Modern Information Retrieval

Evaluation in information retrieval

Hamid Beigy

Sharif university of technology

March 3, 2025

- 1. Introduction
- 2. Standard test collections
- 3. Evaluation for unranked retrieval
- 4. Evaluation for ranked retrieval
- 5. Assessing relevance
- 6. System quality and user utility
- 7. References

Introduction

Framework for the evaluation of an IR system:

- 1. Test collection consisting of
 - a document collection,
 - a test suite of information needs,
 - a set of relevance judgments for each *doc-query* pair
- 2. Gold-standard judgment of relevance.

The classification of a document either as relevant or as irrelevant wrt an information need

- 3. The test collection must cover at least 50 information needs
- 4. The Development collection for parameter tuning, if you need.

Standard test collections

- 1. **Cranfield collection**: 1398 abstracts of journal articles about aerodynamics, gathered in UK in the 1950s, plus 255 queries and exhaustive relevance judgments
- TREC (Text REtrieval Conference): collection maintained by the US National Institute of Standards and Technology since 1992
 - TREC Ad Hoc Track: test collection used for 8 evaluation campaigns led from 1992 to 1999, contains 1.89 million documents and relevance judgments for 450 topics
 - TREC 6-8: test collection providing 150 information needs over 528000 newswires
 - current state-of-the-art test collection
 - note that the relevance judgments

are not exhaustive

- 1. GOV2: collection also maintained by the NIST, containing 25 millions of web-pages (larger than other test collections, but smaller than current collection supported by WWW search engines)
- 2. NTCIR (Nii Test Collection for IR systems): various test collections focusing on East Asian languages, mainly used for cross-language IR
- 3. CLEF (Cross Language Evaluation Forum): collection focussing on European languages http://www.clef-campaign.org
- 4. **REUTERS**: Reuters 21578 and REUTERS RCV1 containing respectively 21 578 newswire articles and 806 791 documents, mainly used for text classification

Evaluation for unranked retrieval

1. Two basic effectiveness measures: *precision* and *recall*

$$Pr = \frac{\#relevant \ retrieved}{\#retrieved}$$
$$Re = \frac{\#relevant \ retrieved}{\#relevant}$$

2. In other terms:

	Relevant	Not relevant	
Retrieved	true positive (tp)	false positive (fp)	
Not retrieved	false negative (fn)	true negative (tn)	

$$Pr = \frac{tp}{tp + fp}$$
$$Re = \frac{tp}{tp + fn}$$

1. Accuracy: proportion of the classification relevant/not relevant that is correct

$$accuracy = \frac{tp + tn}{tp + fp + tn + fn}$$

Problem: 99.9% of the collection is usually not relevant to a given query (potential high rate of false positives)

- 2. Recall and precision are inter-dependent measures:
 - precision usually decreases while the number of retrieved documents increases
 - recall increases while the number of retrieved documents increases

1. Measure relating precision and recall:

$$F = \frac{1}{\alpha \times \frac{1}{Pr} + (1 - \alpha) \times \frac{1}{Re}} = \frac{(\beta^2 + 1)Pr \times Re}{\beta^2 Pr + Re}, \beta = \frac{1 - \alpha}{\alpha}$$

2. Most frequently used: balanced F_1 with $\beta = 1$ (or $\alpha = 0.5$):

$$F_1 = \frac{2 \times Pr \times Re}{Pr + Re}$$

Example (Evaluation for unranked retrieval)

	Relevant	Not relevant	
Retrieved	20	40	60
Not retrieved	60	1,000,000	1,000,060
	80	1,000,040	1,000,120

$$Pr = \frac{tp}{tp + fp} = \frac{20}{20 + 40} = \frac{1}{3}$$
$$Re = \frac{tp}{tp + fn} = \frac{20}{20 + 60} = \frac{1}{4}$$
$$F_1 = \frac{2 \times \frac{1}{3} \times \frac{1}{4}}{\frac{1}{3} + \frac{1}{4}} = \frac{2}{7}$$

Evaluation for ranked retrieval

- 1. Precision, recall and F-measure are set-based measures (order of documents is not important)
- 2. Consider the first k retrieved documents and compute the precision and recall values.
- 3. Plot the relation between precision and recall for each value of k
 - If the $(k+1)^{st}$ is not relevant then recall is the same, but precision decreases
 - If the $(k + 1)^{st}$ is relevant then recall and precision increase
- 4. Precision-recall curve:

5. For removing jiggles, interpolation of the precision (smoothing):

$$P_{inter}(r) = max_{r' \ge r} P(r')$$

- 1. **11-point interpolated average precision**: For each information need, the value *P*_{inter} is measured for the 11 recall values 0.0, 0.1, 0.2, ... 1.0.
- 2. Then, the arithmetic mean of P_{inter} for a given recall value over the information needs is computed.

1. **Precision at k**: For www search engines, we are interested in the proportion of good results among the *k* first answers (say the first 3 pages)

Pros : does not need an estimate of the size of the set of relevant documents

Cons : unstable measure, does not average well because the number of relevant documents for a query has a strong influence on precision at k.

- 1. Consider rank position of each relevant doc: k_1, k_2, \ldots, k_r .
- 2. Compute P@k for each k_1, k_2, \ldots, k_r .
- 3. Average precision(AP) is the average of P@K.

Doc Id	Relevancy		
1	r		
2	n		
3	r		
4	n		
5	r		

$$AP = \frac{1}{3} \left(\frac{1}{1} + \frac{2}{3} + \frac{3}{5} \right) \approx 0.76$$

4. MAP is Average Precision across multiple queries/rankings.

average precision query I = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44mean average precision = (0.62 + 0.44)/2 = 0.53

Mean Average Precision (MAP)

Example (MAP)

Rank $P(doc_i)$ 1 X 1.00 2	(<i>doc</i>
1 X 1.00 2	(<i>doc</i>
2 Rank F 3 X 0.67 1 X 4 2 3 X	(<i>doc</i>
3 X 0.67 4 - 5 - 6 X 0.50	1 00
4 5 6 X 050 3 X	T.00
5 X 050 3 X	
	0.67
9 6 6	
10 X 040 7	
13	
15 12 12	
16	
17 14 15 X	0.2
	623
19	.025
20 X 0.25	
AVG: 0.564	
0.564 ± 0.623	
MAP = 1000000000000000000000000000000000000	

- 1. Assumptions:
 - Highly relevant documents are more useful than marginally relevant document (more likely to be examined).
 - The lower the ranked position of a relevant document, the less useful it is for the user (less likely to be examined).
- 2. Uses graded relevance as a measure of usefulness (gain) from examining a document.
- 3. Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- 4. DCG is the total gain accumulated at a particular rank *p*:

$$DCG_{p} = rel_{1} + \sum_{i=2}^{p} \frac{rel_{i}}{\log i}$$
$$DCG_{p} = \frac{2^{rel_{i-1}}}{\log(1+i)}$$

5. Normalized Cumulative Gain (NDCG) at rank *n*: Normalize DCG at rank *n* by the DCG value at rank *n* of the ideal ranking.

- 1. Assumptions:
 - Highly relevant documents are more useful than marginally relevant document (more likely to be examined).
 - The lower the ranked position of a relevant document, the less useful it is for the user (less likely to be examined).
- 2. Uses graded relevance as a measure of usefulness (gain) from examining a document.
- 3. Gain is accumulated starting at the top of the ranking and may be reduced, or discounted, at lower ranks
- 4. DCG is the total gain accumulated at a particular rank *p*:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log i}$$
$$DCG_p = \frac{2^{rel_{i-1}}}{\log(1+i)}$$

5. Normalized Cumulative Gain (NDCG) at rank *n*: Normalize DCG at rank *n* by the DCG value at rank *n* of the ideal ranking.

i	Ground Truth		Ranking Function ₁		Ranking Function ₂	
	Document Order	r _i	Document Order	r _i	Document Order	r _i
1	d4	2	d3	2	d3	2
2	d3	2	d4	2	d2	1
3	d2	1	d2	1	d4	2
4	d1	0	d1	0	d1	0
	NDCG _{GT} =1.00		NDCG _{RF1} =1.00		NDCG _{RF2} =0.9203	

4 documents: d_1 , d_2 , d_3 , d_4

$$DCG_{GT} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$
$$DCG_{RF1} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$
$$DCG_{RF2} = 2 + \left(\frac{1}{\log_2 2} + \frac{2}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.2619$$
$$MaxDCG = DCG_{GT} = 4.6309$$

Assessing relevance

Assessing relevance

- 1. How good is an IR system at satisfying an information need ?
- 2. Needs an agreement between judges \rightarrow computable via the **kappa** statistic:

kappa
$$= rac{P(A) - P(E)}{1 - P(E)}$$

- P(A) is the proportion of agreements within the judgments
- P(E) is the probability that two judges agreed by chance

Hamid Beigy (Sharif university of technology)

- 1. Interpretation of the kappa statistic k:
 - $k \ge 0.8$: good agreement
 - 0.67 ≤ k < 0.8 : fair agreement
 - k < 0.67 : bad agreement
- 2. Note that the kappa statistic can be negative if the agreements between judgments are worse than random
- 3. In case of large variations between judgments, one can choose an assessor as a gold-standard

System quality and user utility

- 1. Ultimate interest: how satisfied is the user with the results the system gives for each of its information needs ?
- 2. Evaluation criteria for an IR system:
 - fast indexing
 - fast searching
 - expressivity of the query language
 - size of the collection supported
 - user interface (clearness of the input form and of the output list, *e.g.* snippets, etc)

- 1. Quantifying user happiness ?
 - For www search engines: do the users find the information they are looking for? can be quantified by evaluating the proportion of users getting back to the engine.
 - For intranet search engines: this efficiency can be evaluated by the time spent searching for a given piece of information.
 - General case: <u>user studies</u> evaluating the adequacy of the search engine with the expected usage (eCommerce, etc).

References

- 1. Chapters 8 of Information Retrieval Book¹
- 2. Section 7.4 of Search Engines Information Retrieval in Practice Book²

¹Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). *Introduction to Information Retrieval*. New York, NY, USA: Cambridge University Press.

²W. Bruce Croft, Donald Metzler, and Trevor Strohman (2009). *Search Engines - Information Retrieval in Practice*. Pearson Education.

Hamid Beigy (Sharif university of technology)

- Croft, W. Bruce, Donald Metzler, and Trevor Strohman (2009). Search Engines Information Retrieval in Practice. Pearson Education.
- Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). *Introduction to Information Retrieval*. New York, NY, USA: Cambridge University Press.

Questions?