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Introduction



Introduction

1. Attention model can learn to make predictions by selectively attending to a given set of

data as

Attention(Q,Kr ,V) = V Softmax

(
Q>K
√
p

)
= V

Q>K
√
p
∑

r∈S Q>Kr

where S is input sentence.

2. Self-attention is a type of attention that the model makes prediction for one part of the

input using its other parts.

3. Homework: Is self-attention permutation-invariant?

4. Homework: Is self-attention a set operation?
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Multi-Head Self-Attention

1. Multi-head self-attention splits the inputs into smaller chunks and then computes the

scaled dot-product attention over each subspace in parallel.

2. The independent attention outputs are simply concatenated and linearly transformed into

expected dimensions.
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Transformers model

1. The attention make it possible to do sequence to sequence modeling without recurrent

network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without using

sequence-aligned recurrent architecture.

Figure: Jay Alammar

3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.

4 / 57



Transformers training

1. The Transformers works slightly differently during training and inference.

2. Input sequence: You are welcome in English.

3. Target sequence: De nada in Spanish

Figure:Ketan Doshi
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Transformers inference

1. During Inference, we have only the input sequence and don’t have the target sequence to

pass as input to the Decoder.

2. The goal is to produce the target sequence from the input sequence alone.

Figure:Ketan Doshi
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Transformers encoder

1. Each encoder has two sub-layers and each decoder has three sub-layers.

2. Each sublayer has residual connection.

3. All encoders receive a list of vectors each of the size d .

4. The size of this list is hyper-parameter we can set (it would be the length of the longest

sentence in our training dataset).

Figure: Jay Alammar
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Transformers

1. A transformer of two stacked encoders and decoders

Figure: Jay Alammar
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Transformers embedding and position encoding

1. Transformers needs two things for a word:

its meaning

its position in sequence

2. Transformers have two Embedding layers.

Input sequence is fed to the first embedding layer (Input Embedding).

Target sequence is fed to the second embedding layer after shifting the targets right by one

position and inserting a START token in the first position.

Figure:Ketan Doshi
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Transformers position encoding

1. There are two position encoding layers for: input sequence and output sequence.

2. Let d be size of embedding for each word and L be length of input sequence.

3. Transformers consider an array of d × L to encode positions of input sequence.

Figure:Ketan Doshi
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Transformers position encoding

1. All words in input sentence simultaneously flow through Transformer’s encoder/decoder

stack and model doesn’t have any sense of position/order of each word.

2. Hence, we need for a way to incorporate the order of words into our model.

3. The first solution is to assign a number to each time-step within interval [0, 1] range in

which 0 means the first word and 1 is the last time-step.

Problem: can’t figure out how many words are present within a specific range, i.e,

time-step delta doesn’t have consistent meaning across different sentences.

4. The second solution is to assign a number to each time-step linearly.

Problem: not only the values could get quite large, but also our model can face sentences

longer than the ones in training.

5. Ideally, the following criteria should be satisfied for positional embedding

It should output a unique encoding for each time-step (word’s position in a sentence)

Distance between any two time-steps should be consistent across sentences with different

lengths.

The model should generalize to longer sentences without any efforts. Its values should be

bounded.

It must be deterministic.
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Transformers position encoding

1. The encoding of Transformers is simple and satisfies all of those criteria.

It is d-dimensional vector containing information about a specific position in a sentence.

This encoding is not integrated into the model itself. This vector is used to equip each word

with information about its position in a sentence.

2. Let pos be the position of word in sequence.

3. Let i ∈ {1, 2, . . . , d} be the index value in positional encoding.

4. Then, PE is computed using

PE (pos, i) =

{
sin
(

pos
10000i/d

)
if i = 2k

cos
(

pos
10000i/d

)
if i = 2k + 1

5. Let d = 512 and pos = 0, then PE (0) and PE (1) equal to

PE (0, 0) = (0, 1, 0, . . . , 0, 1)

PE (0, 1) = (0.8414, 0.5403, 0.8218, . . . , 0.0001, 0.9999)
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Transformers position encoding

1. For word w at position pos ∈ [0, L− 1] in the input sequence w = (w0, . . . ,wL−1), with

4-dimensional embedding ew , and d = 4, the operation would be

e′w = ew +
[
sin
( pos

100000

)
, cos

( pos

100000

)
, sin

( pos

100002/4

)
, cos

( pos

100002/4

)]
= ew +

[
sin (pos) , cos (pos) , sin

(pos
100

)
, cos

(pos
100

)]
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Transformers position encoding

1. Position encoding interleaves a sine curve and a cos curve, with sine values for all even

indexes and cos values for all odd indexes.

2. This results the following position encoding and the corresponding curves.

Figure: Amirhossein Kazemnejad

Figure: Ketan Doshi
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Transformers encoder

1. The Encoder passes its input into a Multi-head Self-attention layer.

2. The Self-attention output is passed into a Feed-forward layer, which then sends its output

upwards to the next Encoder.

Figure: Ketan Doshi
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Transformers decoder

1. The Decoder passes its input into a Multi-head Self-attention layer.

2. This operates in a slightly different way than the one in the Encoder.

3. It is only allowed to attend to earlier positions in the sequence. This is done by masking

future positions.

Figure: Ketan Doshi
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Transformers multi-head attention

1. The Transformers calls each Attention processor an Attention Head and repeats it several

times in parallel.

2. This is known as Multi-head attention.

3. It gives its Attention greater power of discrimination, by combining several similar

Attention calculations.

Figure: Ketan Doshi
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Transformers multi-head attention

1. There are three separate Linear layers for the Query, Key, and Value.

2. Each Linear layer has its own weights.

3. The input is passed through these Linear layers to produce the Q, K, and V matrices.

Figure: Ketan Doshi
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Transformers multi-head attention

1. The data are split across the multiple Attention heads so that each can process it

independently.

2. This is a logical split only. The Query, Key, and Value are not physically split into separate

matrices, one for each Attention head.

3. A single data matrix is used for the Query, Key, and Value, respectively, with logically

separate sections of the matrix for each Attention head.

Figure: Ketan Doshi
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Transformers multi-head attention

1. We now have separate Attention Scores for each

head.

2. They need to be combined together into a single

score.

3. This Merge operation is essentially the reverse of

the Split operation.

4. It is done by simply reshaping the result matrix

to eliminate the Head dimension.

Reshape the Attention Score matrix by

swapping the Head and Sequence dimensions.

Collapse the Head dimension by reshaping .

Figure: Ketan Doshi
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Transformers multi-head attention

1. The end-to-end flow of the Multi-head Attention is

Figure: Ketan Doshi
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Transformers multi-head attention

1. The different attention heads are focusing on different words as we encode the word it.

Figure: Jay Alammar
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Transformers decoder attention layers

1. The attention layers of Transformers decoder are

Figure: Ketan Doshi
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Transformers decoder self-attention and masking

1. The Decoder Self-Attention works just like the Encoder Self-Attention, except that it

operates on each word of the target sequence.

Figure: Ketan Doshi
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Transformers decoder encoder-decoder attention and masking

1. The Encoder-Decoder Attention takes its input from two sources.

2. The Encoder-Decoder Attention computes the interaction between each target word with

each input word.

3. The Masking masks out the Padding words in the target sequence.

Figure: Ketan Doshi
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Simple Neural Attention Meta-Learner (SNAIL)

1. The SNAIL was developed partially to resolve the problem with positioning in the

transformer model by combining the self-attention mechanism in transformer with

temporal convolutions (Mishra et al. 2018).

2. It has been demonstrated to be good at both supervised learning and reinforcement

learning tasks.
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BERT model

1. BERT (Pre-training of Deep Bidirectional Transformers for Language Understanding) is

basically a trained Transformers Encoder stack (Devlin et al. 2019).

2. Each position outputs a vector. For the sentence classification, we focus on the output of

only the first position ([CLS]).

3. That vector can now be used as the input for a classifier. The paper achieves great results

by just using a single-layer neural network as the classifier.

4. BERT is trained with two tasks instead of the basic language task: masked language

model and next sentence prediction.
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BERT sentence classification

Figure: Jay Alammar
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Task 1: Masked language model

1. In this task, we mask some words in the input sentence and the model tries to predict the

masked words.

2. Randomly mask out 15% of the words in the input (replacing them with a [MASK] token) .

3. Then run the entire sequence through the BERT attention based encoder and predict only

the masked words, based on the context provided by the other non-masked words in the

sequence.

4. The problem here is : the model only tries to predict when the [MASK] token is present in

the input, while we want the model to try to predict the correct tokens regardless of what

token is present in the input.

5. To deal with this issue, out of the 15% of the tokens selected for masking:

80% of the tokens are actually replaced with the token [MASK].

10% of the time tokens are replaced with a random token.

10% of the time tokens are left unchanged.
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Task 1: Masked language model

11.2 • TRAINING BIDIRECTIONAL ENCODERS 5

In BERT, 15% of the input tokens in a training sequence are sampled for learning.
Of these, 80% are replaced with [MASK], 10% are replaced with randomly selected
tokens, and the remaining 10% are left unchanged.

The MLM training objective is to predict the original inputs for each of the
masked tokens using a bidirectional encoder of the kind described in the last section.
The cross-entropy loss from these predictions drives the training process for all the
parameters in the model. Note that all of the input tokens play a role in the self-
attention process, but only the sampled tokens are used for learning.

More specifically, the original input sequence is first tokenized using a subword
model. The sampled items which drive the learning process are chosen among the
input tokens. Word embeddings for all of the tokens in the input are retrieved from
the E embedding matrix and combined with positional embeddings to form the input
to the transformer, passed through the stack of transformer blocks, and then the
language modeling head.

LM Head with Softmax 
over Vocabulary

So [mask] and [mask] for 

long thanks

CE Loss

all apricot fish

the

Token +
Positional 

Embeddings

So long and thanks for all fishthe

Bidirectional Transformer Encoder

+
p1

+ + + + + + +
p2 p3 p4 p5 p6 p7 p8

z1 z2 z3 z4 z5 z6 z7 z8

Figure 11.3 Masked language model training. In this example, three of the input tokens are selected, two of
which are masked and the third is replaced with an unrelated word. The probabilities assigned by the model to
these three items are used as the training loss. The other 5 tokens don’t play a role in training loss.

Fig. 11.3 illustrates this approach with a simple example. Here, long, thanks and
the have been sampled from the training sequence, with the first two masked and the
replaced with the randomly sampled token apricot. The resulting embeddings are
passed through a stack of bidirectional transformer blocks. Recall from Section ??
in Chapter 9 that to produce a probability distribution over the vocabulary for each
of the masked tokens, the language modeling head takes the output vector hL

i from
the final transformer layer L for each masked token i, multiplies it by the unembed-
ding layer ET to produce the logits u, and then uses softmax to turn the logits into
probabilities y over the vocabulary:

ui = hL
i ET (11.3)

yi = softmax(ui) (11.4)

With a predicted probability distribution for each masked item, we can use cross-
entropy to compute the loss for each masked item—the negative log probability
assigned to the actual masked word, as shown in Fig. 11.3. More formally, for a

Figure: Daniel Jurafsky & James H. Martinr
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Task 1: Masked language model

Figure: Abhijit
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Task 2: Next sentence prediction

1. To understand relationship between two sentences, BERT training process also uses next

sentence prediction.

2. In this task, we train a binary classifier for telling whether one sentence is the next

sentence of the other.

3. Sample sentence pairs (A, B) such that:

50% of the time, B follows A;

50% of the time, B does not follow A;

4. The model processes both sentences and output a binary label indicating whether B is the

next sentence of A.

5. BERT separates sentences with a special [SEP] token.

6. To predict if the second sentence is connected to the first one or not, the output of the

[CLS] token is given to a classifier.

7. The training data for both tasks can be generated from any monolingual corpus.

8. The training loss is the sum of the mean masked LM likelihood and the mean next

sentence prediction likelihood.
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Input Embedding

1. BERT needs the input to be massaged and decorated with some extra meta data:

Token embeddings A [CLS] token is added to the input word tokens at the beginning of

the first sentence and a [SEP] token is inserted at the end of each sentence.

Segment embeddings A marker indicating Sentence A or Sentence B is added to each

token. This allows the encoder to distinguish between sentences.

Positional embeddings A positional embedding is added to each token to indicate its

position in the sentence.

2. Note that the first token is always forced to be [CLS]. This is a placeholder that will be

used later for prediction in downstream tasks.
33 / 57



Using BERT for classification tasks

1. In this task, we get the prediction by taking the final hidden state of the token [CLS]

denoted by hcls .

2. Then multiplying hcls with a small weight matrix Wcls , and pass trough a softmax layer:

softmax(hclsWcls)

.

Single sentence classification Sentence pair classification
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Using BERT for question-answering task

1. In this task, we need to predict the text span in the given paragraph for an given question.

2. BERT predicts two probability distributions of every token:

being the start of the text span and

being the end of the text span.

3. Two new small matrices Ws and We are learned during fine-tuning.

4. Two probability distributions are defined by softmax(h(i)Ws) and softmax(h(i)We).
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Using BERT for single sentence tagging task

1. In this task, we get the prediction by taking the final hidden state of the token [CLS]

denoted by hcls .

2. Then multiplying hcls with a small weight matrix Wcls , and pass trough a softmax layer:

softmax(hclsWcls)

.
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BERT pre-trained architecture

1. There are two types of pre-trained versions of BERT depending on the scale of the model

architecture

BERT-Base 12-layer, 768-hidden-nodes, 12-attention-heads, 110M parameters.

BERT-Large 24-layer, 1024-hidden-nodes, 16-attention-heads, 340M parameters.
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BigBird Model

1. BERT works on a full self-attention mechanism.

This leads to a quadratic growth of the computational and memory requirements for every

new input token.

The maximum input size is around 512 tokens.

This means that the model cannot be used for larger inputs and for tasks like large

document summarization.

2. BigBird runs on a sparse attention mechanism to overcome quadratic dependency of

BERT while preserving the properties of full-attention models (Zaheer et al. 2020).
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Vision Transformer

1. Vision Transformer (ViT) has the following architecture (Dosovitskiy et al. 2021).

2. ViT uses the Transformer encoder.

3. For more information on ViT family, read (Islam 2022).
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ALBERT model

1. ALBERT (A Litle BERT) is a light-weighted version of BERT model (Lan et al. 2020).

2. An ALBERT model can be trained 1.7x faster with 18x fewer parameters, compared to a

BERT model of similar configuration.

3. ALBERT incorporates three changes as follows:

Factorized embedding parameterization: (reduces parameters and memory requirements and

results in speed up the training speed.)

Cross-layer parameter sharing: (reduces parameters and memory requirements and results in

speed up the training speed.)

Sentence-order prediction: (proposes a more challenging training task to replace the next

sentence prediction objective.)
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Factorized embedding parameterization

1. In BERT, embedding size (E ) equals to hidden state size (H).

2. The input embedding is a matrix of size V × E in which

H = 30522

E = 768

3. Hence, this matrix has the size of 30522× 768.
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Factorized embedding parameterization

1. To increase the model size (larger H), we need a larger tokenization embedding (larger H).

2. This is expensive because it depends on the vocabulary size (V ).

3. The tokenization embedding is context-independent representation while the hidden states

are context-dependent.

4. It is better to separate the size of the hidden layers from the size of vocabulary embedding.

5. Here, the large vocabulary embedding matrix of size V × H is decomposed into two small

matrices of size

V × E

and

E × H

where H > E or H � E .

6. Instead of projecting the one-hot vectors directly into the hidden space of size H,

we first project them into a lower dimensional embedding space of size E , and

then project it to the hidden space H.
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Cross-layer parameter sharing

1. Parameter sharing across layers can happen in many ways:

only share feed-forward part

only share attention parameters

share all the parameters

2. This technique reduces the number of parameters and does not damage the performance

too much.
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Sentence-order prediction

1. ALBERT adopted a sentence-order prediction (SOP) self-supervised loss,

Positive sample: two consecutive segments from the same document.

Negative sample: two consecutive segments from the same document, but the segment

order is switched.

2. SOP is harder as it requires the model to fully understand the coherence and ordering

between segments in comparison with next sentence prediction (NSP).
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GPT model

1. The GPT (Generative Pre-training Transformer) is built using transformer decoder

blocks (Radford et al. 2019).

2. BERT uses transformer encoder blocks.

3. A key difference between the two is that GPT2 outputs one token at a time.

Figure: Jay Alammar
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GPT model

1. GPT applies multiple transformer decoder-blocks over the embeddings of input sequences.

2. Each block contains a masked multi-headed self-attention layer and a pointwise

feed-forward layer.

3. The final output produces a distribution over target tokens after softmax normalization .

Credit: Lilian Weng

4. GPT is called unidirectional while BERT is called Bi-directional.
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GPT-1 unsupervisded pre-trained model

1. This task is to predict token ui based previous k tokens (ui−k , . . . , ui−1).

2. Given tokens S = {u1, . . . , un}, the objective is to maximize the probability likelihood to

predict the next token as

L1(S) =
∑
i

logP(ui | ui−k , . . . , ui−1)

= log
∏
i

P(ui | ui−k , . . . , ui−1)

where k is the size of the context window.

3.
∏

i P(ui | ui−k , . . . , ui−1) is the joint probability of the prediciton for each word.

4. In comparison with BERT

GPT-1 choose to predict the next word based on the previous k words, while BERT will use

the words before and after the target word.

This makes the task in GPT a little more difficult than BERT, and thus its performance may

not be as good as BERT in some tasks.
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GPT-1 supervised fine-tuning

1. After GPT pre-training, it can be fine-tuned by some supervised tasks based on labeled

data C .

2. Let x = (x1, . . . , xm) be an input sequence and y be its label.

3. Input x is passed throught the pre-trained transformer block to get the activation hmL .

4. The activation hmL is fed into a linear layer with softmax to predict the probability for y as

P(y | x1, . . . , xm) = softmax(hmL Wy )

5. The objective is to maximize the likelihood

L2(C ) =
∑
(x,y)

logP(y | x1, . . . , xm)

6. For accelerating the convergence, the authors maximized the following objective function

L(C ) = λL1(C ) + L2(C ).
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GPT-1 supervised model tasks and input transformation

1. The input to transformer decoder is a sequence of tokens.

2. For the subtasks like classification, it can be directly input to the transformer decoder.

3. For other tasks like Entailment, Similarity and Multiple choices, the data was re-structured

by adding some special tokens to indicate Start, Delim and Extract as
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GPT-2 model

1. Performance of a pre-trained model can be improved with more complex model ( deeper

and wider).

2. GPT-2, similar to GPT-1, is also the self-supervised model with transformer decoder but

much more parameters.

3. GPT-2 mainly focus on zero-shot learning (without additional training, the model can

performs good in some tasks).

4. Zero-shot learning shows that GPT-2 has a strong generalization ability, which is lacked in

BERT.

5. Since GPT-2 doesn’t have fine-tuning tasks, it does not need special tokens like Start,

Delim and Extract.

6. GPT-2 uses a prompt to control the input of model.

7. A prompt is a small piece of text provided to the model, and the model will generate the

additional text based on this input.

8. The prompt is task specific and depends on the specific input sequence and task.

9. For example, to translate an English text to French, the following prompt can be used

(translate to french, english text, french text)
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GPT-2 pre-trained architecture

Figure: Jay Alammar
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Embeddings from Language Model (ELMo)

1. ELMo learns contextualized word representation by pre-training a language model in an

unsupervised way (Peters et al. 2018).
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Embeddings from Language Model (ELMo)

1. The bidirectional Language Model (biLM) is the foundation for ELMo.

2. While the input is a sequence of n tokens, (x1, . . . , xn), the language model learns to

predict the probability of next token given the history.

3. In the forward pass, the history contains words before the target token,

p(x1, . . . , xn) =
n∏

i=1

p(xi | x1, . . . , xi−1)

4. In the backward pass, the history contains words after the target token,

p(x1, . . . , xn) =
n∏

i=1

p(xi | xi+1, . . . , xn)

5. The predictions in both directions are modeled by multi-layer LSTMs with hidden states.
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Embeddings from Language Model (ELMo)

1. The model is trained to minimize the negative log likelihood (= maximize the log

likelihood for true words) in both directions:

L = −
n∑

i=1

(
log p(xi | x1, . . . , xi−1)+

log p(xi | xi+1, . . . , xn)
)

2. ELMo word representations are functions of the entire input sentence.

3. A linear combination of the vectors stacked above each input word is learned as the

representation of each token.
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Embeddings from Language Model (ELMo)
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