
Modern Information Retrieval

Language Models for Information Retrieval1

Hamid Beigy

Sharif university of technology

April 4, 2025

1Some slides have been adapted from slides of Manning, Yannakoudakis, and Schütze.

Table of contents

1. Introduction

2. Probabilistic Approach to IR

3. References

Hamid Beigy (Sharif university of technology) 1 / 25

Introduction

Introduction

1. An language model is a model for how humans generate language.

2. We view the document as a generative model that generates the query.

3. What we need to do?

Define the precise generative model we want to use.

Estimate model parameters.

Smooth to avoid zeros.

Apply to query and find documents most likely to have generated the query.

Present most likely document(s) to user.

Hamid Beigy (Sharif university of technology) 2 / 25

What is a language model?

1. We can view a finite state automaton as a deterministic language model.

What is a language model?

We can view a finite state automaton as a deterministic language

model.

I wish

I wish I wish I wish I wish . . . Cannot generate: “wish I wish”

or “I wish I” Our basic model: each document was generated by a

different automaton like this except that these automata are
probabilistic.

24 / 50

2. This automaton generates documents such as I wish I wish I wish I wish

3. But it can’t generate documents such as I wish I or wish I wish.

4. Each document was generated by a different automaton like this except that these

automata are probabilistic.

Hamid Beigy (Sharif university of technology) 3 / 25

A probabilistic language model

1. Consider the following probabilistic automaton.

A probabilistic language model

q1

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

. This

is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1. STOP is not a word, but a special symbol indicating that

the automaton stops. frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048

25 / 50

w P(w |q1) w P(w |q1)

STOP 0.2 toad 0.01

the 0.2 said 0.03

a 0.1 likes 0.02

frog 0.01 that 0.04

.

2. This is a one-state probabilistic finite-state automaton (a unigram language model) and

the state emission distribution for its one state q1.

3. STOP is not a word, but a special symbol indicating that the automaton stops.

4. ”frog said that toad likes frog STOP”

P(string) = 0.01× 0.03× 0.04× 0.01× 0.02× 0.01

× 0.8× 0.8× 0.8× 0.8× 0.8× 0.2

≈ 0.0000000000048

Hamid Beigy (Sharif university of technology) 4 / 25

Probabilistic Approach to IR

Language Model

1. A language model p is a distribution over sequences of tokens x1:L

p(The,mouse, ate, the, cheese).

2. A language model can be used to score sequences.

3. It can also be used to perform conditional generation of a completion given a piece of text.

the mouse ate the cheese.

4. Suppose we take a corpus of text x1:L, for example:

the mouse ate the cheese

5. We can ask: what is the probability the language model assigns to it?

p(the mouse ate the cheese)

6. We can break down the the joint probability into the product of the conditional

probabilities for each token by the chain rule:

p(x1:L) =
L∏

i=1

p(xi | x1:i−1).

Hamid Beigy (Sharif university of technology) 5 / 25

Unigram Language Model

1. How do we build probabilities over sequences of terms?

P(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t1t2)P(t4|t1t2t3)

2. A unigram language model throws away all conditioning context, and estimates each term

independently. As a result:

P(t1t2t3t4) = P(t1)P(t2)P(t3)P(t4)

3. A bigram language model conditions on the previous term

P(t1t2t3t4) = P(t1)P(t2|t1)P(t3|t2)P(t4|t3)

Hamid Beigy (Sharif university of technology) 6 / 25

What is a document language model?

1. A model for how an author generates a document on a particular topic.

2. The document itself is just one sample from the model (i.e., ask the author to write the

document again and he/she will invariably write something similar, but not exactly the

same).

3. A probabilistic generative model for documents.

Hamid Beigy (Sharif university of technology) 7 / 25

Two Unigram Document Language Models

1. Consider two documents d1 and d2.

Language model for d1
w P(w |.) w P(w |.)
STOP .2 toad .01

the .2 said .03

a .1 likes .02

frog .01 that .04

.

Language model for d2
w P(w |.) w P(w |.)
STOP .2 toad .02

the .15 said .03

a .08 likes .02

frog .01 that .05

.

2. Consider query: q = ”frog said that toad likes frog STOP”

3. We have p(q|Md1) = 0.0000000000048

4. We have p(q|Md2) = 0.0000000000120

5. Since p(q|Md1) < p(q|Md2), hence document d2 is more relevant to the query.

Hamid Beigy (Sharif university of technology) 8 / 25

Query Likelihood Method

1. Users often pose queries by thinking of words that are likely to be in relevant documents.

2. The query likelihood approach uses this idea as a principle for ranking documents.

3. We construct from each document d in the collection a language model Md .

4. Given a query q, we rank documents by the likelihood of their document models Md

generating q: P(q|Md)

Hamid Beigy (Sharif university of technology) 9 / 25

Query Likelihood Method

1. Each document is treated as (the basis for) a language model.

2. Given a query q

3. Rank documents based on P(d |q)

P(d |q) =
P(q|d)P(d)

P(q)

4. P(q) is the same for all documents, so we ignore it

5. P(d) is the prior – often treated as the same for all d

But we can give a higher prior to high-quality documents

6. P(q|d) is the probability of q given d .

7. For uniform prior: ranking documents according according to P(q|d) and P(d |q) is

equivalent.

Hamid Beigy (Sharif university of technology) 10 / 25

Language models in IR

1. In the LM approach to IR, we attempt to model the query generation process.

2. Then we rank documents by the probability that a query would be observed as a random

sample from the respective document model.

3. That is, we rank according to P(q|d).

4. Next: how do we compute P(q|d)?

Hamid Beigy (Sharif university of technology) 11 / 25

How to compute P(q|d)

1. We will make the same conditional independence assumption as for Naive Bayes.

P(q|Md) = P(〈t1, . . . , t|q|〉|Md) =
∏

1≤k≤|q| P(tk |Md)

(|q|: length of q; tk : the token occurring at position k in q)

2. This is equivalent to:

P(q|Md) =
∏

distinct term t ∈ q

P(t|Md)tft,q

tft,q: term frequency (#occurrences) of t in q

3. Multinomial model (omitting constant factor)

Hamid Beigy (Sharif university of technology) 12 / 25

Parameter estimation

1. Missing piece: Where do the parameters P(t|Md) come from?

2. Start with maximum likelihood estimates

P̂(t|Md) =
tft,d
Ld

(Ld : length of d ; tft,d : # occurrences of t in d)

3. We have a problem with zeros, a single t with P(t|Md) = 0 will make

P(q|Md) =
∏

t P(t|Md) zero.

4. We need to smooth the estimates to avoid zeros.

Hamid Beigy (Sharif university of technology) 13 / 25

Smoothing

1. Let

Mc be the collection model;

cf t be the number of occurrences of t in the collection;

T =
∑

t cf t be the total number of tokens in the collection.

2. We can use

P̂(t|Mc) =
cft
T

3. We will use P̂(t|Mc) to smooth P(t|d) away from zero.

Hamid Beigy (Sharif university of technology) 14 / 25

Jelinek-Mercer smoothing

1. We can use a mix of the probability from the document with the general collection

frequency of the word.

P(t|d) = λP(t|Md) + (1− λ)P(t|Mc)

2. High value of λ: conjunctive-like search – tends to retrieve documents containing all

query words.

3. Low value of λ: more disjunctive, suitable for long queries

4. Correctly setting λ is very important for good performance.

Hamid Beigy (Sharif university of technology) 15 / 25

Jelinek-Mercer smoothing: Summary

1. Let

P(q|d) ∝ P(d)
∏

1≤k≤|q|

(λP(tk |Md) + (1− λ)P(tk |Mc))

2. What we model: The user has a document in mind and generates the query from this

document.

3. The equation represents the probability that the document that the user had in mind was

in fact this one.

Hamid Beigy (Sharif university of technology) 16 / 25

Example

1. Let two documents d1 and d2 be in the collection:

d1: Jackson was one of the most talented entertainers of all time

d2: Michael Jackson anointed himself King of Pop

2. Query q: Michael Jackson

3. Use mixture model with λ = 1/2

P(q|d1) = [(0/11 + 1/18)/2] · [(1/11 + 2/18)/2] ≈ 0.003

P(q|d2) = [(1/7 + 1/18)/2] · [(1/7 + 2/18)/2] ≈ 0.013

4. Ranking: d2 > d1

Hamid Beigy (Sharif university of technology) 17 / 25

Dirichlet smoothing (Bayesian smoothing)

1. In Dirichlet smoothing, we use

P̂(t|d) =
tft,d + αP̂(t|Mc)

Ld + α

2. The background distribution P̂(t|Mc) is the prior for P̂(t|d).

3. Intuition: Before having seen any part of the document we start with the background

distribution as our estimate.

4. As we read the document and count terms we update the background distribution.

5. The weighting factor α determines how strong an effect the prior has.

Hamid Beigy (Sharif university of technology) 18 / 25

Vector space (tf-idf) vs. LM

precision significant

Rec. tf-idf LM %chg

0.0 0.7439 0.7590 +2.0

0.1 0.4521 0.4910 +8.6

0.2 0.3514 0.4045 +15.1 *

0.4 0.2093 0.2572 +22.9 *

0.6 0.1024 0.1405 +37.1 *

0.8 0.0160 0.0432 +169.6 *

1.0 0.0028 0.0050 +76.9

11-point average 0.1868 0.2233 +19.6 *

The language modeling approach always does better in these experiments. But note that where

the approach shows significant gains is at higher levels of recall.

Hamid Beigy (Sharif university of technology) 19 / 25

Vector space vs BM25 vs LM

1. BM25/LM: based on probability theory

2. Vector space: based on similarity, a geometric/linear algebra notion

3. Term frequency is directly used in all three models.

LMs: raw term frequency, BM25/Vector space: more complex

4. Length normalization

Vector space: Cosine or pivot normalization

LMs: probabilities are inherently length normalized

BM25: tuning parameters for optimizing length normalization

5. idf: BM25/vector space use it directly.

6. LMs: Mixing term and collection frequencies has an effect similar to idf.

Terms rare in the general collection, but common in some documents will have a greater

influence on the ranking.

7. Collection frequency (LMs) vs. document frequency (BM25, vector space)

Hamid Beigy (Sharif university of technology) 20 / 25

Language models for IR: Assumptions

1. Simplifying assumption: Queries and documents are objects of the same type. Not true!

There are other LMs for IR that do not make this assumption.

The vector space model makes the same assumption.

2. Simplifying assumption: Terms are conditionally independent.

Again, vector space model (and Naive Bayes) make the same assumption.

3. Cleaner statement of assumptions than vector space

4. Thus, better theoretical foundation than vector space

But “pure” LMs perform much worse than “tuned” LMs.

Hamid Beigy (Sharif university of technology) 21 / 25

Retrieval with LM

There are three obvious ways to perform retrieval using language models:

1. Query likelihood retrieval trains a model on the document and estimates the query’s

likelihood.

2. Document likelihood retrieval trains a model on the query and estimates the

document’s likelihood. Queries are very short, so these seem less promising.

3. Model divergence retrieval trains models on both the document and the query, and

compares them.

Hamid Beigy (Sharif university of technology) 22 / 25

Comparing distributions

1. The most common way to compare probability distributions is with Kullback-Liebler (KL)

divergence.

DKL(p||q) =
∑
e

p(e) log
p(e)

q(e)

2. Model divergence retrieval works as follows:

Choose a language model for the query, p(w |q).

Choose a language model for the document, p(w |d).

Rank documents by −DKL(p(w |d) || p(w |q).

More divergence means a worse match.

Hamid Beigy (Sharif university of technology) 23 / 25

References

Reading

1. Chapter 12 of Information Retrieval Book2.

2. Section 7.2 of Search Engines - Information Retrieval in Practice Book3.

2Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to Information

Retrieval. New York, NY, USA: Cambridge University Press.
3W. Bruce Croft, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information Retrieval in

Practice. Pearson Education.
Hamid Beigy (Sharif university of technology) 24 / 25

References

Croft, W. Bruce, Donald Metzler, and Trevor Strohman (2009). Search Engines - Information

Retrieval in Practice. Pearson Education.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze (2008). Introduction to

Information Retrieval. New York, NY, USA: Cambridge University Press.

Hamid Beigy (Sharif university of technology) 25 / 25

Questions?

Hamid Beigy (Sharif university of technology) 25 / 25

	Introduction
	Probabilistic Approach to IR
	References

