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Scenario: Internal Company QA  
 

User Query:
"What is our company’s reimbursement policy for international travel?“

LLM-Only:
• Might generate general HR guidelines
• Ignores specific internal policies
• May hallucinate

RAG-Based System:
• Retrieves latest travel policy document from internal KB
• Generates accurate, contextualized answer like:

"Employees are eligible for up to $2,500 reimbursement per trip, with receipts.   
Submit within 30 days."



Limitations of LLMs  
 

• Hallucination: Generates confident but incorrect facts
• Static Knowledge: Outdated after training (knowledge cutoff) 
• No Source Grounding: Cannot cite or verify facts
• Opaque Reasoning: Lacks transparency in answer derivation



What is RAG, And Why do We Use It? 

Definition:
Retrieval-Augmented Generation (RAG) is a framework that combines:

• A retriever that fetches relevant documents
• A generator that uses these documents to produce an answer

Why This Solves LLM Problems:
○ Reduces Hallucination: Answers are grounded in retrieved content
○ Keeps Knowledge Fresh: Retrieves real-time documents instead of relying on 

fixed training data
○ Improves Accuracy: Information is drawn from domain-specific or trusted sources
○ Enables Source Traceability: Outputs can cite or link to original documents



RAG Architecture Overview



RAG key stages  

1- Chunking
2- Indexing
3- Retrieval
4- Generation
5- Augmentation



1- Chunking

Chunking in Retrieval-Augmented Generation (RAG) systems is used to break down large 
documents into smaller, more manageable segments. This process enhances the retrieval 
and generation process by improving context preservation, reducing computational load, and 
allowing for more precise information retrieval. 
This chunking technique is crucial for optimizing RAG performance.
• Improved Accuracy: Chunks allow for more precise matching between queries and 

relevant text, reducing noise and irrelevant information.
• Enhanced Efficiency: Smaller chunks are processed faster and use memory more 

efficiently, enabling RAG to handle large datasets effectively.
• Preserved Context: Well-designed chunks maintain logical coherence, balancing 

specificity with necessary context.
• Information Access: Chunking supports a range of query types, from specific questions 

to broader topics, enabling RAG to provide tailored responses.



Types of Chunking Strategies  

● Fixed Size Chunking 
● Recursive-Based Chunking 
● Document-Based Chunking 
● Semantic Chunking 
● Token-Based Chunking
● Sentence-Based Chunking
…



Fixed Size Chunking
text is divided into uniform chunks based on a predefined character count. For example, split a 
document into chunks of 500 tokens each, regardless of whether the chunk ends mid-sentence 
or across paragraphs. To mitigate this, an overlap feature can be introduced, where a certain 
number of tokens or characters from the end of one chunk is repeated at the start of the next. 
Advantages:
• Simplicity: Easy to implement and understand. 
• Efficiency: Fast processing, especially for large datasets. 
• Low computational requirements: Doesn't need complex algorithms or models. 

Disadvantages:
• Context fragmentation: May split sentences or logical units of information. 
• Inflexibility: Doesn't account for varying content density or structure. 
• Potential information loss: Important context might be split across chunks. 
• Sub-optimal for heterogeneous content: Less effective for documents with varying 

structures or lengths. 



Recursive-Based Chunking 
Recursive Character Text Splitting is a more adaptive approach that breaks text into chunks by 
using multiple separators in a specified order. It tries each separator (like paragraphs, 
sentences, or specific markers) in a descending order of importance to find the most meaningful 
boundaries in the text. The method recursively splits text until the chunks meet a specified size, 
preserving logical structure. 
Advantages:
● Meaningful Chunks
● Flexibility: Adapts to various types of content by using multiple separators, making it useful 

for both text and code. 
● Handles Complex Content: Particularly useful for structured or hierarchical content like 

technical documents or programming code. 

Disadvantages 
● Increased Complexity
● Higher Computational Overhead
● Dependence on Separators
● Slower Performance



Semantic Chunking 
Semantic chunking breaks text into chunks based on meaning rather than fixed sizes. It ensures 
that each chunk contains coherent and relevant information by analyzing shifts in the text’s 
semantic structure. This is typically done by measuring differences in sentence embeddings, 
which represent the meaning of sentences mathematically. 
Advantages:
● Preserves meaning
● Adaptable to diverse content
● Improves retrieval accuracy

Disadvantages:
● Complex setup: Requires advanced techniques to measure semantic shifts between 

sentences. 
● Higher computational cost
● Threshold tuning: The quality of chunking depends on setting the right threshold, which 

may vary for different types of content or domains.



2- Indexing
● A vector database, vector store or vector search engine  is a database  that can store 

vectors (fixed-length lists of numbers) along with other data items. Vector databases 
typically implement one or more Approximate Nearest Neighbor algorithms, so that one 
can search the database with a query vector to retrieve the closest matching database 
records.



Some Indexing Methods

Hierarchical Navigable Small World (HNSW) index
HNSW is an algorithm that works on multi-layered graphs. It is also an index type, and refers 
to vector indexes that are created using the HNSW algorithm. HNSW indexes enable very 
fast queries, but rebuilding the index when you add new vectors can be resource intensive.



● An individual object can exist in more than one layer, but every object in the database 
is represented in the lowest layer. The layer zero data objects are very well connected 
to each other. Each layer above the lowest layer has fewer data object, and fewer 
connections.

● finds the closest matching data points in the highest layer. Then, HNSW goes one 
layer deeper, and finds the closest data points in that layer to the ones in the higher 
layer. The algorithm searches the lower layer to create a new list of nearest neighbors. 
Then, HNSW uses the new list and repeats the process on the next layer down. 



3- Retrieval

● In the context of RAG, it is crucial to efficiently retrieve relevant documents from the 
data source. 

● There are several key issues involved, such as the retrieval source, retrieval 
granularity, pre-processing of the retrieval, and selection of the corresponding 
embedding model.



What is Vector Embeddings?  

● Vector embedding is a way to represent words, phrases, or texts as numerical vectors 
in a multi-dimensional space. This helps the model understand language better by 
capturing meanings and relationships between words.



Key Points 

● Representation: Each word or token is a vector of real numbers.

● Dimensionality: These vectors usually have hundreds or thousands of dimensions, 
where a dimension represents a specific feature or characteristic of the word (e.g., 
meaning, context, or usage).

● Semantic Meaning: Similar words/texts are closer together in this space.



Embedding Space



Vector Similarity Metrics

Common Similarity Metrics:
● Cosine Similarity: Measures the angle between two vectors, with smaller angles 

indicating higher similarity. 
● Dot Product: Similar to cosine similarity, but it doesn't require normalization. 
● Euclidean Distance: Measures the straight-line distance between two points in a vector 

space, with smaller distances indicating higher similarity. 
Ultimately, we can use these metrics to find documents similar to queries and continue the 
RAG pipeline.



DPR

● DPR is a cornerstone of the Retriever in RAG, designed to fetch documents that 
are semantically relevant to a query.

● What is DPR?  DPR is a retrieval method that uses a dual-encoder architecture to 
map queries and documents into a shared embedding space. Unlike traditional 
methods like BM25, which rely on keyword matching, DPR captures semantic 
similarity, making it ideal for open-domain tasks like question answering.



How DPR Works 

● DPR operates through the following steps:

○ Query Encoder: Encodes the user query into a fixed-size vector (e.g., 768 
dimensions for BERT-based models).

○ Document Encoder: Encodes passages into vectors, which are pre-
computed and stored in an index for efficiency.

○ Similarity Metric: Uses similarity (e.g. cosine similarity) to rank documents 
based on their relevance to the query. 

○ Search: Employs approximate nearest neighbor search to enable fast retrieval 
from large knowledge bases



Query Optimization

● One of the primary challenges with RAG is its direct reliance on the user’s original 
query as the basis for retrieval.

● Language models often struggle when dealing with specialized vocabulary or 
ambiguous abbreviations with multiple meanings. For instance, they may not 
discern whether “LLM” refers to large language model or a Master of Laws in a 
legal context.



Query Expansion
Expanding a single query into multiple queries enriches the content of the query, providing 
further context to address any lack of specific nuances, thereby ensuring the optimal 
relevance of the generated answers.
● Multi-Query: By employing prompt engineering to expand queries via LLMs, these 

queries can then be executed in parallel. The expansion of queries is not random, but 
rather meticulously designed.

● Sub-Query: Sub-question planning means breaking a complex question into smaller 
ones that help fully answer the original. This process of adding relevant context is, in 
principle, similar to query expansion. Specifically, a complex question can be 
decomposed into a series of simpler sub-questions using the least-to-most prompting 
method [92].



Query Transformation

The core concept is to retrieve chunks based on a transformed query instead of the user’s 
original query.

● Query Rewrite
● Query Routing



Query Rewrite

● The original queries are not always optimal for LLM retrieval, especially in real-
world scenarios. Therefore, we can prompt LLM to rewrite the queries. In addition 
to using LLM for query rewriting, specialized smaller language models, such as 
RRR.

● Another query transformation method is to use prompt engineering to let LLM 
generate a query based on the original query for subsequent retrieval. 



Query Routing

Based on varying queries, routing to distinct RAG pipelines, which is suitable for a 
versatile RAG system designed to accommodate diverse scenarios.

● Metadata Router/ Filter: The first step involves extracting keywords (entity) from the 
query, followed by filtering based on the keywords and metadata within the chunks 
to narrow down the search scope.

● Semantic Router: is another method of routing involves leveraging the semantic 
information of the query. Certainly, a hybrid routing approach can also be employed, 
combining both semantic and metadata-based methods for enhanced query routing.



4- GENERATION

● After retrieval, it is not a good practice to directly input all the retrieved information to 
the LLM for answering questions.

● Following will introduce adjustments from two perspectives: adjusting the retrieved 
content and adjusting the LLM.



Context Curation

● Redundant information can interfere with the final generation of LLM, and overly long 
contexts can also lead LLM to the “Lost in the middle” problem [98].

● What is “Lost in the middle” problem? The "lost in the middle" problem in large 
language models (LLMs) refers to the tendency of these models to pay less 
attention to information located in the middle of a long input context, compared 
to information at the beginning (prefix) or end (suffix) of the context window.

Therefore, in the RAG system, we typically need to further process the retrieved content.
● Reranking
● Context Selection/Compression



Reranking
Reranking fundamentally reorders document chunks to prioritize the most pertinent results 
first. This process effectively reduces the overall document pool, serving a dual purpose in 
information retrieval: acting both as an enhancer and a filter. The result is a set of refined 
inputs that enable more precise language model processing [70]. Reranking can be 
performed using:
● Rule-based methods, which rely on predefined metrics such as:

○ Diversity
○ Relevance
○ Mean Reciprocal Rank (MRR)

● Model-based approaches, including:
○ Encoder-Decoder models from the BERT family (e.g., SpanBERT)
○ Specialized reranking models such as Cohere rerank or bge-reranker
○ General large language models like GPT



Context Selection/Compression

A common misconception in the RAG process is the belief that retrieving as many 
relevant documents as possible and concatenating them to form a lengthy retrieval 
prompt is beneficial. However, excessive context can introduce more noise, 
diminishing the LLM’s perception of key information.

● LLMLingua [100], [101] utilize small language models (SLMs) such as GPT-2 Small 
or LLaMA-7B, to detect and remove unimportant tokens, transforming it into a form 
that is challenging for humans to comprehend but well understood by LLMs.



5- AUGMENTATION

● In the domain of RAG, the standard approach typically involves a single retrieval 
step followed by generation. While simple and efficient, this method can be 
insufficient for complex tasks that require multi-step reasoning, as it often provides 
only a limited scope of information.

● To address this limitation, many studies have proposed optimizations to the 
retrieval process. A summary of these approaches is presented in Figure on the 
following page.





Iterative Retrieval

Iterative retrieval is a process in which the knowledge base is repeatedly queried, using 
both the initial query and the text generated so far. This enables large language models 
(LLMs) to access a more comprehensive and contextually enriched knowledge base.

This approach improves the robustness of answer generation by supplying additional 
contextual references across multiple retrieval iterations. However, it also introduces 
potential drawbacks, such as:

● Semantic discontinuity
● Accumulation of irrelevant information



Recursive Retrieval
Recursive retrieval is an iterative search technique in IR and NLP that refines queries 
based on previous results, creating a feedback loop to improve the depth and relevance of 
information, especially in complex or ambiguous search scenarios. Several notable 
implementations include:

● IRCoT, which uses chain-of-thought (CoT) reasoning to guide the retrieval process and 
iteratively refine the CoT using retrieved results.

● ToC which constructs a clarification tree to systematically resolve ambiguities in the 
original query.

The recursive nature of this process allows for continuous learning and adaptation, often 
leading to more accurate and satisfying search outcomes.



Adaptive Retrieval

● Adaptive retrieval methods, exemplified by Flare [24] and Self-RAG [25], refine the RAG 
framework by enabling LLMs to actively determine the optimal moments and content for 
retrieval, thus enhancing the efficiency and relevance of the information sourced.

● These methods are part of a broader trend wherein LLMs employ active judgment in 
their operations, as seen in model agents like AutoGPT, Toolformer, and 
GraphToolformer.



Evaluation



Evaluation

● The rapid advancement and widespread adoption of Retrieval-Augmented Generation 
(RAG) in natural language processing (NLP) have brought the evaluation of RAG 
models to the forefront of research within the large language model (LLM) community. 
The primary goal of this evaluation is to understand and optimize RAG performance 
across a range of application scenarios.

● Historically, RAG models assessments have centered on their execution in specific 
downstream tasks. These evaluations employ established metrics suitable to the tasks 
at hand. For instance, question answering evaluations might rely on EM and F1 
scores, whereas fact-checking tasks often hinge on Accuracy as the primary metric. 
BLEU and ROUGE metrics are also commonly used to evaluate answer quality.



● Retrieval Quality: Evaluating the retrieval quality is crucial for determining the 
effectiveness of the context sourced by the retriever component. Standard metrics from 
the domains of search engines, recommendation systems, and information retrieval 
systems are employed to measure the performance of the RAG retrieval module. 
Metrics such as Hit Rate, MRR, and NDCG are commonly utilized for this purpose.

● Generation Quality: Evaluating generation quality focuses on the model’s ability to 
produce coherent and relevant answers based on the retrieved context. This evaluation 
is typically divided into two categories, depending on the availability of labels:

○ Unlabeled content: Assessed based on faithfulness, relevance, and non-
harmfulness of the generated responses.

○ Labeled content: Focuses primarily on the accuracy of the generated information.



FUTURE PROSPECTS

● RAG vs Long Context
● Hybrid Approaches
● Multi-modal RAG



● large language models (LLMs) are now capable of handling contexts exceeding 200,000 
tokens, raising questions about the continued relevance of RAG. While this capability 
allows entire documents to be included directly in prompts, RAG remains essential for two 
key reasons:
○ Efficiency: Feeding large contexts into LLMs slows down inference, whereas RAG 

enables faster processing through chunked retrieval and on-demand input.
○ Transparency: RAG makes the retrieval and reasoning process observable, helping 

users trace and verify generated answers—unlike long-context generation, which 
remains a black box.

● Moreover, extended context windows create new opportunities for RAG, especially in 
handling complex or integrative tasks that require reasoning over large volumes of text. As 
a result, developing advanced RAG methods for super-long contexts is an important future 
research direction.

RAG vs Long Context



Hybrid Approaches

● Combining Retrieval-Augmented Generation (RAG) with fine-tuning is emerging as 
a promising strategy. Key research directions include identifying the optimal 
integration approach—whether sequential, alternating, or end-to-end joint training
—and leveraging both parameterized and non-parameterized model strengths.

● Another evolving trend involves incorporating specialized small language models 
(SLMs) into RAG pipelines, fine-tuned using RAG outputs. For instance, CRAG trains a 
lightweight retrieval evaluator to score the quality of retrieved documents and adapt 
retrieval strategies based on confidence levels.

● These developments point toward more adaptive and efficient RAG systems capable 
of dynamic decision-making and task-specific enhancements.



Multi-modal RAG 

● RAG has transcended its initial text-based question answering confines, embracing a 
diverse array of modal data. This expansion has spawned innovative multimodal models 
that integrate RAG concepts across various domains:

○ Image
○ Audio and Video
○ Code



● Image:
○ RA-CM3 : Retrieves and generates both text and images.
○ BLIP-2 :Combines frozen image encoders with LLMs for efficient zero-shot image-to-

text tasks.
○ Visualize Before You Write : Uses image generation to guide open-ended text 

generation.

● Audio & Video:
○ GSS : Retrieves and stitches audio clips for speech-translated outputs from machine-

translated data. 
○ Vid2Seq : Predicts event boundaries and descriptions using temporal markers in a 

unified sequence.

● Code:
○ RBPS : Retrieves code examples based on intent and frequency for tasks like test 

assertion generation and program repair.


