
Modern Information Retrieval

Boolean information retrieval and document preprocessing1

Hamid Beigy

Sharif university of technology

February 15, 2025

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Boolean Retrieval Model

2. Inverted index

3. Processing Boolean queries

4. Optimization

5. Document preprocessing

6. References

Hamid Beigy (Sharif university of technology) 1 / 42

Boolean Retrieval Model

Boolean Retrieval Model

IR Basics

IR SystemQuery

Document
Collection

Set of relevant
documents

14

1. Document Collection: units we have built an IR

system over.

2. An information need is the topic about which the

user desires to know more about.

3. A query is what the user conveys to the computer in

an attempt to communicate the information need.

1. The Boolean model is arguably the simplest model to base an information retrieval system

on.

2. Queries are Boolean expressions, e.g., Caesar and Brutus

3. The search engine returns all documents that satisfy the Boolean expression.

Hamid Beigy (Sharif university of technology) 2 / 42

Term-document incidence matrix

Example

Anthony and Julius The Hamlet Othello Macbeth . . .

Cleopatra Caesar Tempest

Anthony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

. . .

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.

Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in the tempest.

Hamid Beigy (Sharif university of technology) 3 / 42

Incidence vectors

1. So we have a 0/1 vector for each term.

2. To answer the query Brutus and Caesar and not Calpurnia:

2.1 Take the vectors for Brutus, Caesar, and Calpurnia

2.2 Complement the vector of Calpurnia

2.3 Do a (bitwise) and on the three vectors

2.4 110100 and 110111 and 101111 = 100100

Anthony and Julius The Hamlet Othello Macbeth . . .

Cleopatra Caesar Tempest

Anthony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

. . .

result: 1 0 0 1 0 0

Hamid Beigy (Sharif university of technology) 4 / 42

Bigger collections

1. Consider N = 106 documents, each with about 1000 tokens ⇒ total of 109 tokens

2. On average 6 bytes per token, including spaces and punctuation ⇒ size of document

collection is about 6× 109 = 6 GB

3. Assume there are M = 500,000 distinct terms in the collection

4. M = 500,000× 106 = half a trillion 0s and 1s.

5. But the matrix has no more than one billion 1s.

5.1 Matrix is extremely sparse.

6. What is a better representations?

6.1 We only record the 1s.

Hamid Beigy (Sharif university of technology) 5 / 42

Architecture of IR systems

Hamid Beigy (Sharif university of technology) 6 / 42

Inverted index

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Hamid Beigy (Sharif university of technology) 7 / 42

Inverted index construction

1. Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar . . .

2. Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

3. Do linguistic preprocessing, producing a list of normalized tokens, which are the indexing

terms: friend roman countryman so . . .

4. Index the documents that each term occurs in by creating an inverted index, consisting of

a dictionary and postings.

Hamid Beigy (Sharif university of technology) 8 / 42

Example: index creation by sortingExample: index creation by sorting

Term docID Term (sorted) docID
I 1 ambitious 2

did 1 be 2
enact 1 brutus 1
julius 1 brutus 2

Doc 1: caesar 1 capitol 2
I did enact Julius I 1 caesar 1
Caesar: I was killed =) was 1 caesar 2
i’ the Capitol;Brutus Tokenisation killed 1 caesar 2
killed me. i’ 1 did 1

the 1 enact 1
capitol 1 hath 1
brutus 1 I 1
killed 1 I 1

me 1 i’ 1
so 2 =) it 2
let 2 Sorting julius 1
it 2 killed 1

Doc 2: be 2 killed 2
So let it be with with 2 let 2
Caesar. The noble caesar 2 me 1
Brutus hath told =) the 2 noble 2
you Caesar was Tokenisation noble 2 so 2
ambitious. brutus 2 the 1

hath 2 the 2
told 2 told 2
you 2 you 2

caesar 2 was 1
was 2 was 1

ambitious 2 with 2

7
Hamid Beigy (Sharif university of technology) 9 / 42

Index creation (grouping step)Index creation; grouping step (“uniq”)

Term & doc. freq. Postings list

ambitious 1 ! 2

be 1 ! 2

brutus 2 ! 1 ! 2

capitol 1 ! 1

caesar 2 ! 1 ! 2

did 1 ! 1

enact 1 ! 1

hath 1 ! 2

I 1 ! 1

i’ 1 ! 1

it 1 ! 2

julius 1 ! 1

killed 1 ! 1

let 1 ! 2

me 1 ! 1

noble 1 ! 2

so 1 ! 2

the 2 ! 1 ! 2

told 1 ! 2

you 1 ! 2

was 2 ! 1 ! 2

with 1 ! 2

Primary sort by term
(dictionary)

Secondary sort (within
postings list) by document
ID

Document frequency (=
length of postings list):

for more e�cient
Boolean searching
for term weighting
(lecture 4)

keep Dictionary in memory

Postings List (much larger)
traditionally on disk

8

1. Primary sort by term (dictionary)

2. Secondary sort (within postings list) by

document ID

3. Document frequency (= length of postings

list):

3.1 for more efficient Boolean searching (we

discuss later)

3.2 for term weighting (we discuss later)

4. Keep Dictionary in memory

5. Postings List (much larger) traditionally on disk

Hamid Beigy (Sharif university of technology) 10 / 42

Split the result into dictionary and postings file

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...

︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file

Hamid Beigy (Sharif university of technology) 11 / 42

Processing Boolean queries

Simple conjunctive query (two terms)

1. Consider the query: Brutus AND Calpurnia

2. To find all matching documents using inverted index:

2.1 Locate Brutus in the dictionary

2.2 Retrieve its postings list from the postings file

2.3 Locate Calpurnia in the dictionary

2.4 Retrieve its postings list from the postings file

2.5 Intersect the two postings lists

2.6 Return intersection to user

Hamid Beigy (Sharif university of technology) 12 / 42

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

1. This is linear in the length of the postings lists.

2. Note: This only works if postings lists are sorted.

3. Formally, querying complexity is O(N), with N the number of documents in the document

collection.

4. Compute hit list for ((paris AND NOT france) OR lear)

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Hamid Beigy (Sharif university of technology) 13 / 42

Boolean retrieval model: Assessment

1. The Boolean retrieval model can answer any query that is a Boolean expression.

1.1 Boolean queries are queries that use and, or and not to join query terms.

1.2 Views each document as a set of terms.

1.3 Is precise: Document matches condition or not.

2. Primary commercial retrieval tool for 3 decades (Westlaw system)

3. Many professional searchers (e.g., lawyers) still like Boolean queries.

3.1 You know exactly what you are getting.

4. Many search systems you use are also Boolean: spotlight, email, intranet etc.

Hamid Beigy (Sharif university of technology) 14 / 42

Does Google use the Boolean model?

1. On Google, the default interpretation of a query [w1 w2 . . .wn] is w1 AND w2 AND

. . .AND wn

2. Cases where you get hits that do not contain one of the wi :

2.1 anchor text

2.2 page contains variant of wi (morphology, spelling correction, synonym)

2.3 long queries (n large)

2.4 boolean expression generates very few hits

3. Simple Boolean vs. Ranking of result set

3.1 Simple Boolean retrieval returns matching documents in no particular order.

3.2 Google (and most well designed Boolean engines) rank the result set – they rank good hits

(according to some estimator of relevance) higher than bad hits.

Hamid Beigy (Sharif university of technology) 15 / 42

Optimization

Query optimization

1. Example query: Brutus AND Calpurnia AND Caesar

2. Simple and effective optimization: Process in order of increasing frequency

3. Start with the shortest postings list, then keep cutting further

4. In this example, first Caesar, then Calpurnia, then Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

Hamid Beigy (Sharif university of technology) 16 / 42

Skip lists

1. Augment postings lists with skip pointers (at indexing time)
Optimisation: Skip Lists

Recall basic algorithm

More e�cient way?

Yes (given that index doesn’t change too fast)

Augment postings lists with skip pointers (at indexing time)

If skip-list pointer present, skip multiple entries

E.g., after we match 8, 16 < 41: skip to item after skip pointer

Heuristic: for postings lists of length L, use
p

L evenly-spaced
skip pointers

10

2. Number of items skipped vs. frequency that skip can be taken

2.1 More skips: each pointer skips only a few items, but we can frequently use it, but many

comparisons.

2.2 Fewer skips: each skip pointer skips many items, but we can not use it very often, but fewer

comparisons.

3. How many skip-list pointers: for list of length L, use
√
L evenly-spaced skip pointers.

4. This ignores the distribution of query terms and easy for static index; hard in

dynamic environments.

5. With today’s fast CPUs, they don’t help that much anymore.

Hamid Beigy (Sharif university of technology) 17 / 42

Phrase Queries

1. We want to answer a query such as stanford university as a phrase.

2. The inventor Stanford Ovshinsky never went to university should not be

a match.

3. The concept of phrase query has proven easily understood by users.

4. About 10% of web queries are phrase queries (double-quotes syntax).

5. Consequence for inverted indexes: no longer sufficient to store docIDs in postings lists.

6. Two ways of extending the inverted index:

6.1 biword index

6.2 positional index

Hamid Beigy (Sharif university of technology) 18 / 42

Biword index

1. Index every consecutive pair of terms in the text as a phrase

Example

For document: Friends, Romans, Countrymen

Generate two following biwords

friends romans and romans countrymen

2. Each of these biwords is now a dictionary term.

3. Two-word phrases can now easily be answered.

4. A long phrase like stanford university palo alto can be broken into the Boolean

query

stanford university AND university palo AND palo alto

5. False positives. we need to do post-filtering of hits to identify subset that actually

contains the 4-word phrase.

Hamid Beigy (Sharif university of technology) 19 / 42

Issues with biword index

1. Why is biword index rarely used?

2. False positives, as noted above

3. Index blowup due to very large dictionary / vocabulary

3.1 Searches for a single term?

3.2 Infeasible for more than bigrams

Hamid Beigy (Sharif university of technology) 20 / 42

Positional indexes

1. Positional indexes are a more efficient alternative to biword indexes.

2. Postings lists in a nonpositional index: each posting is just a docID

3. Postings lists in a positional index: each posting is a docID and a list of positions (offsets).

4. Query: to be or not to be

Positional indexes: Example

Query: “to be or not to be”

to, 993427:
< 1: < 7, 18, 33, 72, 86, 231>;

2: <1, 17, 74, 222, 255>;
4: <8, 16, 190, 429, 433>;
5: <363, 367>;
7: <13, 23, 191>;

. >

be, 178239:
< 1: < 17, 25>;

4: < 17, 191, 291, 430, 434>;
5: <14, 19, 101>;

. >

Document 4 is a match – why?
(As always: term, doc freq, docid, o↵sets)

17

5. Document 4 matches. Why? (Always: term, doc freq, docid, offsets)

Hamid Beigy (Sharif university of technology) 21 / 42

Proximity search

1. We just saw how to use a positional index for phrase searches.

2. We can also use it for proximity search.

3. Example: employment /4 place

4. Find all documents that contain employment and place within 4 words of each other.

Employment agencies that place healthcare workers are seeing growth

is a hit.

Employment agencies that have learned to adapt now place healthcare

workers is not a hit.

5. Note that we want to return the actual matching positions, not just a list of documents.

6. Use the positional index

Hamid Beigy (Sharif university of technology) 22 / 42

Combination scheme

1. Biword indexes and positional indexes can be profitably combined.

2. Many biwords are extremely frequent.

3. For frequent biwords, increased speed compared to positional postings intersection is

substantial.

4. Combination scheme: Include frequent biwords as vocabulary terms in the index. Do all

other phrases by positional intersection.

Hamid Beigy (Sharif university of technology) 23 / 42

More general optimization

1. Example query: (madding or crowd) and (ignoble or strife)

2. Get frequencies for all terms

3. Estimate the size of each or by the sum of its frequencies (conservative)

4. Process in an increasing order of or sizes

Hamid Beigy (Sharif university of technology) 24 / 42

Document preprocessing

Documents

1. Up to now, to build an inverted index, we assumed that

1.1 We know what a document is.

1.2 We can machine-read each document

1.3 Each token is a candidate for a postings entry.

2. There is more complexity in reality

Hamid Beigy (Sharif university of technology) 25 / 42

What is document?

1. What is the document unit for indexing?

1.1 a file in a folder?

1.2 a file containing an email thread?

1.3 an email?

1.4 an email with 5 attachments?

1.5 individual sentences?

2. Answering the question ”What is a document?” is not trivial

3. Precision/recall trade-off: smaller units raise precision, drop recall. why?

Hamid Beigy (Sharif university of technology) 26 / 42

Parsing a document

1. Convert byte sequence into a linear sequence of characters, but

1.1 We need to deal with format and language of each document.

1.2 We need to determine the correct character encoding

1.3 We need to determine format to decode the byte sequence into a character sequence

MS word, zip, pdf, latex, xml (e.g., &). . .

1.4 Each of these is a statistical classification problem

1.5 Alternatively we can use heuristics

1.6 Text is not just a linear sequence of characters (e.g., diacritics above and below letters in

Arabic)

2. Some of these are a classification problem (we will study later).

Hamid Beigy (Sharif university of technology) 27 / 42

Tokenization

1. Text is not just a linear sequence of characters (e.g., diacritics above and below letters in

Arabic)

2. What language is it in?

3. Writing system conventions?

4. Documents or their components can contain multiple languages/format; for instance a

French email with a Spanish pdf attachment

5. A single index usually contains terms of several languages

Hamid Beigy (Sharif university of technology) 28 / 42

Tokenization

1. Given a character sequence (and a defined document unit), we now need to determine our

tokens, but, what are the correct tokens to use?

Example

Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t amusing.

Tokenisation

Given a character sequence (and a defined document unit), we now
need to determine our tokens. . .
. . . but, what are the correct tokens to use?

Mr. O’Neill thinks that the boys’ stories about Chile’s capital
aren’t amusing.

neill aren’t

oneill arent

o’neill are n’t

o’ neill aren t

o neill
?

?

The choices determine which queries will match.

26

2. The choices determine which queries will match.

Hamid Beigy (Sharif university of technology) 29 / 42

Tokenization problems: One word or two? (or several)

1. Hewlett-Packard

2. State-of-the-art

3. co-education

4. the hold-him-back-and-drag-him-away maneuver data base

5. San Francisco

6. Los Angeles-based company

7. cheap San Francisco-Los Angeles fares York University vs. New York University

Hamid Beigy (Sharif university of technology) 30 / 42

Tokenization problems: Numbers

1. 3/20/91

2. 20/3/91

3. Mar 20, 1991

4. B-52

5. 100.2.86.144

6. (800) 234-2333

7. 800.234.2333

8. Older IR systems may not index numbers but generally it’s a useful feature.

Hamid Beigy (Sharif university of technology) 31 / 42

Tokenization problems: whitespace

1. No whitespace in Chinese language

Chinese: No whitespace

莎拉波娃!在居住在美国"南部的佛#里$。今年４月

９日，莎拉波娃在美国第一大城市%&度'了１８(生

日。生日派)上，莎拉波娃露出了甜美的微笑。

23 / 62

2. Ambiguous segmentation in Chinese Ambiguous segmentation in Chinese

和尚
The two

characters can be treated as one word meaning ‘monk’ or as a
sequence of two words meaning ‘and’ and ‘still’.

24 / 62The two characters can be treated as one word meaning monk or as a sequence of two

words meaning and and still.

3. Compounds in Dutch, German, Swedish

3.1 Computerlinguistik ⇒ Computer + Linguistik

3.2 Lebensversicherungsgesellschaftsangestellter ⇒ leben + versicherung + gesellschaft +

angestellter

4. Many other languages with segmentation difficulties: Finnish, Urdu, Persian, Arabic

Hamid Beigy (Sharif university of technology) 32 / 42

Normalization

1. Need to normalize words in indexed text as well as query terms into the same form.

Example: We want to match U.S.A. and USA

2. We most commonly implicitly define equivalence classes of terms.

3. Alternatively: do asymmetric expansion

3.1 Windows ⇒ Windows,

3.2 windows ⇒ Windows, windows, window

3.3 window ⇒ window, windows

4. Why don’t you want to put window, Window, windows, and Windows in the same

equivalence class?

5. Normalization and language detection interact.

5.1 In PETER WILL NICHT MIT, MIT = mit.

5.2 In He got his PhD from MIT, MIT 6= mit.

Hamid Beigy (Sharif university of technology) 33 / 42

Accents and diacritics

1. Accents: r ésumé vs. resume (simple omission of accent)

2. Umlauts: Universität vs. Universitaet (substitution with special letter sequence “ae”)

3. Most important criterion: How are users likely to write their queries for these words?

4. Even in languages that standardly have accents, users often do not type them. (Polish?)

Hamid Beigy (Sharif university of technology) 34 / 42

Case folding

1. Reduce all letters to lower case

2. Even though case can be semantically meaningful

2.1 capitalized words in mid-sentence MIT vs. mit

2.2 Fed vs. fed

3. It’s often best to lowercase everything since users will use lowercase regardless of correct

capitalization

Hamid Beigy (Sharif university of technology) 35 / 42

Stop words

1. Stop words are extremely common words which would appear to be of little value in

helping select documents matching a user need

Examples: a, an, and, are, as, at, be, by, for, from, has, he, in, is, it, its, of, on, that, the,

to, was, were, will, with

2. Stop word elimination used to be standard in older IR systems.

3. But you need stop words for phrase queries, e.g. “King of Denmark”

4. Most web search engines index stop words

Hamid Beigy (Sharif university of technology) 36 / 42

Lemmatization

1. Reduce inflectional/variant forms to base form

2. For example

2.1 Example: am, are, is ⇒ be

2.2 car, cars, car’s, cars’ ⇒ car

2.3 the boy’s cars are different colors ⇒ the boy car be different color

3. Lemmatization implies doing “proper” reduction to dictionary headword form (the lemma).

4. Inflectional morphology (cutting ⇒ cut) vs. derivational morphology (destruction ⇒
destroy)

Hamid Beigy (Sharif university of technology) 37 / 42

Stemming

1. Definition of stemming: Crude heuristic process that chops off the ends of words in the

hope of achieving what “principled”

2. Lemmatization attempts to do with a lot of linguistic knowledge.

3. Language dependent

4. Often inflectional and derivational

Example for derivational: automate, automatic, automation all reduce to automat

5. Most common algorithm for stemming English is Porter algorithm.

6. In general, stemming increases effectiveness for some queries, and decreases effectiveness

for others.

Hamid Beigy (Sharif university of technology) 38 / 42

Exercise: What does Google do?

1. Stop words

2. Normalization

3. Tokenization

4. Lowercasing

5. Stemming

6. Non-latin alphabets

7. Umlauts

8. Compounds

9. Numbers

Hamid Beigy (Sharif university of technology) 39 / 42

Exercise: Write examples for Persian language

1. Stop words

2. Normalization

3. Tokenization

4. Lowercasing

5. Stemming

6. Non-latin alphabets

7. Umlauts

8. Compounds

9. Numbers

Hamid Beigy (Sharif university of technology) 40 / 42

References

Reading

1. Chapters 1 and 2 of Information Retrieval Book2

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information

Retrieval. New York, NY, USA: Cambridge University Press.
Hamid Beigy (Sharif university of technology) 41 / 42

References

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press.

Hamid Beigy (Sharif university of technology) 42 / 42

Questions?

	Boolean Retrieval Model
	Inverted index
	Processing Boolean queries
	Optimization
	Document preprocessing
	References

