Deep Generative Models
Score-Based Generative Models
Hamid Beigy

Sharif University of Technology

May 4, 2025




Table of contents

1. Introduction

2. Score-Based Generative Models

3. References

Hamid Beigy (Sharif University of Technology) 1/36



Introduction
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution pg(x) is unknown.
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Model family

2. We attempt to approximate this process with a chosen model, py(x), with parameters ¢
such that x ~ pg(x).

3. Learning is the process of searching for the parameter 6 such that py(x) well approximates
pda(x) for any observed x, i.e.

po(x) ~ pa(x)

4. We wish py(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Deep generative models

Autoregressive models

1. Tractable density
2. Density is estimated as

m
po(x) =[] po(x | x<))
j=1
3. Tractable likelihood

4. No inferred latent factors

Normalizing flow models

1. Exact density
2. Density is estimated as

po(x) = p.(2)|det (Jr)|

where z = f(x)

3. Tractable likelihood
4. Latent feature representation
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Latent variable models
1. Approximated density
2. Density is estimated as

Po(x):/Pa(sz)dZ

3. Intractable likelihood
4. Latent feature representation

Generative adversarial networks
1. Implicit density
2. Can optimize f-divergences and Wasserstein distance

mGjn mngXN pd(x)[log D(x)] + E;n p,(z)llog(1 — D(G(2)))]

3. Latent feature representation
4. Very flexible model architectures, unstable training, hard
evaluation, mode collapse
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Representing probability distributions

1. The parametrized versions of the probability density functions

po(x) = Zig exp(—Ep(x)) where Zy = / exp(—Ep(x))dx

2. A benefit of EBM is that
o energy functions are not constrained to be non-negative.
o energy functions can be very flexible parametrized.

3. An energy function and its corresponding probability distributions

Energy function Eg(x) Probability distribution p(x)
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Representing probability distributions

1. The density function given by an EBM is

exp(—Ep(x))

po(x) = Z,

2. Evaluation and differentiation of log py(x) w.r.t. its parameters involves a typically
intractable integral.

meax; log po(x«)

3. Pros:
o Extreme flexibility: can use any function Ey(x) you want
4. Cons:
o Sampling from py(x) is hard.
e Evaluating and optimizing likelihood ps(x) is hard (learning is hard).
o No feature learning (but we can add latent variables)

5. Problem: A fundamental problem is that computing Zy numerically scales exponentially

in the number of dimensions of x.
Hamid Beigy (Sharif University of Technology) 6 /36



Tractability /flexibility of generative models

1. In generative modeling there are two opposing forces: tractability and flexibility.
2. Tractable models are usually analytically computable, thus easy to evaluate and fit.
3. But they are usually not flexible enough to learn the true data structure.

4. Flexible models can fit arbitrary structures in data.

5. But they are usually expensive to evaluate, fit, or sample from

6. Diffusion/score-matching models are both tractable and flexible.
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Representing probability distributions

1. GAN-like quality and better, while having the advantages of explicit probabilistic models.
o Explicit likelihood computation
o Representation learning

2. State-of-the results in generation, audio synthesis, shape generation. etc.

3. Score-based models we do not need a tractable normalizing constant.
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Score-Based Generative Models



Score function

1. The (Stein) score function is the gradient of
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The score function of a mixture of two Gaussians
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Score function (One-dimensional Gaussian distribution)

x—p )2
1. Consider one-dimensional Gaussian distribution A (s, 0%) = \/% e 3(55")

2. lts log probability log N'(11,0?) = — log (V271 o) — %(%)2
. . dlog N (p,0? 11— X
3. The score of point x is s(x) = % = (&%),
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Normal(8, 3) score function
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Score function (One-dimensional Gamma distribution)

0.15

Gamma(8, 1) pdf |
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Gamma score function
— — — Normal score function

Hamid Beigy (Sharif University of Technology) 11 /36



Score function (One-dimensional GMM distribution)

Gaussian mixture pdf
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Score-based generative models

1. Score-based models we do not need a tractable normalizing constant

so(x) = Vxlog po(x)
= — Vx Eg(x) — Vx |og Zg = — Vx Eg(x)
——

=0
Energy-based model Score-based model
Ea|(X) Se|(X)
Energy network Score network
A A
X X
| |
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Score-based generative models

1. In Langevin dynamics, initially draws a sample xq from a simple prior distribution.

2. Then uses a process for K steps with step size ¢ > 0 and z* ~ A/(0, 1):

2
XL xk 4 % Vylog py(x) + ez*

2
=xk+ ESQ(X) + ez*.
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Score-based generative models

1. In Langevin dynamics, initially draws a sample xo from a simple prior distribution.

2. Then uses a process for K steps with step size ¢ > 0 and z¥ ~ A/(0, 1):
€2
XML ok g 0 V log pg(x) + ez

=xk+ %Sg(x) + ez,
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Xi41 = Xt + 7Vx log p(xy) Xe1 = X¢ + TV log p(x¢) + V272
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Score-based generative models

Example 3.3. Following the previous example we again consider a Gaussian mixture
p(a) = mN (x| p, 0F) + mN (2| p2, 03).

We choose 1 = 0.6. p1 =2, 01 = 0.5, w1y = 0.4, us = —2, 02 = 0.2. Suppose we initialize M = 10000
uniformly distributed samples xy ~ Uniform[—3, 3]. We run Langevin updates for ¢ = 100 steps. The
histograms of generated samples are shown in the figures below.

t=0 t=1 t=10 t=100
008 008 008 008

Figure 3.4: Samples generated by Langevin dynamics. Initially the samples are uniformly dis-
tributed. As time progresses, the distribution of the samples become the desired distribution.
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Score Matching (SM)

1. Let f(x) and g(x) be two continuously differentiable real-valued functions.
2. If f(x) and g(x) have equal first derivatives everywhere, then f(x) = g(x) + Constant.

3. When f(x) and g(x) are log-pdfs with equal first derivatives, the normalization
requirement implies that

and

4. We can approximately learn an EBM by matching the first derivatives of its log-pdf to the
first derivatives of the log-pdf of the data distribution.

5. If they match, then the EBM captures the data distribution exactly.

6. The first-order gradient function of a log-pdf is also called the score of that
distribution (Hyvarinen 2005).

7. For training EBMs, it is useful to transform the equivalence of distributions to the
equivalence of scores, because the score of an EBM can be easily obtained.
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Score Matching (SM)

1. The main problem is that the probability distribution function pq(x) is unknown.

2. A simple way to approximate pg4(x) is to use kernel density estimator, denoted by g(x).

where h is a hyper-parameter for kernel K(.) and x, is kth sample in the training set.

3. By using the definition of kernel density estimator, loss function equals to

Team(0) = / lIs6(x) — Vxlog q(x)[2 g(x)dx

11 X — X
:/”Sf)(x)fvx log q(x)||2mZhK< - k)dx
x k=1
— 1 . 2 X — Xk
= Y [0 - Vetor Pk (X5 ) ax

k=1"X

4. Explicit score matching has a drawback because kernel density estimation is not a very
effective way to estimate the actual data distribution when we have a small number of
samples in a high-dimensional space.
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Score Matching (SM)

1. The score of an EBM can be easily obtained by V, log py(x) = —VxEg(x).
2. The score does not involve the typically intractable normalizing constant Zj.

3. The basic score matching minimizes a discrepancy between two distributions called the
Fisher divergence:
1 2
Drs(pa(x) | Po(x)) = E pyx | 511V log pulx) = Vixlog po ()]

4. The first term admits a trivial unbiased Monte Carlo estimator using the empirical mean
of samples x ~ py(x).

5. The second term is generally impractical to calculate since it requires knowing
Vyxlog py(x).
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Implicit Score Matching (SM)

1. Score matching eliminates the data score using integration by parts. To simplify discussion,
we consider the Fisher divergence between distributions of 1-D random variables as

1]Epd(x) (Vxlog pa(x) — Vi log Pe(X))} . / pa(x)(Vilog pa(x) — Vy log py(x))dx

2
1
-2 / Pa(x)(Vx log pa(x))?dx
Constant

45 [ bV log )

- / Pa(x)Vx log py(x) Vi log pa(x)dx

2. By integration by parts, we have

—/ Pd(x)Vx log py(x)Vxlog pa(x /V log po(x de(X)

= — pd(x)Vxlog Pe(X)

— 00

+ / pa(x)V log pg(x)dx
0 «
= IE:pd(x) [VZ |0g pQ(X)]’
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Implicit Score Matching (SM)

1. The line (i) holds if we assume p4(x) — 0 as |x| — oo.
2. Substituting the results of integration by parts into the 1-D Fisher divergence, we obtain

1

5 E py) |(Vx log pa(x) — Vx log Pa(X)ﬂ = E py(x) [V log po(x)]

1
+ 5 E oy {(VX log pg(x))ﬂ + Constant.

Therefore, the equivalent form of 1-D Fisher divergence does not involve V, log pq(x).

3. Generalizing the integration by parts argument to muti-dimensional data, we have the
following objective equivalent to Fisher divergenceparenciteHyvarinen05.

1
E 5y tr(V3 log pp(x)) + §||VX log pg(x)||§] + Constant,

where V2 denotes the Hessian with respect to x.

4. This objective is known as the implicit score matching objective, because it only involves
functions of Vy log pp(x) and it does not depend on the intractable partition function.

5. Therefore, it is ideal for learning unnormalized probability models.

Hamid Beigy (Sharif University of Technology) 21/ 36



Implicit Score Matching (SM)

1. The Fisher divergence can be rewritten as:

1
Drs(pa(x) [| po(x)) = E pyx) [tr(vi log py(x)) + 5| Vx log Pe(X)|§] + Constant,

B, l; f: (aifx()) N (65())

=

+ Constant

2. SM only requires the trace of the Hessian, but it is still expensive to compute even with
modern hardware and automatic differentiation packages (Martens, Sutskever, and
Swersky 2012).

3. For this reason, the implicit SM formulation has only been applied to relatively simple
energy functions where computation of the second derivatives is tractable.

4. Score Matching assumes a continuous data distribution with positive density over the
space, but it can be generalized to discrete or bounded data distributions.

Hamid Beigy (Sharif University of Technology)
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Denoising Score Matching (DSM)

1. The Score Matching objective requires several regularity conditions for log pq4(x):
o it should be continuously differentiable
o it should be finite everywhere

2. These conditions may not always hold in practice, such as distribution of gray level of
pixels in images.

3. The distribution of digital images is typically discrete and bounded.

4. Therefore, log py(x) is discontinuous and is negative infinity outside the range, and
therefore SM is not directly applicable.

5. To alleviate this difficulty, one can add a bit of noise to each data point: X = x+¢

6. As long as the noise distribution p(¢) is smooth, the resulting noisy data distribution
q(x) = [ q(x | x) pa(x)dx is also smooth.

7. Thus the Fisher divergence Des(g(X) || po(X)) is a proper objective.
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Denoising Score Matching (DSM)

1. It has been shown that the objective with noisy data can be approximated by the
noiseless Score Matching objective plus a regularization term.

2. This regularization makes Score Matching applicable to a wider range of data
distributions, but still requires expensive second-order derivatives.

3. One elegant and scalable solution to the above difficulty, is to show

Drs(a(®) | Po(%) = Eats |3 175108 a(5) ~ Velog s

1 - .
= Eq4zx) [2||VX log g(X | x) — Vg log pe(x)||§] + Constant

4. The above expectation is again approximated by the empirical average of samples, thus
completely avoiding both the unknown term py(x) and computationally expensive
second-order derivatives.

5. This estimation method is called Denoising Score Matching (DSM) (Vincent 2011).
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Denoising Score Matching (DSM)

> W

. The major drawback of adding noise to data arises when py(x) is already a well-behaved

distribution that satisfies the regularity conditions required by Score Matching.

In this case, Des( g(X) || po(X)) # Des( pa(x) || po(x)), and DSM is not a consistent
objective because the optimal EBM matches the noisy distribution g(X) not pg(x).

This inconsistency becomes non-negligible when ¢(X) significantly differs from pq(x).

One way to attenuate the inconsistency of DSM is to choose g(x) ~ p4(x).

5. This often significantly increases the variance of objective values and hinders optimization.

For example, suppose q(% | x) = A/(% | x, 1), where o ~ 0. The corresponding DSM

objective is

Drs(q(%) || po(X)) = E pyx) [EzNN(o,I) [;”; + Vi log po(x + 02)”2”

m 2

~ 25

i

+ Vy log po(x) + oz

2

where {x(M), ... x(™} are some iid samples from py(x).
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Denoising Score Matching (DSM)

1. When o — 0, we can leverage Taylor series expansion to rewrite the Monte Carlo
estimator to obtain

Drs(q(X) [| pa(X)) = 12{2(z(i)) Vi log po(x() + HZU Hz} + Constant

2m 4 o
i=1

2. When estimating the above expectation with samples, the variances of

, , 20|12
(20) "V log py(x)) /o and HU# will both grow unbounded as & — 0 due to division by
o and o2,

3. This enlarges the variance of DSM and makes optimization challenging.

4. Some methods were proposed to solve this issue.
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Denoising Score Matching (DSM)

Let x be a training data and we corrupt the training data using Gaussian noise, then the
corrupted version will be X = x + €.

Thus, we have the following relation for Vi log g, (X | x).
Vs log g, (% | x) = Vi log N (x, 0°1)
exp(—3(&% —x)T- (c?1) " (X — x))

= Vi log
(2m)?(o2)
= Vx {%iz()"( —x)T 1 (x— x)} — Vi log 1/ (27)° (a21)
=0
= oy Val(k )T (% x)]
=) = %)~ s()

Since the network outputs sg(X), then it is evident why this method is called denoising.

score estimator

— > loss

sg(x + 0z) / %

backpropagate gradient

Training
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1. The denoising score matching uses a fixed noise level o, which leads to much of the input
space unexplored.

2. Instead in Langevin dynamics, the score network, sg(x), is trained to handle a variety of
discrete noise levels (Song and Ermon 2019).

3. Let noise levels {01,02,...,07} be a decreasing geometric sequences such that
o1 __ 02 __ oT-1
il Rl o 1.

4. The loss function for training the score network is

jdsm(oa Ut) = O—E Ex,f(r\a Gop (X,X) [”50()() - vi |Og qat(xa i)|‘2]

3
- (2]

Loss weight
5. At training time, the scale of loss is roughly equal across o, because % ~ N(0,1).

_R%%W{

6. Also, it is empirically found that [[sg(x)||, o< L.
7. At inference time, they used 7); instead of 7, where 7, is given by
— (2t y2
ne=n( )
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Sliced Score Matching (SSM)

1. By adding noise to data, DSM avoids the expensive computation of second-order
derivatives.

2. However, DSM does not give a consistent estimator of the data distribution.

3. In order to use score matching for learning deep energy-based models, we have to compute
[Vx log po(x)||3 and tr(V2log ps(x)).
o Term ||V log ps(x)||3 can be computed by one simple backpropagation of Ey(x).
o Term tr(Vi log pg(x)) requires much more number of backpropagations to compute.

o Computing tr(V,Z( log pg(X)) requires a number of backpropagation that is proportional to
the data dimension D (Martens, Sutskever, and Swersky 2012).

4. Therefore, score matching is not scalable when learning deep energy-based models on
high-dimensional data.

5. Sliced Score Matching is an alternative to Denoising Score Matching that is both
consistent and computationally efficient (Song, Garg, et al. 2019).
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Sliced Score Matching (SSM)

1. The idea is that one dimensional data distribution is much easier to estimate for score
matching.

2. Song et. al. proposed to project the scores onto random directions, such that the vector
fields of scores of the data and model distribution become scalar fields (Song, Garg, et al.
2019).

3. Then comparing the scalar fields to determine how far the model distribution is from the
data distribution.

4. Two vector fields are equivalent if and only if their scalar fields corresponding to
projections onto all directions are the same.

5. Let v be a random projection direction and p,(x) as its distribution.

6. The random projected version of Fisher divergence is

Dsr(pa(x) || po(x)) = %E pax) | (VT Vxlog pa(x) — vTVy log Pe(x)ﬂ

called sliced Fisher divergence.
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Sliced Score Matching (SSM)

1. Unfortunately, sliced Fisher divergence has the same problem as Fisher divergence, due to
the unknown data score function Vy log p4(x).

2. By using integration by parts, we obtain the following tractable alternative form

1
Dsr(pa(x) Il po(x)) = E py(x) vTV2log po(x)v + E(VTVX log ps(x))*| + Constant

o Term vTVylog po(x) can be computed by one backpropagation for deep energy-based
models.

o Term vTV2log ps(x)v involves Hessian, but it is in the form of Hessian-vector products,
which can be computed within O(1) backpropagations.

3. Therefore, the computation of sliced score matching does not depend on the dimension of
data, and is much more scalable for training deep energy-based models on high
dimensional datasets.
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Sliced Score Matching (SSM)

1. Instead of minimizing the Fisher divergence between two vector-valued scores, SSM
randomly samples a projection vector v, takes the inner product between v and the two
scores, and then compare the resulting two scalars.

2. Sliced Score Matching minimizes the following divergence called the sliced Fisher

divergence

1 OEy(x) \° = E(x)
Dsr(pa(x) [ po(x)) = Epy0) | Enw) 22( dxi V’) *ZZWWJ

i=1 j=1

+ Constant

3. All expectations in the above objective can be estimated with empirical means.
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Theoretical guarantees of learning with SSM

1. Let {x1,...,xn,} be iid samples from the data distribution pq(x).

2. For each x;, draw M random projection directions {v;1, ..., v} ~ py(v).

3. The sliced score matching objective can be estimated with empirical averages, giving rise
to the following finite-sample estimator:

m M
1 1 2
W E E {VI.TJ.V,% log pg(x;)vij + §(V}Vx log pg(X;)) }

i=1 j=1

4. Let gmM be the minimizer of the above empirical estimator, and let #* be the true
parameter corresponding to the data distribution such that pg-(x) = pa(x).

~

5. It has been shown that under some regularity conditions, 6,,\/ is consistent and
asymptotically normal.

6. Formally, for any M € N*, when m — oo, we have
O 2 0*
ﬁ(@mM - 9*) 4 N(0, %)
where ¥ is some covariance matrix.
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