a time-dependent neural network to estimate the scores, and then produce samples using
numerical SDE solvers. Our key idea is summarized in Fig. 1.

Our proposed framework has several theoretical and practical contributions:

Flexible sampling and likelihood computation: We can employ any general-purpose SDE solver
to integrate the reverse-time SDE for sampling. In addition, we propose two special methods not
viable for general SDEs: (i) Predictor-Corrector (PC) samplers that combine numerical SDE solvers
with score-based MCMC approaches, such as Langevin MCMC (Parisi, 1981) and HMC (Neal et al.,
2011); and (ii) deterministic samplers based on the probability flow ordinary differential equation
(ODE). The former unifies and improves over existing sampling methods for score-based models.
The latter allows for fast adaptive sampling via black-box ODE solvers, flexible data manipulation
via latent codes, a uniquely identifiable encoding, and notably, exact likelihood computation.

Controllable generation: We can modulate the generation process by conditioning on information
not available during training, because the conditional reverse-time SDE can be efficiently estimated
from unconditional scores. This enables applications such as class-conditional generation, image
inpainting, colorization and other inverse problems, all achievable using a single unconditional
score-based model without re-training.

Unified framework: Our framework provides a unified way to explore and tune various SDEs for
improving score-based generative models. The methods of SMLD and DDPM can be amalgamated
into our framework as discretizations of two separate SDEs. Although DDPM (Ho et al., 2020) was
recently reported to achieve higher sample quality than SMLD (Song & Ermon, 2019; 2020), we show
that with better architectures and new sampling algorithms allowed by our framework, the latter can
catch up—it achieves new state-of-the-art Inception score (9.89) and FID score (2.20) on CIFAR-10,
as well as high-fidelity generation of 1024 ˆ 1024 images for the first time from a score-based model.
In addition, we propose a new SDE under our framework that achieves a likelihood value of 2.99
bits/dim on uniformly dequantized CIFAR-10 images, setting a new record on this task.

2 BACKGROUND

2.1 DENOISING SCORE MATCHING WITH LANGEVIN DYNAMICS (SMLD)

Let p�px̃ | xq :“ N px̃;x, �2Iq be a perturbation kernel, and p�px̃q :“ ≥
pdatapxqp�px̃ | xqdx, where

pdatapxq denotes the data distribution. Consider a sequence of positive noise scales �min “ �1 †
�2 † ¨ ¨ ¨ † �N “ �max. Typically, �min is small enough such that p�min pxq « pdatapxq, and �max is

2

Hamid Beigy (Sharif University of Technology) 43 / 60

Estimating the reverse SDE

1. Solving reverse SDE requires knowledge of pT (xT) = N (0, I) and ∇x log pt(xt).

2. The pT (xT) = N (0, I) is fully tractable.

3. To estimate ∇x log pt(xt), a Time-Dependent Score-Based Model sθ(x, t) is trained

such that sθ(x, t) ≈ ∇x log pt(xt).

4. This is analogous to the noise-conditional score-based model used for finite noise scales.

5. The objective for sθ(x, t) is a continuous weighted combination of Fisher divergences,

θ∗ = arg minθ Et∈U(0,T)

[
E pt (x)

[
λ(t)‖∇x log p(x)− sθ(x, t)‖2

2

]]

Hamid Beigy (Sharif University of Technology) 44 / 60

Forward diffusion SDE

1. Consider a diffusion process with noise level βt .

2. If noise levels βt are small enough and the number of steps are large enough, we can

replace βt with an infinitesimal function β(t)∆t such that at each step, instead of moving

one unit forward in time, we move ∆t units.

3. With this approximation, we have:

xt =
√

1− βt xt−1 +
√
βt N (0, I)

=
√

1− β(t)∆t xt−1 +
√
β(t)∆t N (0, I)

4. If ∆t is small, we can approximate the first term with the first-order Taylor series

expansion to get

xt ≈ xt−1 −
β(t)∆t

2
xt−1 +

√
βt∆t N (0, I)

5. Recall: The first-order Taylor series expansion of f (x) =
√

1− x is

f (x) = 1− 1

2
x

Hamid Beigy (Sharif University of Technology) 45 / 60

Forward diffusion SDE

1. For small ∆t we have

xt − xt−1

∆t
≈ −β(t)

2
xt−1 +

√
βt√

∆t
N (0, I)

2. Now, We can now switch to the continuous time limit, and write this as the following

stochastic differential equation:

dx(t)

dt
= −1

2
β(t)x(t) +

√
β(t)

dw(t)

dt

where w(t) represents a standard Wiener process.

3. In general, we can write these SDEs as

dx = f (x, t)︸ ︷︷ ︸
Drift coefficient

dt + g(t)︸︷︷︸
Diffusion coefficient

dw

4. It can be shown that SDE corresponding to DDPMs in T →∞ limit is (Song et al. 2021).

dx = −1

2
β(t)xdt +

√
β(t)dw

Hamid Beigy (Sharif University of Technology) 46 / 60

Forward diffusion SDE

1. Yellow lines are sample paths from the SDE.

2. Heat map represents the marginal distribution.
868

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

Figure 25.6: Illustration of the forwards diffusion process in continuous time. Yellow lines are sample paths
from the SDE. Heat map represents the marginal distribution computed using the probability flow ODE. From
Slide 43 of [KGV22]. Used with kind permission of Karsten Kreis.

We can gain some intuition for these processes by looking at the 1d example in Figure 25.6. We
can draw multiple paths as follows: sample an initial state from the data distribution, and then
integrate over time using Euler-Maruyama integration:

x(t + ∆t) = x(t) + f(x(t), t)∆t + g(t)
√

∆tN (0, I) (25.44)

We can see how the data distributiom at t = 0, on the left hand side, gradually gets transformed to a
pure noise distribution at t = 1, on the right hand side.

In [Son+21b], they show that the SDE corresponding to DDPMs, in the T →∞ limit, is given by

dx = −1

2
β(t)xdt +

√
β(t)dω (25.45)

where β(t/T) = Tβt. Here the drift term is proportional to −x, which encourages the process to
return to 0. Consequently, DDPM corresponds to a variance preserving process. By contrast, the
SDE corresponding to SGMs is given by the following:

dx =

√
d[σ(t)2]

dt
dω (25.46)

where σ(t/T) = σt. This SDE has zero drift, so corresponds to a variance exploding process.

25.4.2 Forwards diffusion ODE

Instead of adding Gaussian noise at every step, we can just sample the initial state, and then let it
evolve deterministically over time according to the following ordinary differential equation or
ODE:

dx =

[
f(x, t)− 1

2
g(t)2∇x log pt(x)

]

︸ ︷︷ ︸
h(x,t)

dt (25.47)

Draft of “Probabilistic Machine Learning: Advanced Topics”. April 1, 2023

3. The drift term pulls towards mode.

4. The diffusion term injects noise.

Hamid Beigy (Sharif University of Technology) 47 / 60

Reverse diffusion SDE

1. To generate samples from this model, we need to be able to reverse the SDE.

2. Any forwards SDE (in the mentioned form) can be reversed to get the following

reverse-time SDE:

dx =
[
f (x, t)− g(t)2∇x log qt(x)

]
dt + g(t)dw

where w is the standard Wiener process when time flows backwards.

3. In the case of the DDPM, the reverse SDE has the following form:

dxt =

[
−1

2
β(t)xt − β(t)∇xt log qt(xt)

]
dt +

√
β(t)dw t

4. To estimate the score function, we can use denoising score matching to get

∇xt log qt(xt) ≈ sθ(xt , t)

Hamid Beigy (Sharif University of Technology) 48 / 60

Reverse diffusion SDE

1. Then, SDE becomes

dxt = −1

2
β(t)[xt + 2sθ(xt , t)]dt +

√
β(t)dw t

2. After fitting the score network, we can sample from it

xt−1 = xt +
1

2
β(t)[xt + 2sθ(xt , t)]∆t +

√
β(t)∆tN (0, I)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

25.4. CONTINUOUS TIME MODELS USING DIFFERENTIAL EQUATIONS

(a) (b)

Figure 25.7: Illustration of the reverse diffusion process. (a) Sample paths from the SDE. (b) Deterministic
trajectories from the probability flow ODE. From Slide 65 of [KGV22]. Used with kind permission of Karsten
Kreis.

This is called the probability flow ODE [Son+21b, Sec D.3]. We can compute the state at any
moment in time using any ODE solver:

x(t) = x(0) +

∫ t

0

h(x, τ)dτ (25.48)

See Figure 25.7b for a visualization of a sample trajectory. If we start the solver from different
random states x(0), then the induced distribution over paths will have the same marginals as the
SDE model. See the heatmap in Figure 25.6 for an illustration.

25.4.3 Reverse diffusion SDE

To generate samples from this model, we need to be able to reverse the SDE. In a remarkable result,
[And82] showed that any forwards SDE of the form in Equation (25.43) can be reversed to get the
following reverse-time SDE:

dx =
[
f(x, t)− g(t)2∇x log qt(x)

]
dt + g(t)dw (25.49)

where w is the standard Wiener process when time flows backwards, dt is an infinitesimal negative
time step, and ∇x log qt(x) is the score function.

In the case of the DDPM, the reverse SDE has the following form:

dxt =

[
−1

2
β(t)xt − β(t)∇xt

log qt(xt)

]
dt +

√
β(t)dwt (25.50)

To estimate the score function, we can use denoising score matching as we discussed in Section 25.3,
to get

∇xt log qt(xt) ≈ sθ(xt, t) (25.51)

(In practice, it is advisable to use variance reduction techniques, such as importance sampling, as
discussed in [Son+21a].) The SDE becomes

dxt = −1

2
β(t) [xt + 2sθ(xt, t)] dt +

√
β(t)dwt (25.52)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

Hamid Beigy (Sharif University of Technology) 49 / 60

Forward diffusion ODE

1. Instead of adding Gaussian noise at every step, we can sample the initial state, and then

let it evolve deterministically over time according to the ODE

dx =

[
f (x, t)− 1

2
g(t)2∇x log pt(x)

]

︸ ︷︷ ︸
h(x,t)

dt

2. This is called the probability flow ODE. We can compute the state at any moment

x(t) = x(0) +

∫ t

0

h(x, τ)dτ

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

25.4. CONTINUOUS TIME MODELS USING DIFFERENTIAL EQUATIONS

(a) (b)

Figure 25.7: Illustration of the reverse diffusion process. (a) Sample paths from the SDE. (b) Deterministic
trajectories from the probability flow ODE. From Slide 65 of [KGV22]. Used with kind permission of Karsten
Kreis.

This is called the probability flow ODE [Son+21b, Sec D.3]. We can compute the state at any
moment in time using any ODE solver:

x(t) = x(0) +

∫ t

0

h(x, τ)dτ (25.48)

See Figure 25.7b for a visualization of a sample trajectory. If we start the solver from different
random states x(0), then the induced distribution over paths will have the same marginals as the
SDE model. See the heatmap in Figure 25.6 for an illustration.

25.4.3 Reverse diffusion SDE

To generate samples from this model, we need to be able to reverse the SDE. In a remarkable result,
[And82] showed that any forwards SDE of the form in Equation (25.43) can be reversed to get the
following reverse-time SDE:

dx =
[
f(x, t)− g(t)2∇x log qt(x)

]
dt + g(t)dw (25.49)

where w is the standard Wiener process when time flows backwards, dt is an infinitesimal negative
time step, and ∇x log qt(x) is the score function.

In the case of the DDPM, the reverse SDE has the following form:

dxt =

[
−1

2
β(t)xt − β(t)∇xt

log qt(xt)

]
dt +

√
β(t)dwt (25.50)

To estimate the score function, we can use denoising score matching as we discussed in Section 25.3,
to get

∇xt log qt(xt) ≈ sθ(xt, t) (25.51)

(In practice, it is advisable to use variance reduction techniques, such as importance sampling, as
discussed in [Son+21a].) The SDE becomes

dxt = −1

2
β(t) [xt + 2sθ(xt, t)] dt +

√
β(t)dwt (25.52)

Author: Kevin P. Murphy. (C) MIT Press. CC-BY-NC-ND license

3. The induced distribution over paths will have the same marginals as the SDE model.

Hamid Beigy (Sharif University of Technology) 50 / 60

Reverse diffusion ODE

1. We can derive the probability flow ODE from the reverse-time SDE

dxt =
[
f (x, t)− g(t)2sθ(xt , t)

]
dt

2. By setting f (x, t) = − 1
2β(t) and g(t) =

√
β(t), we obtain

dxt = −1

2
β(t)[xt + sθ(xt , t)]dt

3. A simple way to solve this ODE is to use Euler’s method

xt−1 = xt +
1

2
β(t)[xt + sθ(xt , t)]∆t

4. In practice one can get better results using higher-order ODE solvers, such as Heun’s

method.

Hamid Beigy (Sharif University of Technology) 51 / 60

Comparison of the SDE and ODE approach

1. We can see the connection between ODE and SDE methods by rewriting the SDE

dx =
[
f (x, t)− g(t)2∇x log qt(x)

]
dt + g(t)dw

= −1

2
β(t)[xt + sθ(xt , t)]dt

︸ ︷︷ ︸
Probability flow ODE

− 1

2
β(t)sθ(xt , t)dt +

√
β(t)dw

︸ ︷︷ ︸
Langevin diffusion SDE

2. Generative Diffusion SDE has the following properties:

Pros: Continuous noise injection can help to compensate errors during diffusion

process.

Cons: Often slower, beacuse the stochastic terms themselves require fine

discretization during solve.

3. Probability Flow ODE has the following properties:

Pros: Can leverage fast ODE solvers. Best when targeting very fast sampling.

Cons: No stochastic error correction, often slightly lower performance than

stochastic sampling

Hamid Beigy (Sharif University of Technology) 52 / 60

ODE results
Published as a conference paper at ICLR 2021

Figure 2: Overview of score-based generative modeling through SDEs. We can map data to a
noise distribution (the prior) with an SDE (Section 3.1), and reverse this SDE for generative modeling
(Section 3.2). We can also reverse the associated probability flow ODE (Section 4.3), which yields a
deterministic process that samples from the same distribution as the SDE. Both the reverse-time SDE
and probability flow ODE can be obtained by estimating the score rx log ptpxq (Section 3.3).

where w is the standard Wiener process (a.k.a., Brownian motion), fp¨, tq : Rd Ñ Rd is a vector-
valued function called the drift coefficient of xptq, and gp¨q : R Ñ R is a scalar function known as
the diffusion coefficient of xptq. For ease of presentation we assume the diffusion coefficient is a
scalar (instead of a d ˆ d matrix) and does not depend on x, but our theory can be generalized to hold
in those cases (see Appendix A). The SDE has a unique strong solution as long as the coefficients
are globally Lipschitz in both state and time (Øksendal, 2003). We hereafter denote by ptpxq the
probability density of xptq, and use pstpxptq | xpsqq to denote the transition kernel from xpsq to xptq,
where 0 § s † t § T .

Typically, pT is an unstructured prior distribution that contains no information of p0, such as a
Gaussian distribution with fixed mean and variance. There are various ways of designing the SDE in
Eq. (5) such that it diffuses the data distribution into a fixed prior distribution. We provide several
examples later in Section 3.4 that are derived from continuous generalizations of SMLD and DDPM.

3.2 GENERATING SAMPLES BY REVERSING THE SDE

By starting from samples of xpT q „ pT and reversing the process, we can obtain samples xp0q „ p0.
A remarkable result from Anderson (1982) states that the reverse of a diffusion process is also a
diffusion process, running backwards in time and given by the reverse-time SDE:

dx “ rfpx, tq ´ gptq2rx log ptpxqsdt ` gptqdw̄, (6)

where w̄ is a standard Wiener process when time flows backwards from T to 0, and dt is an
infinitesimal negative timestep. Once the score of each marginal distribution, rx log ptpxq, is known
for all t, we can derive the reverse diffusion process from Eq. (6) and simulate it to sample from p0.

3.3 ESTIMATING SCORES FOR THE SDE

The score of a distribution can be estimated by training a score-based model on samples with
score matching (Hyvärinen, 2005; Song et al., 2019a). To estimate rx log ptpxq, we can train a
time-dependent score-based model s✓px, tq via a continuous generalization to Eqs. (1) and (3):

✓˚ “ arg min
✓

Et

!
�ptqExp0qExptq|xp0q

“ ��s✓pxptq, tq ´ rxptq log p0tpxptq | xp0qq��2

2

‰)
. (7)

Here � : r0, T s Ñ R°0 is a positive weighting function, t is uniformly sampled over r0, T s,
xp0q „ p0pxq and xptq „ p0tpxptq | xp0qq. With sufficient data and model capacity, score matching
ensures that the optimal solution to Eq. (7), denoted by s✓˚ px, tq, equals rx log ptpxq for almost all
x and t. As in SMLD and DDPM, we can typically choose �91{E“ ��rxptq log p0tpxptq | xp0qq��2

2

‰
.

Note that Eq. (7) uses denoising score matching, but other score matching objectives, such as sliced

4

Hamid Beigy (Sharif University of Technology) 53 / 60

Comparison of the SDE and ODE approach

Published as a conference paper at ICLR 2021

Figure 6: Samples from the probability flow ODE for VP SDE on 256 ˆ 256 CelebA-HQ. Top:
spherical interpolations between random samples. Bottom: temperature rescaling (reducing norm of
embedding).

20

Hamid Beigy (Sharif University of Technology) 54 / 60

Latent Diffusion Models

Latent Diffusion Models

1. DPMs belong to the class of likelihood-based models.

2. In image synthesis, DPMs typically operate directly in pixel space, and therefore

optimizing a high-resolution image generating DPM is GPU intensive.

3. Inference is also expensive due to sequential evaluations.

4. Latent diffusion models introduced to (Rombach et al. 2022)

reduce the computational complexity to enable DPM training on limited computational

resources

retaining their quality and flexibility

Hamid Beigy (Sharif University of Technology) 55 / 60

Latent Diffusion Models

The key idea of LDMs is to separate the training into two phases:

1. Perceptual image compression: This is the first stage of training in which an

autoencoder is trained which provides a lower-dimensional representational space which is

perceptually equivalent to the data space.

2. Latent Diffusion: In this second phase, a DPM is trained on the learned

lower-dimensional latent space from the trained autoencoder, instead of the

high-dimensional pixel space.

22

Latent Diffusion Models
Map Data into Compressed Latent Space. Train Diffusion Model efficiently in Latent Space.

<latexit sha1_base64="EzGQgsxZnyUSW/9N0wmUetIEi1E=">AAAB+3icbVDLSsNAFJ3UV62vWJdugkVwVRIp6rLoxmUF+4AmlMlk0g6dTMLMjbSE/IobF4q49Ufc+TdO2iy09cDA4Zx7uWeOn3CmwLa/jcrG5tb2TnW3trd/cHhkHtd7Kk4loV0S81gOfKwoZ4J2gQGng0RSHPmc9v3pXeH3n6hULBaPME+oF+GxYCEjGLQ0MusuMB7QzI0wTPwwm+X5yGzYTXsBa504JWmgEp2R+eUGMUkjKoBwrNTQsRPwMiyBEU7zmpsqmmAyxWM61FTgiCovW2TPrXOtBFYYS/0EWAv190aGI6Xmka8ni4hq1SvE/7xhCuGNlzGRpEAFWR4KU25BbBVFWAGTlACfa4KJZDqrRSZYYgK6rpouwVn98jrpXTadq2brodVo35Z1VNEpOkMXyEHXqI3uUQd1EUEz9Ixe0ZuRGy/Gu/GxHK0Y5c4J+gPj8wfz5JUM</latexit>

x̃<latexit sha1_base64="gMTgjs7J9T7tfl8I4J/4iGZ8J/U=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APbUjLpnTY0kxmSjFiG/oUbF4q49W/c+Tdm2llo64HA4Zx7ybnHjwXXxnW/ncLK6tr6RnGztLW9s7tX3j9o6ihRDBssEpFq+1Sj4BIbhhuB7VghDX2BLX98k/mtR1SaR/LeTGLshXQoecAZNVZ66IbUjPwgfZr2yxW36s5AlomXkwrkqPfLX91BxJIQpWGCat3x3Nj0UqoMZwKnpW6iMaZsTIfYsVTSEHUvnSWekhOrDEgQKfukITP190ZKQ60noW8ns4R60cvE/7xOYoKrXsplnBiUbP5RkAhiIpKdTwZcITNiYgllitushI2ooszYkkq2BG/x5GXSPKt6F9Xzu/NK7TqvowhHcAyn4MEl1OAW6tAABhKe4RXeHO28OO/Ox3y04OQ7h/AHzucPADaRJQ==</latexit>x

<latexit sha1_base64="MJDpYX+0YC46ieNwkFiyca5CLkM=">AAACInicbZBLS8NAEMc39VXrK+rRy2IR2ktJpPg4CMUHeKxgH9CEstlu2qWbB7sbsYR8Fi9+FS8eFPUk+GHcpEG0dWDht/+ZYWb+TsiokIbxqRUWFpeWV4qrpbX1jc0tfXunLYKIY9LCAQt410GCMOqTlqSSkW7ICfIcRjrO+CLNd+4IFzTwb+UkJLaHhj51KUZSSX391JKUDUhseUiOHDe+TxJ4BrMfRiy+TCo/fJVzVlWt9vWyUTOygPNg5lAGeTT7+rs1CHDkEV9ihoTomUYo7RhxSTEjScmKBAkRHqMh6Sn0kUeEHWcnJvBAKQPoBlw9X8JM/d0RI0+IieeoynRHMZtLxf9yvUi6J3ZM/TCSxMfTQW7EoAxg6hccUE6wZBMFCHOqdoV4hDjCUrlaUiaYsyfPQ/uwZh7V6jf1cuM8t6MI9sA+qAATHIMGuAZN0AIYPIAn8AJetUftWXvTPqalBS3v2QV/Qvv6BnGepNQ=</latexit>

x̃ = D(E(x))

Vahdat et al., “Score-based Generative Modeling in Latent Space”, NeurIPS, 2021
Rombach et al., “High-Resolution Image Synthesis with Latent Diffusion Models”, CVPR, 2022
Sinha et al., “D2C: Diffusion-Denoising Models for Few-shot Conditional Generation”, NeurIPS, 2021
Mittal et al., “Symbolic Music Generation with Diffusion Models”, ISMIR, 2021

Generative Denoising Process

<latexit sha1_base64="/PDT2vWe6o6iXUiQXS5t2Ep0wuw=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclRnxtSy6cVnBPrAtJZPeaUMzmSHJCHXoX7hxoYhb/8adf2OmnYW2HggczrmXnHv8WHBtXPfbWVpeWV1bL2wUN7e2d3ZLe/sNHSWKYZ1FIlItn2oUXGLdcCOwFSukoS+w6Y9uMr/5iErzSN6bcYzdkA4kDzijxkoPnZCaoR+kT5NeqexW3CnIIvFyUoYctV7pq9OPWBKiNExQrdueG5tuSpXhTOCk2Ek0xpSN6ADblkoaou6m08QTcmyVPgkiZZ80ZKr+3khpqPU49O1kllDPe5n4n9dOTHDVTbmME4OSzT4KEkFMRLLzSZ8rZEaMLaFMcZuVsCFVlBlbUtGW4M2fvEgapxXvonJ+d1auXud1FOAQjuAEPLiEKtxCDerAQMIzvMKbo50X5935mI0uOfnOAfyB8/kDA5KRKA==</latexit>z• Stage 1:

Train Autoencoder

Encoder Decoder
<latexit sha1_base64="ZN5pF882Ocw4Yue18VCwNEO6pAE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1kUwWUF+4DpUDJppg3NJENyRyhDP8ONC0Xc+jXu/Bsz7Sy09UDgcM695NwTJoIbcN1vp7Syura+Ud6sbG3v7O5V9w/aRqWashZVQuluSAwTXLIWcBCsm2hG4lCwTji+zf3OE9OGK/kIk4QFMRlKHnFKwEp+LyYwokRkd9N+tebW3RnwMvEKUkMFmv3qV2+gaBozCVQQY3zPTSDIiAZOBZtWeqlhCaFjMmS+pZLEzATZLPIUn1hlgCOl7ZOAZ+rvjYzExkzi0E7mEc2il4v/eX4K0XWQcZmkwCSdfxSlAoPC+f14wDWjICaWEKq5zYrpiGhCwbZUsSV4iycvk/ZZ3busXzyc1xo3RR1ldISO0Sny0BVqoHvURC1EkULP6BW9OeC8OO/Ox3y05BQ7h+gPnM8feaKRZQ==</latexit>E <latexit sha1_base64="Mp+fyy1nsKBbBTnrEZouWnT6YhE=">AAAB8nicbVDLSgMxFM3UV62vqks3wSK4KjPia1nUhcsK9gHToWTSTBuaSYbkjlCGfoYbF4q49Wvc+Tdm2llo64HA4Zx7ybknTAQ34LrfTmlldW19o7xZ2dre2d2r7h+0jUo1ZS2qhNLdkBgmuGQt4CBYN9GMxKFgnXB8m/udJ6YNV/IRJgkLYjKUPOKUgJX8XkxgRInI7qb9as2tuzPgZeIVpIYKNPvVr95A0TRmEqggxviem0CQEQ2cCjat9FLDEkLHZMh8SyWJmQmyWeQpPrHKAEdK2ycBz9TfGxmJjZnEoZ3MI5pFLxf/8/wUousg4zJJgUk6/yhKBQaF8/vxgGtGQUwsIVRzmxXTEdGEgm2pYkvwFk9eJu2zundZv3g4rzVuijrK6Agdo1PkoSvUQPeoiVqIIoWe0St6c8B5cd6dj/loySl2DtEfOJ8/eB2RZA==</latexit>D

Pixelwise and/or Visual
Feature Space (LPIPS)

Reconstruction Objective

• Stage 2:

Train Latent
Diffusion Model

Latent embedding distribution
modeled with Diffusion Model

Hamid Beigy (Sharif University of Technology) 56 / 60

Summary

Summary

1. Pros of diffusion models

Capacity for producing high-quality outputs that often surpass GANs in terms of realism and

diversity

Skilled at handling complex distributions, making them versatile for various applications.

A more reliable training process than GANs, avoiding the issue of mode collapse.

2. Cons of diffusion models

Require significant resources for training and generation, which can limit accessibility.

Generating data through iterative denoising is much more time-consuming compared to

direct generation methods used by GANs.

Hamid Beigy (Sharif University of Technology) 57 / 60

Comparison of deep generative models

Model Density Sampling Training Latents Architecture

PGM-D Exact, fast Fast MLE Optional Sparse DAG

PGM-U Approx, slow Slow MLE-Approx Optional Sparse Graph

VAE LB, fast Fast MLE-LB RL Encoder-Decoder

ARM Exact, fast Slow MLE None Sequential

Flows Exact, slow/fast Slow MLE RD Invertible

EBM Approx, slow Slow MLE-Approx Optional Discriminative

Diffusion LB Slow MLE-LB RD Encoder-Decoder

GAN N/A Fast Min-Max RL Generator-Discriminator

Hamid Beigy (Sharif University of Technology) 58 / 60

References

Reading

1. Chapter 25 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).

2. Chapter 9 of Deep Generative Modeling (Tomczak 2024).

Hamid Beigy (Sharif University of Technology) 59 / 60

References i

Ho, Jonathan, Ajay Jain, and Pieter Abbeel (2020). “Denoising Diffusion Probabilistic

Models”. In: Advances in Neural Information Processing Systems.

Murphy, Kevin P. (2023). Probabilistic Machine Learning: Advanced Topics. The MIT Press.

Rombach, Robin et al. (2022). “High-Resolution Image Synthesis with Latent Diffusion

Models”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pp. 10674–10685.

Sohl-Dickstein, Jascha et al. (2015). “Deep Unsupervised Learning using Nonequilibrium

Thermodynamics”. In: International Conference on Machine Learning. Vol. 37,

pp. 2256–2265.

Song, Yang et al. (2021). “Score-Based Generative Modeling through Stochastic Differential

Equations”. In: International Conference on Learning Representations.

Tomczak, Jakub M. (2024). Deep Generative Modeling. Springer.

Hamid Beigy (Sharif University of Technology) 60 / 60

Questions?

Hamid Beigy (Sharif University of Technology) 60 / 60

	Introduction
	Diffusion models
	Denoising diffusion probabilistic models
	Score-based generative models
	Continuous time models using differential equations
	Latent Diffusion Models
	Summary
	References

