
Deep learning

Feedforward deep networks & backpropagation

Hamid Beigy

Sharif University of Technology

October 7, 2024

Table of contents

1. Introduction

2. History of neural networks

3. Activation function

4. Gradient based learning

5. Deep feed-forward networks

6. Backpropagation algorithm

7. Reading

1 / 51

Introduction

Neuron

1. The idea of neural networks began as a model of how neurons function in the brain.

2. Connected circuits was used to simulate its intelligent behavior.

3. The brain is made up of neurons.

a cell body

dendrites (inputs)

an axon (outputs)

synapses

4. Synapses can be excitatory or inhibitory and may change over time.

5. When the sum of the inputs reach to some threshold, an electrical pulse will be

sent on the axon.

2 / 51

History of neural networks

McCulloch and Pitts network (1943)

1. The first model of a neuron was invented by McCulloch and Pitts.

2. Inputs are binary.

3. This neuron has two types of inputs: Excitatory (a) and Inhibitory (b).

4. Excitatory connections have positive weights and inhibitory connections have negative

weights.

5. The output is binary: fires (1) and not fires (0).

6. Until inputs summed up to a certain threshold level, output would remain zero.

a1

a2

a3

b1

b2

θ c

a1

a2

2 a1 ∧ a2

a1

a2

1 a1 ∨ a2 b 0 b̄

3 / 51

Perceptron (Frank Rosenblat (1958))

1. Problems with McCulloch and Pitts -neurons

Weights and thresholds are analytically determined (cannot learn them).

Very difficult to minimize size of a network.

What about non-discrete and/or non-binary tasks?

2. Perceptron solution.

Weights and thresholds can be determined analytically or by a learning algorithm.

Continuous, bipolar and multiple-valued versions.

Rosenblatt randomly connected the perceptrons and changed the weights in order to achieve

learning.

Efficient minimization heuristics exist.

4 / 51

Perceptron (Frank Rosenblat (1958))

1. The Perceptron has the following architecture.

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

2. Let t be the correct output and y the output function of the network.

3. Perceptron updates weights (Rosenblatt 1960)

w
(t)
j ← w

(t)
j + αxj(t − y)

4. McCulloch and Pitts’ neuron is a better model for the electrochemical process inside the

neuron than the Perceptron.

5. But Perceptron is the basis and building block for the modern neural networks.

5 / 51

Adaline (Bernard Widrow and Ted Hoff (1960))

1. The model is same as perceptron, but uses different learning algorithm

2. A multilayer network of Adaline units is known as a MAdaline.

6 / 51

Adaline learning (Bernard Widrow and Ted Hoff (1960))

1. Let t be the correct output, and y =
∑n

j=0 wjxj .

2. Adaline updates weights

w
(t+1)
j ← w

(t)
j + αxj(t − y)

3. The Adaline converges to the least squares error which is (t − y)2. This update rule is in

fact the stochastic gradient descent update for linear regression.

4. In the 1960’s, there were many articles promising robots that could think.

5. It seems there was a general belief that Perceptrons could solve any problem.

7 / 51

Minsky and Papert (1968)

1. Minsky and Papert published their book Perceptrons. The book shows that Perceptrons

could only solve linearly separable problems.

2. They showed that it is not possible for Perceptrons to learn an XOR function.

x1

x2

θ x1 ⊕ x2

3. After Perceptrons was published, researchers lost interest in Perceptrons and neural

networks.

4. The following multi-layer Perceptron can solve XOR problem.

x1

x2

−1

+1

+2 x1 ⊕ x2

+1

−1 +1

−1

+1

+1

5. The middle layer is a hidden layer.

8 / 51

History of neural networks

1. Optimization

In 1969, Bryson and Ho described proposed Backpropagation as a multi-stage dynamic

system optimization method.

In 1972, Stephen Grossberg proposed networks capable of learning XOR function.

In 1974, Paul Werbos, David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams

reinvented Backpropagation and applied in the context of neural networks.

Backpropagation allowed Perceptron to be trained in a multilayer configuration.

2. In 1980s, the filed of artificial neural network research experienced a resurgence.

3. In 2000s, neural networks fell out of favor partly due to BP limitations.

4. In 2010, we are now able to train much larger networks using huge modern computing

power such as GPUs.

9 / 51

History of neural networks

10 / 51

Activation function

Activation function

1. An activation function is added into a neural network to help it for learning complex

patterns in the data.

2. An activation function converts the output of a neuron into another form used as input to

the next neuron.

3. Why is there a need for activation functions?

Used to keep the output of a neuron to a certain interval as per our requirement.

Used to add non-linearity into a neural network.

4. Desirable features of an activation function

Non-vanishing gradient We train neural networks using gradient-based algorithms.

Hence, gradient must be nozero in all domain points. If the gradient tends to zero the

problem is called vanishing gradient problem.

Zero-centered Output of an activation function should be symmetrical at zero. This

property prevents the gradients to shift to a particular direction.

Computational expense Activation functions are applied several times. They should be

computationally inexpensive to calculate it and its derivative.

Differentiable In gradient-based learning, we must calculate the gradient of activation

functions. Hence, activation functions need to be differentiable or at least differentiable

in parts. 11 / 51

Linear activation function

f (x) = x

f ′(x) = 1
−6 −4 −2 2 4 6

−6

−4

−2

2

4

6

f (x)

f ′(x)

x

Advantages

1. Its calculation is simple.

2. Its derivative is nonzero.

Disadvantages

1. Output is not in a range.

2. No results in nonlinearity.

12 / 51

Threshold activation function

U(x) =


0 if x > 0

0 if x < 0

U ′(x) =


0 if x > 0

δ(0) if x = 0

0 if x < 0

−8 −6 −4 −2 2 4 6 8

0.5

1

1.5

2

U(x)

U ′(x) x

Advantages

1. Its calculation is simple.

Disadvantages

1. Its derivative is zero except at the

origin.

13 / 51

Sigmoid activation function

σ(x) =
1

1 + exp−x

σ′(x) = σ(x)(1− σ(x))

−8 −6 −4 −2 2 4 6 8

0.5

1
σ(x)

σ′(x) x

Advantages

1. Output is in interval [0, 1].

2. It is differentiable.

Disadvantages

1. Saturates and kills gradients.

2. Its output is not zero-centered.

14 / 51

Tanh activation function

tanh(x) = 2σ(2x)− 1

tanh′(x) = 1− (tanh(x)2)
−8 −6 −4 −2 2 4 6 8

−1

1
tanh(x)

tanh′(x) x

Advantages

1. Output is in interval [0, 1].

2. It is differentiable.

3. Its output is zero-centered.

Disadvantages

1. Saturates and kills gradients.

15 / 51

Relu activation function

Relu(x) = max(0, x)

Relu′(x) =


1 if x > 0

? if x = 0

0 if x < 0

−8 −6 −4 −2 2 4 6 8

2

4

6
Relu(x)

Relu′(x)

x

Advantages

1. Its calculation is simple.

2. Its derivative is nonzero when x > 0.

3. It is computationally nonexpensive.

Disadvantages

1. Output is not in a range.

2. Gradient vanishes when x < 0.

16 / 51

Leaky ReLU

LRelu(x) =


x if x > 0

−ax if x < 0

LRelu′(x) =


1 if x > 0

? if x = 0

−a if x < 0

−8 −6 −4 −2 2 4 6 8

2

4

6 LRelu(x)

LRelu′(x)

x

Advantages

1. Its calculation is simple.

2. Its derivative is nonzero.

3. It is computationally nonexpensive.

Disadvantages

1. Output is not in a range.

17 / 51

Softmax

1. Softmax is a more generalized form of the sigmoid.

2. Softmax is used in the output layer of neural networks for multi-class classification

problems.

ai (x) =
expzi∑
k expzk

3. Let x = [1.60, 0.55, 0.98]>.

4. Applying softmax results in ai = [0.51, 0.18, 0.31]>.

18 / 51

Gradient based learning

Cost function

1. The goal of machine learning algorithms is to construct a model (hypothesis) that can be

used to estimate t based on x .

2. Let the model be in form of

h(x) = w0 + w1x

3. The goal of creating a model is to choose parameters so that h(x) is close to t for the

training data, (x , t).

4. We need a function that will minimize the parameters over our dataset. A function that is

often used is mean squared error,

J(w) =
1

2m

m∑
i=1

(h(xi)− ti)
2

5. How do we find the minimum value of cost function?

19 / 51

Gradient descent

1. Gradient descent is by far the most popular

optimization strategy, used in machine learning and

deep learning at the moment.

2. Cost (error) is a function of the weights (parameters).

3. We want to reduce/minimize the error.

4. Gradient descent: move towards the error minimum.

5. Compute gradient, which implies get direction to the

error minimum.

6. Adjust weights towards direction of lower error.

Initial weight

Global minimum

w

J
(w

)

20 / 51

Gradient descent (Linear Regression)

1. We have the following hypothesis and we need fit to the training data

h(x) = w0 + w1x

2. We use a cost function such Mean Squared Error

J(w) =
1

2m

m∑
i=1

(h(xi)− ti)
2

3. This cost function can be minimized using gradient descent with step (learning) rate α.

w
(t+1)
0 = w

(t)
0 − α

∂J(w (t))

∂w0

w
(t+1)
1 = w

(t)
1 − α

∂J(w (t))

∂w1
,

Big step size Small step size

21 / 51

Computation graphs

1. Key idea is decomposing complex computations into sequence of atomic assignments.

2. This sequence of assignments is called a computation graph.

3. Computation graph have three types of nodes:

Input nodes

Parameter nodes

Compute nodes

4. Consider a linear regression problem1

u = w1x

ŷ = w0 + u

z = ŷ − y

L = z2

ŷ = w0 + w1x

z = ŷ − y

L = z2

ŷ = w0 + w1x

L = (ŷ − y)2Computation Graphs
A computation graph has three kinds of nodes:

Input nodes
Parameter nodes
Compute nodes

Example: Linear Regression
(1) u = w1x

(2) ŷ = w0 + u

(3) z = ŷ � y

(4) L = z2

��

Computation Graphs
A computation graph has three kinds of nodes:

Input nodes
Parameter nodes
Compute nodes

Example: Linear Regression

(1) ŷ = w0 + w1x

(2) z = ŷ � y

(3) L = z2

��

Computation Graphs
A computation graph has three kinds of nodes:

Input nodes
Parameter nodes
Compute nodes

Example: Linear Regression

(1) ŷ = w0 + w1x

(2) L = (ŷ � y)2

��
1

Credit: Prof. Ing. Andreas Geiger
22 / 51

Challenges with gradient descent

1. Local minimim: A local minimum is a minimum within some neighborhood that need not

be (but may be) a global minimum.

2. Saddle points: For non-convex functions, having the gradient to be 0 is not good enough.

Example: f (x) = x2
1 − x2

2 at x = (0, 0) has zero gradient but it is clearly not a local

minimum as x = (0, ε) has smaller function value. The point (0, 0) is called a saddle point

of this function.

23 / 51

Gradient based learning for single unit

1. Considering the following single neuron

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

24 / 51

Training neuron with sigmoid activation(regression)

1. We want to train this neuron to minimize the following cost function

J(w) =
1

2m

m∑
i=1

(h(x i)− t i)2

2. Considering the sigmoid activation function f (z) = 1
1+e−z

−8 −6 −4 −2 2 4 6 8

0.5

1
σ(x)

x

3. We want to calculate ∂J(w)
∂wi

25 / 51

Training neuron with sigmoid activation(regression)

1. We want to calculate ∂J(w)
∂wi

2. By using the chain rule, we obtain

∂J(w)

∂wj
=
∂J(w)

∂f (z)
× ∂f (z)

∂z
× ∂z

∂wj

∂J(w)

∂f (z i)
=

1

m

m∑
i=1

(f (z i)− t i)

∂f (z)

∂z
=

e−z

(1 + e−z)2 = f (z)(1− f (z))

∂z

∂wj
= x j

w
(t+1)
j = w

(t)
j − α

∂J(w)

∂wj

α is the learning rate.

26 / 51

Training neuron with sigmoid activation(classification)

1. We want to train this neuron to minimize the following cost function

J(w) =
m∑
i=1

[
−t i ln h(x i)− (1− t i) ln(1− h(x i))

]
2. Computing the gradients of J(w) with respect to w , we obtain

∇J(w) =
m∑
i=1

t ix i (h(x i)− t i)

3. Updating the weight vector using the gradient descent rule will result in

w (t+1) = w (t) − α
m∑
i=1

t ix i (h(x i)− t i)

α is the learning rate.

27 / 51

Tuning learning rate (α)

1. If α is too high, the algorithm diverges.

2. If α is too low, makes the algorithm slow to converge.

3. A common practice is to make αk a decreasing function of the iteration number k. e.g.

αk =
c1

k + c2

where c1 and c2 are two constants.

4. The first iterations cause large changes in the w , while the later ones do only fine-tuning.

28 / 51

Deep feed-forward networks

Deep feed-forward networks

x1

x2

x3

x4

Input
layer

Hidden layer

y1

y2

y3

Output
layer

29 / 51

Deep feed-forward networks

x1

x2

x3

x4

y1

y2

y3

30 / 51

The optimal topology of the networks

1. What is the topology of network for the given problem?

2. Can we build a network to create every decision boundary?

3. Neural networks are universal approximators.

An Aside:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

An Aside:

Lecture 3 Feedforward Networks and Backpropagation CMSC 35246

4. Can we build a network without local minimia in cost function?

31 / 51

Decision surface of perceptron

1. What is the decision surface of perceptron?

Boolean functions with a real
perceptron

• Boolean perceptrons are also linear classifiers
– Purple regions are 1

Y

X

0,0

0,1

1,0

1,1

Y

X

0,0

0,1

1,0

1,1

X

Y

0,0

0,1

1,0

1,1

68

32 / 51

Designing network for more complex decision boundariesComposing complicated “decision”
boundaries

• Build a network of units with a single output
that fires if the input is in the coloured area

69

x1

x2
Can now be composed into
“networks” to compute arbitrary
classification “boundaries”

x
1

x
2

y 1

Complex decision boundaries

• Can compose arbitrarily complex decision boundaries
– With only one hidden layer!

– How?
79

AND

OR

x1 x2

Complex decision boundaries

• Can compose arbitrarily complex decision boundaries
– With only one hidden layer!

– How?
79

AND

OR

x1 x2

Can you build such region with one hidden layer network?

33 / 51

Training feed-forward networks

1. Specifying the topology of network.

#-layers

#-nodes in each layer

function of each node

activation of each node

2. What is the topology of network for the given problem?

3. Can we build a network to create every decision boundary?

4. Neural networks are universal approximators.

5. Can we build a network without local minimia in cost function?

6. Specifying the cost function.

7. We use gradient decent algorithm for training the network.

8. But, we don’t have the true output of each hidden unit.

34 / 51

Choosing activation functions

1. Output layer

Linear activation function

ReLU activation function

Sigmoid activation function

Softmax activation function

2. Hidden layers

Linear activation function

ReLU activation function

Sigmoid activation function

35 / 51

Choosing the network topology

1. A simple approach for choosing the network topology is by trial and error.

2. We partition the available data into three parts : training data, validation data, and test

data.

3. We choose a topology and train the network using the training data.

4. After training, we evalute the trained network using validation data.

36 / 51

Backpropagation algorithm

Backpropagation algorithm

Training a neural network

Data: A training set S = {(x1, y1), . . . , (xm, ym)}
Result: Weight matrices of the neural network

Initialize randomly weights in the network;

while not at trained do

Create a batch SB ⊆ S ;

Let K ← |SB |;
for i ← 1 to K do

Give xi to the network and ŷi ;

end

Compute J(w);

Compute ∇wJ(w);

Compute w t+1 ← w t − α∇wJ(w);

end

Definition (Epoch)

Epoch is defined as one forward pass

and one backward pass of all training

examples.

Definition (Batch size)

Batch size is defined as the number

of training examples in one

forward/backward pass.

37 / 51

Batch size

1. Gradient descent can be used with different batch sizes.

K = 1 Stochastic gradient descent

K � m Mini-batch gradient descent

K = m Batch gradient descent

Example (Batch size)

Let the size of the training set be m = 1000.

In stochastic gradient descent, we use 1000 batches of size 1.

Let K = 50, in mini-batch gradient descent, we use 20 batches of size 50.

In batch gradient descent, we use one batch of size 1000.

38 / 51

Stopping the training of the network

1. A simple approach for stopping criteria is to partition the available data into three parts :

training data, validation data, and test data.

2. We traing the network using the training data and in some epochs, we evalute the trained

network using validation data.

39 / 51

Forward pass

1. For every batch, give training examples one by one to the network.

2. Compute the output of each layer and pass it as the input of the next layer, until outputs

are produced.

+1

x2

x1

+1

+1

ŷ

w0
01

w0
11

w0
12

w0
13

w0
23

w1
01

w2
11

w2
21

w2
31

w2
41

w2
01

40 / 51

Computing loss

1. After computing the output of the network, loss is computed.

J(w) =
1

K

K∑
k=1

C∑
c=1

`(ŷ c
k , y

c
k)

where

ŷ c
k shows the cth output of the network for kth training example.

y c
k shows the cth desired output for kth training example.

Example

Assume that we have a multi-class classification problem for C = 3 classes. Then, each training
example is in the form of (x , y), where y ∈ {1, 2, 3}. To map this to the network, we use a binary
vector

(1, 0, 0) to represent class 1.

(0, 1, 0) to represent class 2.

(0, 0, 1) to represent class 3.

Then use the above vectors for computing loss function.

41 / 51

Backward pass

1. After computing the loss function, we must compute ∇wJ(w).

+1

x2

x1

+1

+1

ŷ

w0
01

w0
11

w0
12

w0
13

w0
23

w1
01

∂J(w)
w2

11

∂J(w)
w2

21

∂J(w)
w2

31

∂J(w)
w2

41

∂J(w)
w2

01

+1

x2

x1

+1

+1

ŷ

w0
01

w0
11

w0
12

w0
13

w0
23

∂J(w)
w1

01

∂J(w)
w2

11

∂J(w)
w2

21

∂J(w)
w2

31

∂J(w)
w2

41

∂J(w)
w2

01

+1

x2

x1

+1

+1

ŷ

∂J(w)
w0

01

∂J(w)
w0

11

∂J(w)
w0

12

∂J(w)
w0

13

∂J(w)
w0

23

∂J(w)
w1

01

∂J(w)
w2

11

∂J(w)
w2

21

∂J(w)
w2

31

∂J(w)
w2

41

∂J(w)
w2

01
Then for every weight w , we use the following

rule to update that weight.

w t+1 = w t − α∂J(w)

∂w

42 / 51

Backward pass

1. We use the following notation for calculating ∇wJ(w).

aL−2
q wL−1

qj Σ oL−1
j σ

wL
ji

Σ oL
i σ ŷi

wL
jk

Σ oL
k σ ŷk

+1

wL−1
0j

aL−2
p wL−1

pj

aL−2
r wL−1

rj

43 / 51

Backward pass

1. Assume that we have a L-layer network, where the last layer has C output nodes.

2. Let all nodes use sigmoid activation functions.

3. We denote the output of jth node in the lth layer by alj .

aL−2
q wL−1

qj Σ oL−1
j σ

wL
ji

Σ oL
i σ ŷi

wL
jk

Σ oL
k σ ŷk

+1

wL−1
0j

aL−2
p wL−1

pj

aL−2
r wL−1

rj

44 / 51

Backward pass

1. Consider the following notation.

aL−2
q wL−1

qj Σ oL−1
j σ

wL
ji

Σ oL
i σ ŷi

wL
jk

Σ oL
k σ ŷk

+1

wL−1
0j

aL−2
p wL−1

pj

aL−2
r wL−1

rj

2. We mus compute ∂J(w)
∂w .

∂J(w)

∂wL−1
pj

=
∂
∑K

s=1

∑C
c=1 `(ŷcs , ycs)

∂wL−1
pj

=
C∑

c=1

∂
∑K

s=1 `(ŷcs , ycs)

∂wL−1
pj

45 / 51

Backward pass

1. Consider the following notation.

aL−2
q wL−1

qj Σ oL−1
j σ

wL
ji

Σ oL
i σ ŷi

wL
jk

Σ oL
k σ ŷk

+1

wL−1
0j

aL−2
p wL−1

pj

aL−2
r wL−1

rj

2. How to drive
∑C

c=1
∂
∑K

s=1 `(ŷcs ,ycs)

∂wL−1
pj

?

C∑
c=1

∂
∑K

s=1 `(ŷcs , ycs)

∂wL−1
pj

=
C∑

c=1

K∑
s=1

∂`(ŷcs , ycs)

∂ŷcs

∂ŷcs
∂oL

c

∂oL
c

∂aL−1
j

∂aL−1
j

∂oL−1
j

∂oL−1
j

∂wL−1
pj

46 / 51

Backward pass

1. We have

C∑
c=1

∂
∑K

s=1 `(ŷcs , ycs)

∂wL−1
pj

=
C∑

c=1

K∑
s=1

∂`(ŷcs , ycs)

∂ŷcs

∂ŷcs
∂oL

c

∂oL
c

∂aL−1
j

∂aL−1
j

∂oL−1
j

∂oL−1
j

∂wL−1
pj

2. Now we obtain

∂`(ŷcs , ycs)

∂ŷcs
=?

∂ŷcs
∂oL

c

= σ
(
oL
c

) (
1− σ

(
oL
c

))
∂oL

c

∂aL−1
j

=
∂
∑

l w
L
lca

L−1
l

∂aL−1
j

= wL
jk

∂aL−1
j

∂oL−1
j

= σ
(
oL−1
c

) (
1− σ

(
oL−1
c

))
∂oL−1

j

∂wL−1
pj

=
∂
∑

l w
L−1
lj aL−2

l

∂wL−1
pj

= aL−2
p

3. How do you generalize the above equations to other layers?
47 / 51

A simple demo

This demo was taken from we this page.

48 / 51

https://xnought.github.io/backprop-explainer/

Summary

1. Multi-layer Perceptron (MLP) uses error-backpropagation algorithm to propagate error to

all layers.

2. Multi-layer Perceptron uses gradient descent (stochastic/mini-batch) to update weights.

3. Error function contains many local minima and there is no guarantee of convergence.

4. How well does MLP learn and how can we improve it (next lecture)?

5. How well will MLP generalize (outside training data)?

49 / 51

Reading

Readings

1. Chapter 6 of Deep Learning Book2.

2. Chapter 8 of Deep Learning: Foundations and Concepts3.

2Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. The MIT Press.
3Christopher M. Bishop and Hugh Bishop (2024). Deep Learning: Foundations and Concepts. Springer.

50 / 51

References

Bishop, Christopher M. and Hugh Bishop (2024). Deep Learning: Foundations and Concepts.

Springer.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. The MIT Press.

51 / 51

Questions?

51 / 51

	Introduction
	History of neural networks
	Activation function
	Gradient based learning
	Deep feed-forward networks
	Backpropagation algorithm
	Reading

