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Introduction
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution pg(x) is unknown.

2. We attempt to approximate this process with a chosen model, py(x), with parameters ¢
such that x ~ py(x).

3. Learning is the process of searching for the parameter 6 such that py(x) well approximates
pd(x) for any observed x, i.e.

po(x) ~ pa(x)

4. We wish py(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.
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Deep generative models

Autoregressive models

1. Tractable density
2. Density is estimated as

m

p(x:0) =] p(x; | x<j 0)

j=1

3. Tractable likelihood
4. No inferred latent factors

Normalizing flow models

1. Exact density
2. Density is estimated as

po(x) = p.(2)|det (Jr)|

where z = f(x)

3. Tractable likelihood
4. Latent feature representation
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Latent variable models
1. Approximated density
2. Density is estimated as

p(xi6) = [ plx.zi6)dz

3. Intractable likelihood
4. Latent feature representation

Generative adversarial networks
1. Implicit density
2. Can optimize f-divergences and Wasserstein distance

mGjn mngXN pd(x)[log D(x)] + E;n p,(z)llog(1 — D(G(2)))]

3. Latent feature representation
4. Very flexible model architectures, unstable training, hard
evaluation, mode collapse
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based models

1. EBMs capture dependencies between variables by associating a scaler energy to each

configuration.

Eﬁ(xv y)

The model

[

x y

2. Learning in EBMs consists in finding energy function in which observed configurations are

given lower energies than unobserved ones.

3. Inference in EBMs consists of finding the observed variables and finding the remaining

variables that minimize the energy.
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based models

When x; is an image and y; is its label from set {Human, Animal, Airplan, Car, Truck}, then
the model can be represented as
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Energy-based models
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Figure 2: Several applications of EBMs: (a) face recognition: Y is a high-cardinality discrete
variable; (b) face detection and pose estimation: Y is a collection of vectors with location
and pose of each possible face; (c) image segmentation: Y is an image in which each pixel
is a discrete label; (d-e) handwriting recognition and sequence labeling: Y is a sequence of
symbols from a highly structured but potentially infinite set (the set of English sentences). The
situation is similar for many applications in natural language processing and computational
biology; (f) image restoration: Y is a high-dimensional continuous variable (an image).
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What questions can an EBM answer?

An EBM may be used to answer questions of several types:
1. Prediction, classification, and decision-making:
“Which value of y; is most compatible with this x?’

2. Ranking:

“Is y; or y» more compatible with this x?”
3. Detection:

“Is Is this value of y compatible with x?"
4. Conditional density estimation:

“What is the conditional probability distribution over y given x?"
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1. The EBM approach provides a common theoretical framework for many learning models
including:

o Traditional discriminative approaches

Traditional generative approaches

Graph-Transformer networks

Conditional random fields

o Maximum margin Markov networks

o Several manifold learning methods
2. Energy-based models have

o Very flexible model architectures

o Stable training

o Relatively high sample quality

o Flexible composition

Hamid Beigy (Sharif University of Technology)
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Probabilistic Graphical Models




Introduction

1. PGMs provide a general framework for describing and applying probabilistic models in the
probabilistic approach.

2. Consider a graph G = (V, E) with vertex set V and edge set E C V' x V.

3. A graphical model is a family of probabilistic distributions defined in terms of a directed or
undirected graph.

4. The nodes are random variables and joint probability distributions are defined by taking
products over functions defined on connected subsets of nodes.

5. Graphical models can be defined over different types of graphs:
o Directed graphical models
o Undirected graphical models

o Mixed graphical models
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Directed graphical models

1. Let G = (V, E) be a directed acyclic graph and x = (x, ..., x,) be a collection of random
variables indexed by nodes of G.

2. For each node v € V, let pa(v) be the parents of node v and x,,(,) be a vector of random
variables indexed by parents of v.

A directed graphical model consists of a family of distributions that factorize as.

p(X) = H p(Xv | xpa(v))

vev

3. Consider the following directed graphical model:

4. The joint distribution that this directed graphical model describes is

P(x1,x2,x3,xa) = p(x1) p(xa | x1) p(x3 | x2) p(xa | x1,%3)
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Neural Network Based Classifier

1. Traditionally, each conditional probability distribution p(x, | X.(,)) is parameterized by a
lookup table or a linear model.

Sprinkler —
Sprinkler

Rain T F
 Sprinkder D Ran > T F
F 0.4 0.6 —

T 00l 099 02 08

Grass wet
Sprinkler rain T F
F F 04 06
F T 0.01 0.99
T F 0.01 0.99
T T 0.01 0.99
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Neural Network Based Classifier

1. A more flexible way to parametrize such conditional distribution is to use neural networks.

2. This neural networks takes x,,(,) as input and produces the distributional parameters over
the variables:

9 = NN(Xpa(V))
p(Xv | Xpa(v)) = p@(Xv)
3. As an example, if x, is a continuous variable, 6 could denote the mean and variance
parameters.

4. Consider a multi-class classifier, whose input is x = (x1, ..., x,) and the class label is
ye{l,...,K}.

5. The graphical model representation of this classifier is

OandO
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Neural Network Based Classif

1. The classic multi-class logistic regression is to use a single layer to obtain the logits z.

2. Then, feed the logits z, into a softmax layer to calculate the class posterior:

(@)
PV =) = S @)

Z = WX + by fork=1,...,K

= Linear(x; wy, by)

3. Instead of a linear layer, we can use a deep network.

4. In this way, the multi-layer neural network could be viewed as a non-linear feature
extractor.
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Undirected Graphical Model

N

Let G = (V, E) be an undirected graph and x = (x, ..., x,) be the random variables.
Let C denote the set of cliques of graph.
Let ¢c(xc) > 0 be the potential function associated with each clique ¢ € C.

Consider the following undirected graphical model

(0—@
E——

The total potential function of the graph is defined as

®(x) = H Pe(xc) dc(xc) > 0.

ceC
where x. is an arbitrary instantiation of of the set of random variables denoted by clique c.

For the above graph, the potential function can be factorized as

(D(X) = (;5,473’6‘(87 b, C) X qSA’D(a, d)
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Undirected Graphical Model

1. Consider the following undirected graphical model

(A—®
&—

2. Let {A, D} be binary random variables, the potential function corresponding to this clique
could be represented by a table

drapy(a=0,d=0) = +4.00
drapy(a=0,d =1) = 40.23
drapy(a=1,d =0) = +5.00
drapy(a=1,d =1) = +9.45

3. Like other models in machine learning, the potential function can be parametrized as

P(x;0) = H Pc(xc; 6) de(xc; 0) > 0.

ceC

4. Potential functions show how likely a given state is. So, the higher the potential,

more likely that state is.
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Undirected Graphical Model

1. An undirected graphical model consists of a family of distributions that factorizes as

p(x) = 5 [ elxci0)

ceC

where Z is a normalizing constant(partition function) given by

Z =Y T ¢e(xc:0).

x ceC

3. The joint distribution that this model describes is

2. Consider the following UGM

p(x1, X2, x3,X3) = %¢(X17 x2)P(x2, X3) (X3, Xa ) H(x1, Xa)

4. In contrast with joint distributions, the potential functions do not need to be

self-normalized.
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Energy-Based Models




Representing probability distributions

1. Probability distributions pg(x) are a key building block in generative modeling.
2. They have the following properties

o Non-negative: py(x) >0

e Sum to one: > po(x) =1or [ po(x)dx =1

3. Making non-negativeness is easy and we can choose any of the following function:

(
(x) = (())
gn(x) = |fe(x>|

(x) = log(1 + exp(fs(x)))

4. In general Zyg =" go(x) #1

5. Hence, gy(x) is not a valid probability mass function or density.
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Representing probability distributions

1. The maintaining gg(x) > 0 is easy but making > pg(x) = 1 is a hard problem.

2. A solution is to normalize gy(x) by its volume as

o &(x)  g(x)
Po(x) = Volufne(gg) N f:ggdx

3. Then, by definition we have [ py(x)dx = 1.

4. We can calculate the volume analytically if we choose some analytical functions such as

Density function Volume

() = ¢ T e dx = vano?
gn(x) = e ™ Joo e Mdx = ¢

go(x) = h(x) exp(0T(x)) exp(log [ h(x)exp(6 T (x))dx)

5. The above functional forms seem to be restrictive but they are very useful as building
blocks for more complex distributions.
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Representing probability distributions

1. Problem: The maintaining gy(x) > 0 is easy but it might not be normalized.

2. Solution: A solution is to normalize gy(x) by its volume as

1 1

o(x) = 7——-80(x)

Po(x) = Vo/ume(gg)g . godx

3. Typically, we choose gy(x) in such a way that the volume is known analytically.
4. By combining some building blocks, we obtain more complex models.

5. Autoregressive: Products of normalized functions pp, (x) pa,(x)(Y)

[ [ P pro)ixdy = [ pu () [ pro)iyde= [ pu(x)x =1

xJy x y x
N—_———’
=1

6. Latent variables: Convex combination of normalized functions « py, (x) + (1 — ) po,(y)

/ongl(x) +(1—-a)pg(y)dx=a+(l-a)=1

X

7. How about using models where the volume of gy(x) is not easy to compute analytically?
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Representing probability distributions

1. By restricting potential functions to be strictly positive, it is convenient to express them as

Pe(xc) = exp[—Ec(xc)]

where E.(x.) is called an energy function (Alternatively, happiness, H(x) = —E(x), is
used).

2. Hence, the negative log-potential is called energy.
3. The high-probability states correspond to low-energy configuration
4. The parametrized versions of the probability density functions

Pa(X)eXP< 3 Elxe: )

ceC

- Zig exp(—Ep(x))

5. Distributions of this exponential forms are called energy-based models, also known as
Gibbs (Boltzmann) distributions.

6. A benefit of EBM is that
o energy functions are not constrained to be non-negative.

o energy functions can be very flexible parametrized.
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ity distributions

An energy function and its corresponding probability distributions

Energy function Eg(x) Probability distribution p(x)
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Energy-Based Models

1. The density function given by an EBM is

exp(—E(x))

po(x) = Z

o Eg(x) (the energy) is a nonlinear regression function with parameters 6.

o Zy denotes the normalizing constant (partition function):

Zy :/exp(ng(x))dx

e Zy is constant w.r.t x and is a function of 6.

2. Why exponential form?
o Want to capture very large variations in probability. we want to work with log-probability.
o Exponential families. Many common distributions can be written in this form.

o These distributions arise under fairly general assumptions in statistical physics.
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Representing probability distributions

1. The density function given by an EBM is

exp(—£Ep(x))

po(x) = Z

2. Pros:
o Extreme flexibility: can use any function Ey(x) you want
3. Cons:
o Sampling from py(x) is hard.
o Evaluating and optimizing likelihood ps(x) is hard (learning is hard).
o No feature learning (but we can add latent variables)

4. Problem: A fundamental problem is that computing Zy numerically scales exponentially
in the number of dimensions of x.
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Representing probability distributions

1. For two vectors x and z, evaluating py(x) and py(z) requires Zy

2. However, in some tasks such as ranking and anomaly detection, we do not require
knowing Zy.

3. In these tasks, we need require relative comparisons of pg(x) and py(z) such as their ratio:

Po(x)
pe(2)

does not involve computing Zj.

S L — 1

\' &Y. ) ECY, X0 E(Y, X) |
. . . e

Al - rere

= exp(Ey(2) — Ep(x))

cofect recognition sequonce bbeling mage restoradion

Hamid Beigy (Sharif University of Technology) 25/ 64



Ising model

1. Lety € {0,1}3*3 be the true image and x € {0,1}3*3 be a corrupted image.
2. Corrupted image x € {0,1}33 is given and we must recover the true image y € {0, 1}3*3.

Markov Random Field

X;: noisy pixels
Y;: "true” pixels

3. We model the joint probability distribution p(x,y) as

P(X,Y)Z%GXP Z¢i(Xi,Yi)+ > i)

(i.J)EE
where
o 1i(xi, yi): the i-th corrupted pixel depends on the i-th original pixel
o i j(vi,y;): neighboring pixels tend to have the same value

4. How did the original image y look like? Solution: maximize p(y | x).
Hamid Beigy (Sharif University of Technology) 26 / 64



Product of Experts

s+ .y P, (x), each parameterized by 61,...,0,, respectively.

2. The probability distribution of the product of experts (PoE) can be expressed as:

_ Hk pek(x) _ Hk p9k(x) wher _
= Z = S 11, P (@) here 0 ={61,...,0,}.

po(x)

Young
(EBM)

Young

AND
Female
(EBM)

Young
AND Female
AND Smiling |
(EBM) |

Young

AND Female
AND Smiling
AND Wavy Hair
(EBM)

Image Source: (Du, Li, and Mordatch 2020)
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Product of Experts

Smiling

Male

Smiling
AND
Male

Smiling
AND (s ==
NOT Male y

(Smiling AND
Female) OR
(NOT smiling
AND Male

Image Source: (Du, Li, and Mordatch 2020)
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Boltzmann Machine (BM)

1. BMs are fully connected networks of binary units.

2. BM is an undirected symmetric network of binary units divided into visible and hidden.

3. BMs are theoretically capable of learning any given distribution.

4. BMs set strengths of connections between units to capture their correlations to build a
generative network capable of producing new examples of the same distribution.

5. Since all variables in a BM are not directly observed, it gives us a handle to control the

sampling of new examples.

6. The model can take in an incomplete example and use it to output the complete version.
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Boltzmann Machine (BM)

. BM is a network with an energy defined for the overall network.

. For a BM with only observed units, the energy is defined as

Ey(x) = —x"Wx —b'x

. Learning algorithms for BMs are usually based on maximum likelihood.

. All BMs have an intractable partition function, so the maximum likelihood gradient must
be approximated.

. A BM admits the following likelihood for points x1, ..., Xp,.

L(x) = H p(xi)

. We will work with the log-likelihood instead of the true likelihood.

. The gradient w.r.t weights becomes

Vi log L(x) = Exn p, (0 [XiXj] = Exw py () [Xi/]
. The gradient w.r.t biases becomes

Vi, log £(x) = Ex Ps(x)[Xi] — Exn Pe(x)[xi]
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Generating a sample by Boltzmann Machine

1. In BM, we generate in two steps:
o Pick the hidden states from p(h).

o Pick the visible states from p(v|h).

2. The probability of generating a visible vector, v, is computed by summing over all possible
hidden states.
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1. Given an ordered set of variable, xi, ..., xy, and a starting configuration x° = (x? ...,

Gibbs sampling uses the following procedure

o Repeat until convergence for t = 1,2, ...,
m Set x < x'71
m For each variable x; in the order we fixed:
1) Sample x/ ~ p(x; | x_;).
2) Update x < (x1,...,x/,...,xq).

m Set x' + x

We use x_; to denote all variables in x except x;.

2. It is often very easy to performing each sampling step, since we only need to condition x;

on other variables.
3. Note that when we update x;, we immediately use its new value for sampling other

variables x;.

Hamid Beigy (Sharif University of Technology)

32/ 64



Restricted Boltzmann Machine (RBM)

1. The intractability of the joint distribution is one of the biggest drawbacks of BMs.

2. RBMs are a special type of BMs with two layers: One visible and one hidden layer.

hiden units

visible units

3. The connections in an RBM are undirected and the graph is a bipartite graph.

4. The probability density is calculated by
1
P(V, h) = ? eXp(ng(V, h))
0
Ep(v,h) = —v'Wh—-b'v—-c'h

Zy = Z Z exp(—Eg(v,h))

ve{0,1}P he{0,1}F
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Restricted Boltzmann Machine

1. The learned receptive fields of Bernoulli-Bernoulli RBM

Training samples Learned receptive fields

¢£CD.’:H5EFE\D
f ¥ maba

|? Lal|'\
=

L
\.*/

=
C

2. The learned receptive fields of Gaussian—Bernoulli RBM

Training samples Learned receptive fields
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Deep Belief Networks (DBN)

1. A single layer of binary features is not the best way to capture the structure in
high-dimensional input data.

2. DBN is a hybrid PGM involving both directed and undirected connections.
3. Deep belief networks consisting of many hidden layers.
o Connections between top two layers are undirected

o Connections between all other layers is directed, pointing towards data.

p(v,h® b b)) = p(v[hM)p(hDh) . p(h=2)h=D)p(hD) h(4)

4. p(h*=1) h(¥)) (the marginal distribution over the top two layers) is an RBM.
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Deep Belief Networks Training

1. Deep belief networks training
1.1 We first train the bottom RBM with parameters W),

1.2 We then initialize the second layer weights to w® = w®), ensuring that the
two-hidden-layer DBN is at least as good as our original RBM.

1.3 Improve the fit of the DBN to the training data by untying and refitting parameters W?.

(OOO?OOO) i

RBM
\ 4
h(Z) 2
OOOSBOOO COOO0000) H?
RBM W
Y LY
QOOOO0U w  ( ; HY ) h
6000000 OvC\/D“O'O@ QOOOO00) H?
RBM ! W
Y i 4 LY
0000000 v 0000000 v O000000) v
(a) Stage 1 (b) Stage 2 (c) Stage 3

2. Find the variational lower bound of the log-likelihood of the two-hidden-layer DBN.
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Deep Boltzmann Machine (DBM)

1. DBM is an undirected deep network of several hidden layers (Salakhutdinov and Larochelle
2010).

2. Every unit is connected to every unit from the adjacent layers.

3. There are no connections between units of the same layer.

4. Derive the conditional probability of each layer given its above layer.

5. Derive derivative of the log-likelihood with respect to the model parameters.
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Deep Boltzmann Machine (DBM)

1. DBMs can also be viewed as a group of RBMs stacked together.

(s) (&)
oSO

oY 0
IR AR
‘s\va‘w\\@

2. Training of DBMs is often done in two stages:

o A pre-training stage where every RBM is trained independently.

o a fine tuning stage where the network is trained at once using backpropagation.
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Deep Boltzmann Machine (DBM) @3

1. Considering two architectures for MNIST dataset.

1000 units
( 1000 units ) (500 units )
500 units 500 units
28 x 28 28 x 28
pixel pixel
image image

2. The results using Gibbs sampling.

2-layer BM Training Samples

2
L6
! 8
71
So
g2
s H

N~N0»\ G
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Training Energy-Based Models




Maximum Likelihood Training of EBMs

1. We use the maximum likelihood estimation to train EBMs:

2. Let
L (0 |0gH po(Xk) Ex~ pg(x)[l0g po(x)]

3. MLE is equivalent to minimizing Dy ( pa(x) || pa(x)):

L1(0) = Drr(pa(x) || po(x)) = Ex~ pyix) [Iog ggﬂ

= Ey pq(x) [|0g Pd (X)] —Exn pq(x) [|0g pg(X)]
Independent of 6

= Constant + E/\//_/_(@)

4. We cannot directly compute the likelihood of an EBM as in the maximum likelihood
approach due to the intractable normalizing constant Zj.

5. Nevertheless, we can still estimate the gradient of the log-likelihood with MCMC
approaches, allowing for likelihood maximization with gradient ascent.

Hamid Beigy (Sharif University of Technology)
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Maximum Likelihood Training of EBMs

1. The density function given by an EBM is

exp(—E(x))

po(x) = Z

2. The gradient of negative log-likelihood (NLL) is decomposed to:

Vi log pg(x) = —VgEg(x) — Vg log Zy

3. The first gradient term, —VyEy(x), is straightforward to evaluate with automatic
differentiation.

4. The challenge is in approximating the second gradient term, Vy log Zy, which is
intractable to compute exactly.
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Maximum Likelihood of EBMs

Vo log Zy an be rewritten as follows:

Volog Zy = Vy Iog/ exp(— Ep(x))dx

— ( exp(— Eg(x))d ) Vo / exp(— Eg(x))d
= ( exp(— Eq(x))d ) 1/V9 exp(— Eq(x
= ( exp(— Eq(x))d ) exp(— Eg(x))(— Vo Eg(x))dx

g
:/ exp(— Ee(x))( Vo Es(x))dx
/
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Maximum Likelihood Training of EBMs

1. Then, Vg Lni.(0) equals to

Vo Lner(0) = Exw pyx)[ Vo Eo(X)] — Exw py(x) [ Vo Eo(x)]

Positive phase Negative phase

2. Positive phase tries to change the parameters to minimize the energy at points coming
from training set.

3. Negative phase tries to change the parameters to maximize the energy at points coming

from model.
A A
push down
After

Eg | training Eg ;
| |
| |
| i
| |
| 1
| 1
| i :
i ! i '
! | - I H >

Xtrain Xsample Xtrain Xsample
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Maximum Likelihood Training of EBMs

1. Then, Vg Lni.(0) equals to

Vo Lner(0) = Exw pyx)[ Vo Eo(X)] — Exw py(x) [ Vo Eo(x)]

Positive phase Negative phase

2. For computing the negative phase, usually collect samples from pq(x) using Markov chains
and make a Monte Carlo estimate of the expectation.

3. The problem is that in practice MCMC chains mix very poorly on complex data.

4. An unbiased one-sample Monte Carlo estimate of log-likelihood gradient is
Vo log Zy = — Vg Ep(X)

where X ~ py(x) is a random sample from the distribution over x given by the EBM.

5. This algorithm is called contrastive divergence training.
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Improved Contrastive Divergence training

1. The loss function equals to

Lep(0) = Dre(pa(x) || po(x)) — Dk (ps(x) I po(x))
L (0)

where pf(x) is the distribution resulting from running t steps of the MC chain starting
from pq(x).

2. The second term is another negative likelihood loss.
3. The second term tries to minimize E,_ ¢ ([ po(x)].

4. It can be shown that the above loss function and negative log likelihood loss functions
have the same solution:

ﬁCD(G) =0 —— ﬁNL/_(H) =
But they get there in different ways.

5. Homework: Drive the updating rule of the parameters (Gagnon and Lajoie 2022).
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Gradient-based MCMC methods

1. As long as we can draw random samples from the model, we have access to an unbiased
Monte Carlo estimate of the log-likelihood gradient, allowing us to optimize the
parameters with stochastic gradient ascent.

2. Since drawing random samples is far from being trivial, much of the literature has focused
on methods for efficient MCMC sampling from EBMs.

3. Some efficient MCMC methods make use of the fact that the gradient of the
log-probability w.r.t. x (score) is equal to the (negative) gradient of the energy, therefore
easy to calculate:

Vy log pg(X) = _VXEG(X) — Vyxlog Zy = _VXEG(X)
=0

4. For example, Langevin MCMC initially draws a sample xo from a simple prior distribution,
and then uses a process for K steps with step size ¢ > 0:

2
XK+ xk 4 %Vx log po(x) + ez

where zK ~ \(0,1) is a Gaussian noise term.
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Maximum Likelihood Training

1. The density function given by an EBM is

po(x) = 7exp(_zfe(x))

N

. The gradient of negative log-likelihood (NLL) is decomposed to:

Vo log pg(x) = —VeEy(x) — Vg log Zy

3. The first gradient term, —VyEy(x), is straightforward to evaluate with automatic
differentiation, but the exact computation of the second term is interactable.

Volog Zy = e p, [~ VeEo(x)]

N

. Sampling converges slowly in high dimensional spaces and is thus very expensive, yet we
need sampling for each training iteration in contrastive divergence.

5. The goal is training without sampling
o Score Matching
o Noise Contrastive Estimation

o Adversarial training
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Training Energy-Based Models

Score-based methods



Score Matching (SM)

1. Let f(x) and g(x) be two continuously differentiable real-valued functions.
2. If f(x) and g(x) have equal first derivatives everywhere, then f(x) = g(x) + Constant.

3. When f(x) and g(x) are log-pdfs with equal first derivatives, the normalization
requirement implies that | exp(f(x))dx = [ exp(g(x))dx =1 and f(x) = g(x).

4. We can approximately learn an EBM by matching the first derivatives of its log-pdf to the
first derivatives of the log-pdf of the data distribution.

5. If they match, then the EBM captures the data distribution exactly.

6. The first-order gradient function of a log-pdf is also called the score of that
distribution.

7. For training EBMs, it is useful to transform the equivalence of distributions to the
equivalence of scores, because the score of an EBM can be easily obtained.
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Score Matching (SM)

1. The score of an EBM can be easily obtained by Vy log pg(x) = —VyEp(x), which does not
involve the typically intractable normalizing constant Zy.

2. The basic score matching objective minimizes a discrepancy between two distributions
called the Fisher divergence:

1
Drs(pa(x) [ Po(x)) = E py(x) | 51|V log pa(x) = Vi log po(x)’

3. The first term admits a trivial unbiased Monte Carlo estimator using the empirical mean
of samples x ~ pq(x).

4. The second term is generally impractical to calculate since it requires knowing
Vyx log pg(x).
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Training Energy-Based Models

Noise Contrastive Estimation based Methods



Noise Contrastive Estimation (NCE)

1. The core idea behind NCE is to distinguish data samples from a dataset (signal) from
artificially generated noise samples.

2. This is achieved by training a binary classifier that learns to classify whether a given
sample comes from the actual data distribution or from a noise distribution.

3. The classifier implicitly learns the parameters of the data distribution.
4. NCE involves the following steps:

4.1 A noise distribution is chosen, which should ideally be simple enough to sample from and
calculate probabilities.

4.2 Noise samples are generated from this noise distribution.

4.3 A logistic regression model is trained to discriminate between samples from the true data
distribution and the noise samples.

4.4 The parameters learned by the logistic regression model are then used as estimates for the
parameters of the true data distribution.
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Noise Contrastive Estimation

1. Advantages of NCE over MLE methods

1.1 Computational Efficiency: NCE avoids the computation of the partition function, which

can be intractable for large models.
1.2 Scalability: NCE scales well with the size of the dataset and the complexity of the model.

1.3 Flexibility: NCE can be applied to a wide range of models, including those where MLE is
not feasible.

2. Challenges and considerations of using NCE

2.1 Choice of Noise Distribution: The performance of NCE is sensitive to the choice of noise
distribution. A poor choice can lead to suboptimal parameter estimation.

2.2 Hyperparameter Tuning: NCE requires careful tuning of hyperparameters, including the
number of noise samples and the learning rate for the classifier.

2.3 Convergence: Ensuring convergence of the estimation process can be challenging, especially

for complex models with many parameters.
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Noise Contrastive Estimation

1. NCE is based on the idea that we can learn an Energy-Based Model by contrasting it with
another distribution with known density.

2. Let pq(x) be the data distribution, and let p,(x) be a chosen distribution with known
density, called a noise distribution.

3. This noise distribution is usually simple and has a tractable pdf, like A/(0,1), such that we
can compute the pdf and generate samples from it efficiently.

4. Let y be a binary variable with Bernoulli distribution, which we use to define a mixture

distribution of noise and data:

Pn,data(X) = P(y = 0) pn(x) + p(y = 1) pa(x)

5. Based on the Bayes' rule, given a sample x from this mixture, the posterior probability of

y=0is

=0
pn7data(y =0|x)= pn’data(x Ly ) P(y) = Pn(x) Drive this equation.

pn,data(x) pn(x) +a pd(x)

— pPly=1)
where o = p(y=0)"
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Noise Contrastive Estimation

1. Let our energy-based model has the following form:

exp(—E(x))

po(x) = Z

2. Unlike other EBMs, Zj is treated as a learnable (scalar) parameter in NCE.

3. Given this model, we can define a mixture of noise and the model distribution:

pno(x) = p(y = 0) pa(x) + p(y = 1) py(x)

4. The posterior probability of y = 0 given this noise/model mixture is

Pn(x)

Proly = 01 X) = e (0
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Noise Contrastive Estimation

1. In NCE, we indirectly fit py(x) to p4(x) by fitting pno(y | X) to pn.data(y | X) through a
standard conditional maximum likelihood objective:

0" = arg ming{ E b, sora(x,0) [PKL( Prdata(y | X) [ Po(y | X))]}
argmaxg{ E, .. xyllog pno(y | X)]} Derive this function

2. This optimization problem can be solved using stochastic gradient ascent.

3. Like any other deep classifier, when the model is sufficiently powerful, p, g« (y | x) will
match pp data(y | X) at the optimum.

Po+(y =0 X) = Pndata(y =0 x)
— p"(x) _ p,,(X)
pn(x) + & pn,o+ (X) Pn(X) + o Pn,data(x)

= (¥ = pulx)

4. Consequently, Ey«(x) is an unnormalized energy function that matches the data
distribution py(x), and Zy- is the corresponding normalizing constant.
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Training Energy-Based Models

Adversarial training



Adversarial training

1. When training EBMs with MLE, we need to sample from the EBM per training iteration.

2. Sampling using multiple MCMC steps is expensive and requires careful tuning of the
Markov chain.

3. One way to avoid this difficulty is to use non-MLE methods that do not need sampling,
such as Score Matching and Noise Contrastive Estimation.

4. We can sidestep costly MCMC sampling by learning an auxiliary model through adversarial
training, which allows fast sampling.

5. From the definition of EBMs, we can rewrite the maximum likelihood objective by
introducing a variational distribution ¢q,(x) parameterized by ¢:

E pyxllog po(x)] = E py[—Eo(x)] — log Zy

— ol E(x)] - log | exp(~Ex(x)

= Epyl-Er(x)] —log [ exp(—E) 24

Epd(x)[—Ee(X)] - / Gy (x) log eXP(q;(Exe)(X))

= Epyool=Eo(x)] = Eq,0[~Ea(x)] = H(g5(x))

IN

Using Jensen inequality
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Adversarial training

1. The upperbound of K, [log py(x)] is
E pyllog po(x)] < E p o[—Eo(X)] — E 4,0 [—Eo(x)] — H(gs(x))

2. For EBM training,

o First minimize the upper bound with respect to gs(x) so that it is closer to the likelihood
objective.

o Then maximize with respect to Ey(x) as a surrogate for maximizing likelihood.

3. This amounts to using the following maximin objective

maxmin E g, 0[Eg(x)] = E p, 9 [Ea(x)] — H(d5(x))

4. Optimizing the above objective is similar to training GANs and can be achieved by
adversarial training.

5. The variational distribution ¢,(x) should allow both fast sampling and efficient entropy
evaluation to make the maximin objective function tractable.
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Hybrid Modeling




Hybrid Modeling

1. Consider using deep generative modeling in the context of finding the joint distribution
over observables and decision variables that is factorized as

p(x,y) = ply | x) p(x)
where x € RP and y € {0,1,..., K — 1}.

2. By taking the logarithm of the joint we obtain two additive components:

log p(x,y) = log p(y | x) + log p(x)

3. How can we model the above problem using EBMs?

4. Let Ep(x,y) be parameterized by a neural network NNy(x) where its input is x and returns
K values: NNy : RP — RX.

5. This means that we can define energy function as

Ep(x,y) = —NNp(x)[v]

where [y]| denotes the specific output of the neural networks NNy(x).
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Hybrid Modeling

1. Then, the joint probability distribution is defined as

_ exp(=Ey(x,y))
p(X,}/) - T

_ exp(NNh(1Y))
Zy

2. The marginal distribution p(x) is

po(x) = 3" plx.y)

y

~ 2y exp(NNp(x)[y])
= >

3. We can re-write the numerator in the following manner:

> exp(NNg(x)[y]) = exp (log{z exp(NNe(X)[Y])D

= exp(LogSumExp, (NNy(x)[y]))

4. We can say that the energy function of the marginal distribution is expressed as
—LogSumExp, (NNg(x)[y]).
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Hybrid Modeling

1. The conditional distribution py(y | x) is

po(x, y)

po(x)

exp(NNo (x)[y])
_ Zy

T X, exp(NNp(x)[y])
Zs

_ ep(NN(l])
5=, exp (N (x)y])

poly [ x) =

2. This means that the energy-based model could be used either as a classifier or a marginal
distribution.

3. Any any classifier could be seen as an energy-based model (Grathwohl et al. 2020).

4. The logarithm of the joint distribution is

exp(f(x)[y]) >y exp(NNy(x)[y])
L exp(NN ()] * 1% Z

= log Softmax(NNy(x)[y]) + (LogSumExp,(NNy(x)[y]) — log Zs)

log po(x,y) = log 5
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Hybrid Modeling

1. The model requires a shared neural network that is used for calculating both distributions.

po(ylx) Po(x)
Softmax LogSumExpy

QN No(x)[y]

X

2. We have a single neural network to train and the training objective is the logarithm of the
joint distribution.

3. The training objective is a sum of the logarithm of the conditional py(y | x) and the
logarithm of the marginal py(x).

4. Calculating the gradient with respect to the parameters 6 requires taking the gradient of
each of the component separately (Derive the weight update equations).
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Summary




Summary

1. Both Variational Autoencoders and EBM learn the parameters by maximizing the
(marginal) log-likelihood, which can be interpreted also as the minimization of

Die(pa(x) || po(x)).

2. VAEs are intrinsically latent variable models imposing an information bottleneck and
approximating the posterior on the latent variables pq(z | x) through variational inference,
whereas EBMs generally are not.

3. EBMs can easily extended to latent variable models (Xiao, Yan, and Amit 2020).

4. Che et. al. showed that GANs can be better understood through the lens of EBM (Che
et al. 2020).

5. They showed that GAN generators and discriminators collaboratively learn an implicit
energy-based model.
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