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Characterization of an index



Characterization of an index

Considering the Reuters-RCV1 collection

size of dictionary non-positional index positional index

size ∆ cum. size ∆ cum. size ∆ cum.

unfiltered 484,494 109,971,179 197,879,290

no numbers 473,723 -2% -2% 100,680,242 -8% -8% 179,158,204 -9% -9%

case folding 391,523 -17% -19% 96,969,056 -3% -12% 179,158,204 -0% -9%

30 stop words 391,493 -0% -19% 83,390,443 -14% -24% 121,857,825 -31% -38%

150 stop words 391,373 -0% -19% 67,001,847 -30% -39% 94,516,599 -47% -52%

stemming 322,383 -17% -33% 63,812,300 -4% -42% 94,516,599 -0% -52%
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Statistical properties of terms

1. The vocabulary grows with the corpus size

2. Empirical law determining the number of term types in a collection of size M (Heap’s law)

M = kT b

T is the number of tokens, and k (growth-rate) and b are two parameters defined as:

b ≈ 0.5 30 ≤k ≤ 100

3. On the REUTERS corpus for the first 1, 000, 020 tokens (taking k = 44 and b = 0.49):

M = 44× 1, 000, 0200.5 = 38, 323 The actual number: 38,365

Online edition (c)�2009 Cambridge UP
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! Figure 5.1 Heaps’ law. Vocabulary size M as a function of collection size T
(number of tokens) for Reuters-RCV1. For these data, the dashed line log10 M =

0.49 ∗ log10 T + 1.64 is the best least-squares fit. Thus, k = 101.64 ≈ 44 and b = 0.49.

entities like genes. These names need to be included in the inverted index,
so our users can search for them.

5.1.1 Heaps’ law: Estimating the number of terms

A better way of getting a handle on M is Heaps’ law, which estimates vocab-HEAPS’ LAW

ulary size as a function of collection size:

M = kTb(5.1)

where T is the number of tokens in the collection. Typical values for the
parameters k and b are: 30 ≤ k ≤ 100 and b ≈ 0.5. The motivation for
Heaps’ law is that the simplest possible relationship between collection size
and vocabulary size is linear in log–log space and the assumption of linearity
is usually born out in practice as shown in Figure 5.1 for Reuters-RCV1. In
this case, the fit is excellent for T > 105 = 100,000, for the parameter values
b = 0.49 and k = 44. For example, for the first 1,000,020 tokens Heaps’ law
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Modeling the distribution of terms (Zipf’s law)

1. We want understand how terms are distributed across documents.

2. We want know how many frequent vs. infrequent terms.

3. In natural language, there are a few very frequent terms and very many very rare terms.

4. Zipf’s law: The i th most frequent term has frequency cf i as

cf i ∝
1

i

cf i is collection frequency: the number of occurrences of the term ti in the collection.

5. It means: rank of a word (cf i ) times its frequency (i) is approximately a constant (k).

6. So if the most frequent term (the) occurs cf1 times, then

cf2 =
1

2
cf1

cf3 =
1

3
cf1

...

cfk =
1

k
cf1
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Modeling the distribution of terms (Zipf’s law)

1. Equivalently, we can write Zipf’s law as

cf i = cik

log cf i = log c + k log i for k = −1

Online edition (c)�2009 Cambridge UP
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! Figure 5.2 Zipf’s law for Reuters-RCV1. Frequency is plotted as a function of
frequency rank for the terms in the collection. The line is the distribution predicted
by Zipf’s law (weighted least-squares fit; intercept is 6.95).

? Exercise 5.1 [⋆]

Assuming one machine word per posting, what is the size of the uncompressed (non-
positional) index for different tokenizations based on Table 5.1? How do these num-
bers compare with Table 5.6?

5.2 Dictionary compression

This section presents a series of dictionary data structures that achieve in-
creasingly higher compression ratios. The dictionary is small compared with
the postings file as suggested by Table 5.1. So why compress it if it is respon-
sible for only a small percentage of the overall space requirements of the IR
system?

One of the primary factors in determining the response time of an IR sys-
tem is the number of disk seeks necessary to process a query. If parts of the
dictionary are on disk, then many more disk seeks are necessary in query
evaluation. Thus, the main goal of compressing the dictionary is to fit it in
main memory, or at least a large portion of it, to support high query through-
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Modeling the distribution of terms (Zipf’s law)

1. How about the probability of occurrence of a word?

2. The probability is:

the frequency of the word divided by the total number of word occurrences in the text.

3. For Zipf’s law, we have

pi =
c

i
for English, c ≈ 0.1.76 4 Processing Text

Fig. 4.1. Rank versus probability of occurrence for words assuming Zipf s law (rank x
probability = 0.1)

To see how well Zipf s law predicts word occurrences in actual text collec-
tions, we will use the Associated Press collection of news stories from 1989 (called
AP89) as an example. This collection was used in TREC evaluations for several
years. Table 4.1 shows some statistics for the word occurrences in AP89. The vo-
cabulary size is the number of unique words in the collection. Even in this rela-
tively small collection, the vocabulary size is quite large (nearly 200,000 unique
words). A large proportion of these words (70,000) occur only once. Words that
occur once in a text corpus or book have long been regarded as important in text
analysis, and have been given the special name of Hapax Legomena?

Table 4.2 shows the 50 most frequent words from the AP89 collection, to-
gether with their frequencies, ranks, probability of occurrence (converted to a
percentage of total occurrences), and the r.Pr value. From this table, we can see

3 The name was created by scholars studying the Bible. Since the 13th century, people
have studied the word occurrences in the Bible and, of particular interest, created con-
cordances, which are indexes of where words occur in the text. Concordances are the
ancestors of the inverted files that are used in modern search engines. The first concor-
dance was said to have required 500 monks to create.

4. This figure shows how the frequency of word occurrence falls rapidly after the first few

most common words.
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Most frequent 50 words from AP8978 4 Processing Text

Word
the
of
to
a
and
in
said
for
that
was
on
he
is
with
at
by
it
from
as
be
were
an
have
his
but

Freq.
2,420,778
1,045,733

968,882
892,429
865,644
847,825
504,593
363,865
347,072
293,027
291,947
250,919
245,843
223,846
210,064
209,586
195,621
189,451
181,714
157,300
153,913
152,576
149,749
142,285
140,880

r
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Table

Word

Pr(%]
6.49
2.80
2.60
2.39
2.32
2.27
1.35
0.98
0.93
0.79
0.78
0.67
0.65
0.60
0.56
0.56
0.52
0.51
0.49
0.42
0.41
0.41
0.40
0.38
0.38

r.Pr

0.065
0.056
0.078
0.096
0.120
0.140
0.095
0.078
0.084
0.079
0.086
0.081
0.086
0.084
0.085
0.090
0.089
0.091
0.093
0.084
0.087
0.090
0.092
0.092
0.094

Word
has
are
not
who
they
its
had
will
would
about
i
been
this
their
new
or
which
we
more
after
us
percent
up
one
people

Freq
136,007
130,322
127,493
116,364
111,024
111,021
103,943
102,949
99,503
92,983
92,005
88,786
87,286
84,638
83,449
81,796
80,385
80,245
76,388
75,165
72,045
71,956
71,082
70,266
68,988

r Pr(%]
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0.37
0.35
0.34
0.31
0.30
0.30
0.28
0.28
0.27
0.25
0.25
0.24
0.23
0.23
0.22
0.22
0.22
0.22
0.21
0.20
0.19
0.19
0.19
0.19
0.19

r.Pr

0.095
0.094
0.096
0.090
0.089
0.092
0.089
0.091
0.091
0.087
0.089
0.088
0.089
0.089
0.090
0.090
0.091
0.093
0.090
0.091
0.089
0.091
0.092
0.092
0.093

4,2. Most frequent 50 words from AP89

Freq. r
assistant
sewers

5,095 1,021
100 17,110

toothbrush
hazmat

10 51,555
1 166,945

Pr(%)
.013

.000256

.000025

.000002

r.Pr

0.13
0.04
0.01
0.04

Table 4.3. Low-frequency words from AP89
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Dictionary compression



B-Tree for Dictionary9

9Credit: Ghislain Fourny
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Dictionary compression

1. The dictionary is small compared to the postings file.

2. But we want to keep it in memory.

3. We compress the dictionary because of

Reduce the response time of an IR system

We want design the search system for systems with limited hardware such as cell phones,

onboard computers.

Fast startup time

Sharing resurces with other applications.

4. So compressing the dictionary is important.

Hamid Beigy (Sharif university of technology) 17 / 33



Index format with fixed-width entries

term document frequency pointer to postings list postings list

a 656,265 −→ . . .

aachen 65 −→ . . .

. . . . . . . . . . . .

zulu 221 −→ . . .

40 4 4 space needed

1. Total space for using Unicode and fixed-width entries (term-length=20):

M × (2× 20 + 4 + 4) = 400,000× 48 = 19.2 MB

2. Without using Unicode:

M × (20 + 4 + 4) = 400,000× 28 = 11.2 MB

3. Remarks

The average length of a word type for REUTERS is 7.5 bytes

With fixed-length entries, a one-letter term is stored using 20 bytes!

Some very long words (such as hydrochlorofluorocarbons) cannot be handled.

How can we extend the dictionary representation to save bytes and allow for long words?
Hamid Beigy (Sharif university of technology) 18 / 33
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Dictionary as a string Compressing the dictionary The string method

Dictionary-as-a-string
. . . s y s t i l e s y z yg e t i c s y z y g i a l s y z y g y s z a i b e l y i t e s z e c i

freq.

9

92

5

71

12

. . .

4 bytes

postings ptr.

→
→
→
→
→
. . .

4 bytes

term ptr.

3 bytes

. . .

8 / 30

1. 3 bytes per pointer into string (need log2(400000× 8) ≈ 22 bits to resolve 400,000

positions).

2. 8 chars (on average) for term in string

3. Using Unicode: 400,000× (4 + 4 + 3 + 2× 8) = 10.8MB (compared to 19.2 MB for

fixed-width)

4. Without using Unicode: 400,000× (4 + 4 + 3 + 8) = 7.6 MB (compared to 11.2 MB for

fixed-width)
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Block storage
Compressing the dictionary The block-storage method

Block-storage

. . . 7 s y s t i l e9 s y z y g e t i c8 s y z y g i a l 6 s y z y gy11s zz a i b e l y i t e

freq.

9

92

5

71

12

. . .

postings ptr.

→
→
→
→
→
. . .

term ptr.

. . .

10 / 30

1. Let us consider blocks of size k

2. We remove k − 1 pointers, but add k bytes for term length

3. Example: k = 4, (k − 1)× 3 bytes saved (pointers), and 4 bytes added (term length) → 5

bytes saved

4. Space saved: 400,000× ( 1
4 )× 5 = 0.5 MB (dictionary reduced to 10.3 MB and for

non-Unicode 7.1MB)

5. Why not taking k > 4 ?
Hamid Beigy (Sharif university of technology) 20 / 33



Search in dictionary

1. Uncompressed dictionary

Compressing the dictionary The block-storage method

Search without blocking

aid

box

den

ex

job

ox

pit

win

Average search cost: (4 + 3 + 2 + 3 + 1 + 3 + 2 + 3)/8 ≈ 2.6 steps

12 / 30

Average search cost: (0 + 1 + 2 + 3 + 2 + 1 + 2 + 2)/8 ≈ 1.6 steps

2. Compressed dictionary with blocking

Compressing the dictionary The block-storage method

Impact of blocking on search

aid box den ex

job ox pit win

Average search cost: (2 + 3 + 4 + 5 + 1 + 2 + 3 + 4)/8 ≈ 3 steps

13 / 30

Average search cost: (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 ≈ 2 steps
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Front coding

1. Many words have the same prefix. We can write common prefix once.

2. One block in blocked compression (k = 4)

8automata8automate9automatic10automation

3. Compressed with front coding.

8automat∗a1�e2�ic3�ion
4. End of prefix marked by ∗

5. Deletion of prefix marked by �

Hamid Beigy (Sharif university of technology) 22 / 33



Dictionary compression for Reuters

representation size (unicode) size (non-unicode)

dictionary, fixed-width 19.2MB 11.2MB

dictionary as a string 10.8MB 7.6MB

∼, with blocking, k = 4 10.3MB 7.1MB

∼, with blocking & front coding 7.9MB 5.9MB
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Compressing the posting lists

1. The REUTERS collection has

about 800 000 documents,

each having 200 tokens

2. Since tokens are encoded using 6 bytes, the collection’s size is 960 MB

3. A docId must cover all the collection, i.e. must be log2800, 000 ≈ 20 bits

4. If the collection includes about 100, 000, 000 postings, the size of the posting lists is

100, 000, 000× 20/8 = 250MB

5. How to compress these postings ?

6. Idea: most frequent terms occur close to each other.

7. We encode the gaps between occurrences of a given term

Hamid Beigy (Sharif university of technology) 24 / 33



Gap encoding

encoding postings list

the docIDs . . . 283042 283043 283044 283045 . . .

gaps 1 1 1 . . .

computer docIDs . . . 283047 283154 283159 283202 . . .

gaps 107 5 43 . . .

arachnocentric docIDs 252000 500100

gaps 252000 248100

Furthermore, small gaps are represented with shorter codes than big gaps.

Two techniques

Variable-length byte-codes (Byte-level)

γ-codes (Bit-level)
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Compressing the posting lists

Using variable-length byte-codes



Using variable-length byte-codes

1. Variable-length byte encoding uses an integral number of bytes to encode a gap

First bit := continuation byte

Last 7 bits := part of the gap

2. The first bit is set to 1 for the last byte of the encoded gap, 0 otherwise

3. Example: a gap of size 5 is encoded as 10000101

Example

docIDs 824 829 215406

gaps 5 214577

VB code 00000110 10111000 10000101 00001101 00001100 10110001

What is the code for a gap of size 1283?

4. The posting lists for the REUTERS collection are compressed to 116 MB with this

technique (original size: 250 MB)

5. The idea of representing gaps with variable integral number of bytes can be applied with

units that differ from 8 bits

6. Larger units can be processed (decompression) quicker than small ones, but are less

effective in terms of compression rate
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Compressing the posting lists

Using γ-codes



Using γ-codes

1. Idea: representing numbers with a variable bit code

2. Unary code: the number n is encoded as:

n times︷ ︸︸ ︷
11 . . . 0

(not efficient)

3. γ-code: variable encoding done by splitting the representation of a gap as follows:

length offset

offset is the binary encoding of the gap (without the leading 1)

length is the unary code of the offset size

Hamid Beigy (Sharif university of technology) 27 / 33



Unary and γ-codes

number unary code length offset γ code

0 0

1 10 0 0

2 110 10 0 10,0

3 1110 10 1 10,1

4 11110 110 00 110,00

9 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001
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Example

1. Given the following γ-coded gaps:

1110001110101011111101101111011

2. Decode these, extract the gaps, and recompute the posting list

3. γ-decoding :

first reads the length (terminated by 0),

then uses this length to extract the offset,

and eventually prepends the missing 1

1110001 - 11010 - 101 - 11111011011 - 11011

Hamid Beigy (Sharif university of technology) 29 / 33



Compression of Reuters: Summary

representation size in MB size in MB

Unicode non-unicode

dictionary, fixed-width 19.2 11.2

dictionary, term pointers into string 10.8 7.6

∼, with blocking, k = 4 10.3 7.1

∼, with blocking & front coding 7.9 5.3

collection (text, xml markup etc) 3600.0 3600.0

collection (text) 960.0 960.0

term incidence matrix 40,000.0 40,000.0

postings, uncompressed (32-bit words) 400.0 400.0

postings, uncompressed (20 bits) 250.0 250.0

postings, variable byte encoded 116.0 116.0

postings, γ encoded 101.0 101.0
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Conclusion

1. γ-codes achieve better compression ratios (about 15 % better than variable bytes

encoding), but are more complex (expensive) to decode

2. This cost applies on query processing → trade-off to find

3. The objectives announced are met by both techniques, recall:

reducing the disk space needed

reducing the time processing, by using a cache

4. The techniques we have seen are lossless compression (no information is lost)

5. Lossy compression can be useful, e.g. storing only the most relevant postings (more on

this in the ranking lecture)
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1. Chapters 5 of Information Retrieval Book10

2. Sections 4.2 and 5.4 of Search Engines - Information Retrieval in Practice Book11

10Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information

Retrieval. New York, NY, USA: Cambridge University Press.
11W. Bruce Croft, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information Retrieval in

Practice. Pearson Education.
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Questions?
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