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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution pg(x) is unknown.
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Model family

2. We attempt to approximate this process with a chosen model, py(x), with parameters 6
such that x ~ pg(x).

3. Learning is the process of searching for the parameter 6 such that py(x) well approximates
pda(x) for any observed x, i.e.

po(x) ~ pa(x)

4. We wish pg(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
Hamid Beigy (Sharif University of Technology) 3/60



Diffusion models



is Diffusion?

1. Diffusion is a fundamental natural phenomenon observed in various systems, including

physics, chemistry, and biology.

2. Diffusion is a natural physical phenomenon where particles and energy move from a region
of higher concentration to that of lower concentration.

3. At microscopic level, diffusion is driven by random and chaotic movement of particles.
4. This phenomenon is referred to as Brownian motion.

5. This process takes place as systems seek to reach equilibrium, a state where particle
concentrations are evenly dispersed throughout the system.

Before

6. The concept of diffusion in Al models is similar to the physical process of diffusion.
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hat Is Diffusion in the Context of Machine Learning?

1. Diffusion models in Machine Learning function by learning how to reverse a diffusion
process.

2. This process begins with a distribution of random noise and then gradually
transforms it into a structured data such as an image.

3. Training a model in such a way allows us to pass randomly sampled noise to the model

and constructs a new data point.
4. The process itself can be broken down into two main phases:
o Forward diffusion

o Reverse diffusion

e - — - e - - - - - == — - “+--------
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Is Forward Diffusion?

1. Forward diffusion is the process of deconstructing some original data point.

2. Noise is added to the original data point through multiple iterations.

3. In each iteration, we add a small amount of noise until we reach a pure noise state.

4. At this point, we can no longer recognize the original data point.

5. A degree of randomness is introduced at each step as a byproduct of the noise addition.

6. However, the entire process is still designed to be both predictable and reversible.

'L

Forward / noising process

Sample data p,(x,) — turn to noise
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Is Reverse Diffusion?

1. The reverse diffusion process aims to reverse what was done during forward diffusion.

2. The data is reconstructed from a noisy state back to its original form or a new coherent
form through multiple steps.

3. The reverse process is possible because of the precise knowledge of the amount and nature
of noise added at each step.

4. This information makes the reverse diffusion possible and enables the reconstruction of the
data from the pure noise generated as a result of the forward diffusion.

5. This process is important because performing inference with a trained model is equivalent
to performing reverse diffusion.
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Training and sampling

1. The training objective of diffusion models is by

maximizing the log-likelihood of the sample generated (at the end of the reverse
process) belonging to the original data distribution.

2. To generate samples from diffusion models,

the reverse diffusion, diffusion models can generate new data samples by starting
from a point in the simple distribution and diffusing it step-by-step to the desired
complex data distribution.
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Denoising diffusion probabilistic models




Denoising diffusion proba tic models

1. Denoising Diffusion Probabilistic Models (DDPM) are based on a Markov
model (Ho, Jain, and Abbeel 2020):

pGxt1|xt
() H@ @H HQ

2. In this model
o We don’t know how to sample from ¢g(xo) = pa(x).
o We know how to sample from g(x7).
o We know how to go from xq to xr7.

o We learn how to go from x7 to xo.

NS B K S <
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Forward diffusion process

1. Given a training point (x ~ g(x)), in forward process, we add small amount of Gaussian
noise to the sample in T steps, producing a sequence of noisy samples x1,...,XT.
Po(Xe-1[xt)
85 ~© "0z ~Cp
'\ q(xl\x, .) ,'A
q(x ,\x,} is un’known
2.

Data sample xq gradually loses its distinguishable features as the step t becomes larger

3. Eventually when T — oo, x7 is equivalent to an isotropic Gaussian distribution
4. The forward process is defined as
q(x: | xe—1) = N(XtQ V1= Bxe1, Bel)
q(xi.7 [ x0) = [ alxe | xe-1)
5.

The term q(x; | x;—1) is known as the forward diffusion kernel (FDK).

The step sizes / diffusion rates /3, are controlled by a variance schedule {3; € (0,1)}/ ;.
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Forward diffusion process

1. A property of this process is that we can sample x; at any arbitrary time step t in a closed
form using reparameterization trick.

2. Since q(x¢ | x¢—1) = N(x¢; /1 — Bexe—1, Bel), we can sample at step t as

=V 1— Bexe—1 + \/E6

e~ N(0,1)
3. In practice, the authors of DDPMs used a linear variance scheduler and defined

B¢ € [0.0001,0.02] and set the total time steps T = 1000.

4. Experimental results shows that cosine schedule works better than linear (linear (top) and
cosine (bottom) schedules).

Hamid Beigy (Sharif University of Technology) 11 / 60



Forward diffusion process

1. Recall: When we merge two Gaussians with different variance, N(0,021) and N(0, o31),
the new distribution is NV(0, (¢ + o2)I) and the merged standard deviation is

VI—a)F o —acq) = vI— e

2. Let a = 1— Bt and ap = Hf:]_ Q.

Xt = /X1 + V/ 1-— Q€r_7 where €t 1,€Et_D, ./\/(07 I)
= J/r0_1Xt—2 + /1 — qrs_1€—» where €;_5 is merge of two Gaussians.

= @XO + \/1—76,_»6
q(xe | x0) = N (x¢; Vaexo, (1 — @)l)

3. Usually, we use a larger update step when the sample gets noisier, 51 < o < --- < 01
and hence oy > -+ > ar.
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Reverse diffusion process

1. If we can reverse the forward process and sample from g(x;—1 | x¢), we will be able to
recreate the true sample from a Gaussian noise input x ~ N(0, ).

2. if B¢ is small enough, g(x;—1 | x;) will also be Gaussian.

3. Unfortunately, we cannot easily estimate g(x;_; | x;) because it needs to use the entire
dataset.

4. Therefore we need to learn a model py(x) to approximate these conditional probabilities

for running the reverse diffusion process.

T

po(xo.T) = p(x7) [ ] Polxe-1 | xc)

t=1

po(Xe—1 | X¢) = N (xe—1; pro(Xe, t), Bog(xe, t))

5. The term py(x;—1 | x;) is known as the reverse diffusion kernel (RDK).
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Reverse diffusion process

_T
t=0 t= 3
2 2 2
The forward trajectory
qa(xo:7) 0 0 0
-2 -2 ‘ : -2
-2 0 2 -2 0 2 2
2 2 2
The reverse trajectory } .
po(Xo.7) 0 0 R 0
s :
=2 -2 -2
-2 0 2 -2 0 2 -2

The drifting term
Bo(Xe,t) — Xy
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Reverse diffusion process

1. Using Bayes’ rule to calculate q(x;—1 | x¢) from q(x¢ | x¢—1):

Q(Xt | Xt—l) Q(Xt—l)
q(xe)

q(xt—l | Xt) =

2. Since we do not have access to the marginals g(x;_1) and g(x;) would be as follows

q(x: | Xt—l)fx0 q(xe-1 | %0) q(x0)dxo
fxo q(x: [ x0) g(x0)dxo

q(xt—l ‘ Xt) =

3. This means that we will need to not only represent the distribution g(xo), but also be able
to integrate over it.

4. Only for t > 0 and conditionally on the starting-point xo, all variables are Gaussians.

5. As a result, we will not be able to calculate g(x;—1 | x;) directly, but need to do
something else.

6. The idea is instead to find a suitable approximation to g(x;—1 | x;) and let that
approximation define the reverse process.
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Reverse diffusion process

1. The reverse conditional probability is tractable when conditioned on xg:

q(xe—1 | X¢, X0) = N (X¢—1; G(X¢, X0), Oel)

2. By using Bayes' rule, we obtain:

X1 | X
q(xt 1 ‘ Xt,xo) = q Xt | Xi— 17X0)qc(7(:(t1|x0)0)
2 — 2
1( (e = vaxes) | (ko1 = V@mix) (e = Vaxo)
o = + — - —
2 Bt 11— 1—-a;
( l(xt—Z‘/ XeXeo1toex? xf1—2«/at_1x0xt_1+ozt_1x%>>
= exp| —5 + —
2 ﬂt 1- Q1
<only(* )
1-— o
— 1 1 2 2\/ 2\/Q_1
_exp< 2(( 1o, 1>xt1 ( 3, x —|—1iat71x0 Xt—1
1
)

where C(x¢,Xg) is some function not involving x;_; and details are omitted.
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Reverse diffusion process

1. Let ar = 1— /81’ and ap = H/T:l Q.

2. Following the standard Gaussian density function, the mean and variance can be

parameterized as

~ 1 1 1 -1
61‘ ~ 1 = & = 5t —
Gt Ry LT
e (xe, x0) e+ 2o %o
Ht(Xe, Xp) = 1
i: + 1—a
\/ NG 1 _
= txt‘f‘ ai ! Xo ai ! Bt
Bt 1-a: 1-a;
Vor(l —a;_q) V1Pt
= — t+ —Xp
1-— Qi 1-— Qi

3. Since x; = \/Qxg + /1 — @€, we can represent xo = \/%(xt — 1 - atet) and plug it
t
into the last equation. We obtain:

\/CTt(l—at—l)x +\/at—1ﬂt 1

— t
1_at

e = — (x¢ — V1 —Geer)

1_at Qi

1 X 1_Oét
= - e
Ot t \ll—at ¢
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Reverse diffusion process

1. We don't have q(xg), but we only have access to samples from it.
2. We use these samples (x ~ pq4(x)) to approximate g(xo).

3. An alternative way is to use Bayes theorem and create a step-wise noise reduction process
p(x¢—1 | x¢) to approximate q(x;—1 | X¢).

4. Since the reverse process must have the same functional form as the forward process, each
reverse step can be parameterized as a Gaussian, and the parameters can be learned by
fitting a neural network.

5. This means that we only have to estimate the mean and variance of the distribution
p(x¢—1 | x¢) to draw samples from it.

6. Let a neural network parameterized by 6 represent this distribution (produce parameters u
and X, we have

Pe(Xt—l | Xt) = N(Xt—l; /—llﬂ(xta t)v EG(XN t))

7. The neural network takes as input the sample at time ¢ (x;) in addition to the time step t
itself, in order to account for the variance schedule of the forward process.
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Reverse diffusion process

1. Like the forward process, the reverse process is a Markov chain, and we can write the joint
probability of a sequence of samples as a product of conditionals and the marginal
probability of xr,

po(Xo:7) = PG(XT)H Po(Xe—1 | X¢)

t=1

2. Here, we have : py(x7) = q(x7) = N(x7;0,1).

3. This means that the generation process starts with Gaussian noise, followed by sampling
from the learned individual steps of the reverse process.

4. While the original data-samples do not have zero off-diagonal covariance, the noise added
to the original samples was diagonal.

5. This means that we can assume that the variance of the removed noise is also diagonal:
3 = ol for some scalar value o.

6. When X is diagonal, then mean and variance of each dimension can be estimated
separately, and the multivariate density function can be described in terms of a product of

univariate Gaussian.
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Reverse diffusion process

1. If the variance is given, we need to predict the mean.

2. We will predict only the mean of the reversed diffusion process-distribution, while the

variance follows a schedule parameterized by t.

P (xe-1/X¢) = N (X4—1; prg (x4, 1) , 0, I)

P complex
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Training the model

1. What objective are we optimizing when training the neural network to learn the following
function?

po(xe—1 | xt) = N(xe—1; po(Xe, t), B (e, t))

2. All generative models attempt to learn the distribution of their training data. Hence, it
would make sense to maximize the likelihood assigned to xg by the model.

3. Calculating this would require us to marginalize overall steps from t = T down to t =1

PG(XO):/PQ(XlzT)dXI:T

4. Maximizing this gives the process py(x) over x;7 — X7_1 — ...X; — Xo that has the
largest log likelihood of producing the observed xy from the noise x 7.

5. However, evaluating this expression involves integrating over all possible trajectories from
noise to the data manifold, which is intractable.
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Training the model

1. Since g(x:—1 | x) is unknown, the problem setting is very similar to VAE.

2. Thus we can use the variational lower bound to optimize the negative log-likelihood.

—log po(x0) < —log pa(x0) + Dke( g(x1:7 | %0) || po(x1:7 | %0))
q(X1;T | Xo) }
Po(x0:7)/ po(%o)

CI(X1:T | Xo)
— E log ————= +1
og py(xo) + q(xo.7) [Og po(x0.7) + log Pa(Xo)}

q(x1.7 | xo)}

Pe(XO:T)

= —log pa(x0) + E g(xy.1 |x) {'Og

Eq(XU:T) |:|Og
3. Let Ly, g be variational lower bound, then we have

X1.T | X
Lvig = E 4x) [Iog q(lT|0)]

Pe(xo:T)
> —E gx)[log po(xo)]

4. It is also straightforward to get the same result using Jensen's inequality. Derive it as a
homework.
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Training the model

1. To convert each term in the equation to be analytically computable, the objective can be
further rewritten to be a combination of several KL-divergence and entropy terms: See
Appendix B of (Sohl-Dickstein et al. 2015).

q(xw.7 | XO)]
po(Xo:7)

1 a(xe | xe 1) ]
po(x7) TT1 Po(xe—1 | xe)

r T
qg(xe | xe—1)
=E,|-lo xXT) + log ————=
q g p9( T) ; g p@(xtfl Ixt)‘|

Lvig = Eq(XO:T) |:|0g

= E,|log

r T
g% [ xe-1) q(x1 | xo)
= E,|—log po(x7) + log +1
| 718 Polxr) 2; polxis [xe) 8 Palxo [ x1)
[ g(xe—1 | xe,%0) _ q(xe | %0) q(x1 | xo)
=E log po(x7) + Iog< X + log ———=
|~ log polx) 2; Polxe—1 [xe) ~ qlxe—1 o) polxo | x1)
— E, | —log ps(xr +Z| (Xt 1‘Xt7X0 +Z| Xt| 0) +log q(x1|xo)
1 p—t po(Xe—1 | X¢) q(x¢-1 | o) po(xo | x1)
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Training the model

1. By simplifying the equation, we obtain

(Xt 1 ‘Xt XO ) q(Xl‘Xo)
L =E,|—lo XT) + lo + log—————~ +log————~
VLB q i g po(xT) ; e . v\ po(Xe_1 | Xe) Z q(x¢—1 | Xo) po(xo | x1)
r T
q(xe—1 | Xt,%o) q(x7 | xo) q(x1 | xo0)
= E,|—log po(xT) + log———— =+ log——— +log———
| 7108 Polxr) 2; polxia %) 8 g 1x0) 8 Palxe [ 1)
[ XT | Xo xt 1 | Xt,X())
=E Iog log —————————= — log py(xo | X1
“| po(xT) Z Po(Xe—1[x¢) G |1)

= Eq [Dke(g(x7 | x0) || po(xT))

+ Eq ZDKL(Q(Xt—l | XtaXO) || PO(Xt—l | Xt)) IEq — log PG(XO | Xl)
Lt71 LO

2. Consider each component in the variational lower bound loss

lug=Lr+Lr_1+- -+ L where
Lt =Dkc(a(x7 [ x0) | po(xT)) Lo = —log po(xo | x1)
Ly = Dir(g(xe | Xe41,%0) || po(Xt | Xe41)) for1<t<T-1
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Training the model

1. Every KL term in Ly, g (except for Ly) compares two Gaussian distributions and therefore
they can be computed in closed form instead of high variance Monte Carlo estimates.

2. Lt is constant and can be ignored during training because g(x) has no learnable
parameters and x7 is a Gaussian noise.

3. Lo was modeled using a separate discrete decoder derived from N (xo; po(x1, 1), Xp(x1,1))
(Ho, Jain, and Abbeel 2020).

4. We need to learn a neural network to approximate the conditioned probability distributions
in the reverse diffusion process pp(x:—1 | X¢) = N (x:—1; pro(xs, t), B (e, t)).

5. Using 3y (x;, t) = o2l. we would like to train sy to predict ji, = \/% (xt - \}%et)

6. Since x; is available as input at training time, we can reparameterize the Gaussian noise
term instead to make it predict €; from the input x; at time step:

Ho(xt,t) = \/10715 <Xr - %Ee(xn f))

1 1-—
Xt—1 = N(th? \/70[7 (Xt - \/T%GG(XIH t)) , Ee(xt, t))
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Training the model

1. For estimating pp(x;—1 | x¢) = N(x:_1; pto(xe, t), 021), the loss term L, is parameterized
to minimize the difference from fi as

_ . ) 2
Ly = Eype | —————5 [|te(xe, X0) — po(xe, t
e = Ey _2H29(xt,t)||§H ¢(Xt, Xo) (%t )||1
[ 1 1 1—a 1 1—a 2
= IExo,e < ol I\ Xt /=€t | — —(— | Xt — 7769()(1:, t)
_2”29”2 \/ Ot \/1*Oét v/ Ot \/1*0[1‘
- Loy
Bre [ e, — ey, )
| 20 (1 — )| 205
[ 1— ;) 2
= Eyy e ( — ) 5 |lec — ea(Varxo + V1 —arer, t)||
_Qat(l —at)||20||2
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Training the model

1. Training the diffusion model works better with a simplified objective that ignores the
weighting term (Ho, Jain, and Abbeel 2020):

. I 2
Li’mpe = EtN[l,TLXo,e ||6t - EQ(Xt’ t)” }

2. The final simple objective is Lgjmple = Liimp/e + C, where C is a constant not depending on
0.
Algorithm 1 Training Algorithm 2 Sampling
1 repeat 1: xr ~ N(0,T)
2 Xo ~ q(Xo) 2 fort=T,...,1do
3: ¢~ Uniform({1,...,T}) 3. z~N(0,I)ift > 1,elsez =0
4. e~ N(0,1) ' ) o
5: Take gradient descent step on 4 X1 = VT3 (xt - ﬁe(;(xht)) + o1z
Vo ||e — €o(v/arxo + V1 — ae, t)||2 5: end for
6: until converged 6: return xg
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Score-based generative models




Score-based generative models

1. In EBMs, we discussed how to fit EBMs using score matching.

2. It adjusts the parameters of EBM so that the score function of the model, Vy log py(x),
matches the score function of the data, Vi log p4(x).

3. An alternative to fitting a scalar energy function and computing its score is to directly
learn the score function.

4. This is called a score-based generative model (SGM).
5. We can optimize score function sp(x) using

o basic score matching,

o denoising score matching, or

o sliced score matching.
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Score-based generative models (example)

(a) (b)

(c) (d)

(a) Training set. (b) Learned score function trained (MLP with 2 hidden layers, each with 128
hidden units) using the basic score matching. (c) Superposition of learned score function and

empirical density. (d) Langevin sampling applied to the learned model.
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Score matching problems

1. In general, score matching can have difficulty when there are regions of low data density.

2. Let py(x) = 7 po(x) + (1 — ) pa(x).

3. Let So = {x | po(x) > 0} and S; = {x | p1(x) > 0} be the supports of py(x) and p;(x),
respectively.

4. When sets Sy and S are disjoint from each other, the score of py(x) is
Vx log po(x) x € S
Vi log pa(x) =
Vxlog pi(x)  x€ 5
5. The score, V log pq(x), does not depend on the weight 7.
6. Hence, score matching cannot correctly recover the true distribution.

7. As a result, Langevin sampling will have difficulty traversing between modes.
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Adding noise at multiple scales

1. We can overcome this difficulty by perturbing training data with different scales of noise as
do(% | x) = N (% | x,0°1)
ax(8) = [ ps(x) 00 (5 | x)dx

2. For a large noise perturbation, different modes are connected due to added noise, and the
estimated weights between them are therefore accurate.

3. For a small noise perturbation, different modes are more disconnected, but the
noise-perturbed distribution is closer to the original unperturbed data distribution.

Co—) NN C—
score < E E Langevin
matching - - " 'Y dynamics
: )
\

Data samples New samples

{x1,%2, -+, xn} R p(x)
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Score approximation

1. The score will be approximated by a deep neural network sp(x) ~ Vi log pq(x), where
sp(x) : RP = RD,

2. The objective is to minimize the expectation of the L, norm of the difference between the
true score and the approximated one as

0* = arg ming EPd(X) [||Vx log pg(x) — se(x)Hg]

3. This requires to have access to the score ground truth and thus makes the optimization

j

5. This can be solved by typical gradient descent algorithms coupled with automatic

infeasible as we do not have them.

4. It has been shown that the objective is equivalent to

0" = argming E ;,(x)

tr(Vxsy(x)) + H;vx@(x)

differentiation, it is computationally exorbitant as it requires computing the Jacobian of
sp(x) with respect to x.

6. Several techniques emerged to deal with this problem such as denoising score matching or

sliced score matching.
Hamid Beigy (Sharif University of Technology) 32/60



Inaccurate score estimation

1. The score estimation sy(x) is trained by minimizing an expected loss over the true
distribution

0" = argming E, () ||Vxlog pa(x) — 50(’()”5
d

a@mmg/pdﬂﬁhbgm&)*%&W@x

2. In practice it consists in randomly sampling a sample of the data set and computing the
loss afterwards.

3. The data set does not fully fill the space in which its samples live but only a tiny fraction
of it. Hence, we have inaccurate score estimation.

Data density Data scores Estimated scores
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Noise Conditional Score-Based Model

1. How can we bypass the difficulty of accurate score estimation in regions of low data
density?

2. When the noise magnitude is sufficiently large, it can populate low data density regions to
improve the accuracy of estimated scores.

Perturbed density Perturbed scores Estimated scores
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3. How do we choose an appropriate noise scale for the perturbation process?

4. Larger noise can obviously cover more low density regions for better score estimation, but
it over-corrupts the data and alters it significantly from the original distribution.

5. Smaller noise causes less corruption of the original data distribution, but does not
cover the low density regions as well as we would like.
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Noise Conditional Score-Based Model

1. To achieve the best of both worlds, multiple scales of noise perturbations simultaneously
are used.

2. Let we always perturb the data with isotropic Gaussian noise, and let there be a total of L
increasing standard deviations 01 < 0y < ... < 0.

3. We first perturb the data distribution p4(x) with each of the Gaussian noise N(0, ?1) for
i=1,2,...,L to obtain a noise-perturbed distribution

Pa;(x):/pd(Y)N(X;YaGiZI)dy
4. We can easily draw samples from p,.(x) by sampling x ~ p4(x) and computing x + o,z
with z ~ N(0,1).

5. Next, estimate the score function of each noise-perturbed distribution, V log p,,(x), by
training a Noise Conditional Score-Based Network, when parameterized with a neural
network) with score matching, such that sy(x, /) = Vi log p,,(x) forall i=1,2,..., L.
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Noise Conditional Score-Based Model
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Noise Conditional Score-Based Model

1. The training objective for sy(x, /) is a weighted sum of Fisher divergences for all noise
scales.

L
0 = argming > AN E,, 9 [||vx log P, (x) — sp(x. i)|\§]
i=1

2

2. where A\(i) € R, is a positive weighting function, often chosen to be A(i) = o7.

3. This objective function can be optimized with score matching, exactly as in optimizing the
naive score-based model sp(x).
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Noise Conditional Score-Based Model
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Continuous time models using differential
equations




Introduction

1. Adding multiple noise scales is critical to the success of score-based generative models.
2. By generalizing the number of noise scales to infinity, we obtain

o higher quality samples,

o exact log-likelihood computation, and

o controllable generation.

3. When the number of noise scales approaches infinity, we essentially perturb the data
distribution with continuously growing levels of noise.

4. In this case, the noise perturbation procedure is a continuous-time stochastic process.
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ODE & Numerical methods

1. Consider the following ODE

dx
7; = f(xt7 t)

with some initial condition xq.

2. We can solve this ODE using numerical methods. For example, Euler's method starts from
t = 0 and proceeding to t = 1 with step At.

Xe+ At — Xg = f(xt, t) x At

3. Sometimes, it necessary to run from t =1 to t = 0. By applying Euler's method
backwards, we obtain

Xt = xt+At — f(xt+At7 t+ At) X At

4. In general, we can think SDEs as ODEs whose trajectories are random and distributed
according to p;(x) at each t.
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Stochastic differential equations

1. SEDs could be defined as

dx; = f(x¢, t) dt + g(t) dw(t)
—— ~—
Drift Diffusion
2. w(t) is a standard Wiener process.
3. f(x¢, t) € RY and g(t) € R.

4. An important property of this SDE is the existence of a corresponding ODE whose
solutions follow the same distribution if we start with data point xg.

5. The SDE dx = e'dw perturbs data with a Gaussian noise of mean zero and exponentially

growing variance, such as

N(0,071),N(0,031),...,N(0,071)

when
o1 <o <---<O0L
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Wiener process

1. The Wiener process is a real-valued continuous-time stochastic process that describes the
mathematical properties of the one-dimensional Brownian motion.

2. The Wiener process w; is characterized by the following properties:
e wp =20
o w has independent increments:
for every t > 0 and u > 0, wi+, — w; are independent of the past values ws for all s < t.
o w has Gaussian increments: (w;, — w;) ~ N(0, u).
o w; is almost surely continuous in t.

3. The Wiener process also called Brownian noise.
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Continuous time models using differential equation

i
‘(7 dx = [f(x,t) — ¢*(t)Vx logp: (x)] dt + g(t)dw

dx = f(x,t)dt + g(t)dw
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Estimating the reverse SDE

1. Solving reverse SDE requires knowledge of pr(x7) = AN(0,1) and V,log p:(x:).
2. The pr(x7) = N(0,1) is fully tractable.

3. To estimate Vi log p:(x:), a Time-Dependent Score-Based Model sy(x, t) is trained
such that sy(x, t) &~ Vi log p:(x¢).

4. This is analogous to the noise-conditional score-based model used for finite noise scales.

5. The objective for sg(x, t) is a continuous weighted combination of Fisher divergences,

0" = argming Eecu(o7) | Epyco | M(£) Vi log p(x) = so(x, £)I3]]
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Forward diffusion SDE

1. Consider a diffusion process with noise level ;.

2. If noise levels [3; are small enough and the number of steps are large enough, we can
replace f; with an infinitesimal function 3(t)At such that at each step, instead of moving
one unit forward in time, we move At units.

3. With this approximation, we have:

Xt =+/1— B Xt—l‘i‘\/ﬁTN(Oal)
=1-B(t)At xi—1++/B(t)At N(0,1)

4. If At is small, we can approximate the first term with the first-order Taylor series
expansion to get

Xt = Xt—1 — @Xt_1 + vV ﬁtAt N(O, I)

5. Recall: The first-order Taylor series expansion of f(x) =+/1 —x is

f(x)zl—%x
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Forward diffusion SDE

1. For small At we have

Xt = Xe—1 ﬂ(t) \/E
At 2 7 \/EN(O")

2. Now, We can now switch to the continuous time limit, and write this as the following
stochastic differential equation:

dx(t)

where w(t) represents a standard Wiener process.

3. In general, we can write these SDEs as

dx= f(x,t) dt+ g(t) dw

Drift coefficient Diffusion coefficient

4. It can be shown that SDE corresponding to DDPMs in T — oo limit is (Song et al. 2021).

:_,5 )xdt + +/B(t)dw
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Forward diffusion SDE

1. Yellow lines are sample paths from the SDE.

2. Heat map represents the marginal distribution.

3. The drift term pulls towards mode.

4. The diffusion term injects noise.
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Reverse diffusion SDE

1. To generate samples from this model, we need to be able to reverse the SDE.

2. Any forwards SDE (in the mentioned form) can be reversed to get the following
reverse-time SDE:

dx = [f(x,t) — g(t)*Vklog q:(x)]dt + g(t)dw
where w is the standard Wiener process when time flows backwards.

3. In the case of the DDPM, the reverse SDE has the following form:

1

dx; = —§ﬁ(t)xt — B(t)Vy, log g:(x:)| dt + /B(t)dwW,

4. To estimate the score function, we can use denoising score matching to get

Vi, log g:(x¢) = sp(x¢, t)
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Reverse diffusion SDE

1. Then, SDE becomes

dx; = —%B(t)[xt + 2sg(x¢, t)]dt + \/B(t)dw,

2. After fitting the score network, we can sample from it

Xt—1 = X¢ + %ﬁ(t)[xt + 2sp(x¢, t)]At + / B(t) AtN(0,1)
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Forward diffusion ODE

1. Instead of adding Gaussian noise at every step, we can sample the initial state, and then
let it evolve deterministically over time according to the ODE

dx = {f(x, t) — %g(t)2vx log pt(x)} dt

h(x,t)

2. This is called the probability flow ODE. We can compute the state at any moment

x(t) = x(0) +/0 h(x,T)dT

3. The induced distribution over paths will have the same marginals as the SDE model.
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Reverse diffusion ODE

1. We can derive the probability flow ODE from the reverse-time SDE

dxe = [f(x, t) — g(t)*sp(xe, )] dt

2. By setting f(x,t) = —2(t) and g(t) = \/5(t), we obtain

dxe — —%B(t)[xt + so(xe, )]dt

3. A simple way to solve this ODE is to use Euler's method
1
X¢—1 = X¢ + Eﬁ(t)[xt + so(xe, t)]At

4. In practice one can get better results using higher-order ODE solvers, such as Heun's
method.
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Comparison of the SDE and ODE approach

1. We can see the connection between ODE and SDE methods by rewriting the SDE

dx = [f(x,t) — g(t)*Vxlog q:(x)]dt + g(t)dw
BEYxe + so(xe, )]t — 2 A(B)so(xe, D)t + /BD)ew

Probability flow ODE Langevin diffusion SDE

1
2

2. Generative Diffusion SDE has the following properties:

Pros: Continuous noise injection can help to compensate errors during diffusion
process.

Cons: Often slower, beacuse the stochastic terms themselves require fine

discretization during solve.
3. Probability Flow ODE has the following properties:
Pros: Can leverage fast ODE solvers. Best when targeting very fast sampling.

Cons: No stochastic error correction, often slightly lower performance than
stochastic sampling
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ODE results
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Comparison of the SDE and ODE approach
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Latent Diffusion Models




1. DPMs belong to the class of likelihood-based models.

2. In image synthesis, DPMs typically operate directly in pixel space, and therefore
optimizing a high-resolution image generating DPM is GPU intensive.

3. Inference is also expensive due to sequential evaluations.
4. Latent diffusion models introduced to (Rombach et al. 2022)

o reduce the computational complexity to enable DPM training on limited computational
resources

o retaining their quality and flexibility
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Latent Diffusion Models

The key idea of LDMs is to separate the training into two phases:

1. Perceptual image compression: This is the first stage of training in which an
autoencoder is trained which provides a lower-dimensional representational space which is
perceptually equivalent to the data space.

2. Latent Diffusion: In this second phase, a DPM is trained on the learned
lower-dimensional latent space from the trained autoencoder, instead of the
high-dimensional pixel space.

X Encoder £ Z Decoder D
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Summary




Summary

1. Pros of diffusion models
o Capacity for producing high-quality outputs that often surpass GANs in terms of realism and

diversity

o Skilled at handling complex distributions, making them versatile for various applications.
o A more reliable training process than GANs, avoiding the issue of mode collapse.

2. Cons of diffusion models
o Require significant resources for training and generation, which can limit accessibility.

o Generating data through iterative denoising is much more time-consuming compared to

direct generation methods used by GANs.
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Comparison of deep generative models

Model Density Sampling Training Latents Architecture
PGM-D Exact, fast Fast MLE Optional Sparse DAG
PGM-U Approx, slow Slow MLE-Approx  Optional Sparse Graph
VAE LB, fast Fast MLE-LB Rt Encoder-Decoder
ARM Exact, fast Slow MLE None Sequential

Flows Exact, slow/fast Slow MLE RP Invertible

EBM Approx, slow Slow MLE-Approx  Optional Discriminative
Diffusion LB Slow MLE-LB RP Encoder-Decoder
GAN N/A Fast Min-Max RE Generator-Discriminator
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Reading

1. Chapter 25 of Probabilistic Machine Learning: Advanced Topics (Murphy 2023).
2. Chapter 9 of Deep Generative Modeling (Tomczak 2024).
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