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Introduction
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Generative models

1. Assume that the observed variable x is a random sample from an underlying process,
whose true distribution p,,.,(x) is unknown.

d(PdalmPF’)
-

Pdata P

0eM

Model family

2. We attempt to approximate this process with a chosen model, py(x), with parameters ¢
such that x ~ py(x).

3. Learning is the process of searching for the parameter ¢ such that p,(x) well approximates
Pyata(X) for any observed x, i.e.

Po (X) ~ Pdata (X)

4. We wish py(x) to be sufficiently flexible to be able to adapt to the data for obtaining
sufficiently accurate model and to be able to incorporate prior knowledge.

Credit: Aditya Grover
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Deep generative models

Autoregressive models Latent variable models
1. Tractable density 1. Approximated density
2. Density is estimated as 2. Density is estimated as
1 0 0)d
p(x;0) = H p(x; | x<j; 0) p(x; )—/ p(x,2;0)dz
j=1

3. Intractable likelihood

3. Tractable likelihood 4. Latent feature representation
4. No inferred latent factors

Normalizing flow models Generative adversarial networks
1. Exact density 1. Implicit density
2. Density is estimated as 2. Can optimize f-divergences and Wasserstein distance
Po(x) = p,(2)|det (Jr)| min max B p,,, () [log D(x)] + Eovp,(z)[log(1 — D(G(2)))]

h =f
where 2 (x) 3. Intractable likelihood

3. Tractable likelihood 4. Latent feature representation
4. Latent feature representation 5. Very flexible model architectures, unstable training, hard
evaluation, mode collapse
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Energy-based models



Energy-based models

1. Very flexible model architectures
2. Stable training
3. Relatively high sample quality

4. Flexible composition

d(P gatar PG)

Pdata

06eM

Model family
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Representing probability distributions

1. Probability distributions py(x) are a key building block in generative modeling.
2. They have the following properties

o Non-negative: p,(x) >0

e Sum to one: > py(x) =1or [ py(x)dx =1

3. Making non-negativeness is easy and we can choose any of the following function:

(
(x) = ( 0(x))
go(x) = Ife(X)I
(x) = log(1 + exp(fs(x)))

4. In general Zy =5 go(x) # 1

5. Hence, gy(x) is not a valid probability mass function or density.
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Representing probability distributions

1. The maintaining gyg(x) > 0 is easy but making > py(x) =1 is a hard problem.

2. A solution is to normalize gy(x) by its volume as

Y -] ¢ I -1 ¢))
Po(x) = Volume(gy) [, godx

3. Then, by definition we have [ p,(x)dx = 1.

4. We can calculate the volume analytically if we choose some analytical functions such as

Density function Volume

Bn() = & T e e = varo?
a(x) = e Joo e M™dx =

go(x) = h(x) exp(6T(x)) exp(log [ h(x) exp(8 T (x))dx)

5. The above functional forms seem to be restrictive but they are very useful as building

blocks for more complex distributions.
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Energy-Based Models

1. The density function given by an EBM is

exp(—Ep(x))
Zy

po(x) =
2. Ey(x) (the energy) is a nonlinear regression function with parameters 6.

3. Alternatively, happiness, H(x) = —E(x), is used to avoid multiple minus signs.

4. Zy denotes the normalizing constant (partition function):

2= [ expl-Es(x))dx

5. Zy is constant w.r.t x and is a function of 6.

6. Evaluation and differentiation of log p,(x) w.r.t. its parameters involves a typically
intractable integral.

7. Here, we don't care about the exact density (which needs to compute the partition

function Zp ), but only interested in the relative order of densities.
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Energy-Based Models

1. We can fit py(x) to pya:.(x) by maximizing the expected log-likelihood function over the
data distribution, defined by

EXN Paata(X) [|Og Pe(x)]

2. Here the expectation can be easily estimated with samples from the dataset.

3. Maximizing likelihood is equivalent to minimizing the KL divergence between p,..,(x) and
py(x), because

— B pn 0108 Po(X)] = Dii(Pdata(X) I Po(X)) = Exp,,,(x)[108 Paata(X)]
= Dkt (Pgata(X) || Py(x)) — constant

4. We cannot directly compute the likelihood of an EBM as in the maximum likelihood
approach due to the intractable normalizing constant Z.

5. Nevertheless, we can still estimate the gradient of the log-likelihood with MCMC
approaches, allowing for likelihood maximization with gradient ascent.
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Likelihood Based Methods




Maximum Likelihood of EBMs

1. The density function given by an EBM is

) = 20

2. The gradient of negative log-likelihood (NLL) is decomposed to:

Vi log py(x) = —VgEy(x) — Vg log Zy

3. The first gradient term, —VEy(x), is straightforward to evaluate with automatic
differentiation.

4. The challenge is in approximating the second gradient term, Vy log Zy, which is
intractable to compute exactly.
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Maximum Likelihood of EBMs

Vo log Zy an be rewritten as follows:

VglogZyg = Vg Iog/ exp(—Eg(x))dx

~ ([ ewt-Eix)
_ ( / exp(—Ee(x))dx)l
= ([ ewt-Eiyx)

—/(/ exp(—Eg(x))dx> exp(—Ey(x))(—VoEo(x))dx

_ / 7eXp(;§0(x))(—VgEg(x))dx

) Vo | exp(—Eg(x))dx

- / b0 (X)(— Vo Eg(x))dx = Exy, (o[~ Vo Eo(x)]

Thus, we can obtain an unbiased one-sample Monte Carlo estimate of the log-likelihood
gradient by

Vg |Og Zg ~ —VOEQ()'E)

where X ~ p,(x) is a random sample from the distribution over x given by the EBM. -



Gradient-based MCMC methods

1. As long as we can draw random samples from the model, we have access to an unbiased
Monte Carlo estimate of the log-likelihood gradient, allowing us to optimize the
parameters with stochastic gradient ascent.

2. Since drawing random samples is far from being trivial, much of the literature has focused
on methods for efficient MCMC sampling from EBMs.

3. Some efficient MCMC methods make use of the fact that the gradient of the
log-probability w.r.t. x (score) is equal to the (negative) gradient of the energy, therefore
easy to calculate:

Vi log pg(x) = —V«Ep(x) — Vi log Zy = —VEy(x)
=0

4. For example, Langevin MCMC initially draws a sample xo from a simple prior distribution,
and then uses a process for K steps with step size € > 0:

2
XM xR 4 %Vx log pp(x) + ez

where z¥ ~ A/(0,1) is a Gaussian noise term.
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Boltzmann Machine (BM)

1. BMs are fully connected networks of binary units.

2. BM is an undirected symmetric network of binary units that are divided into visible and
hidden units.




Boltzmann Machine (BM)

1. BMs are theoretically capable of learning any given distribution.

2. The network sets the strengths of the connections between the units to capture the
correlations between them to build a generative network capable of producing new

examples of the same distribution.

3. Since all variables in a BM are not directly observed, it gives us a handle to control the

sampling of new examples.

4. The model can take in an incomplete example and use it to output the complete version.
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Boltzmann Machine (BM)

1. BM is a network with an energy defined for the overall network.
2. For a BM with only observed units, the energy is defined as
EQ(X) = — Z WijXiXj — Z b,'X,'
ij i=1

= —x'Wx—b'x

o W = (wj) is the weight matrix
o b= (b1, bs,...,by) €{0,1} is the bias vector.

3. The joint probability distribution defined as

) = Z2E0)

Zy is Partition function that ensures )" py(x) = 1.
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Boltzmann Machine (BM)

1. BM becomes more powerful when not all the variables are observed.

2. The latent variables can act similarly to hidden units in a MLP.

3. By decomposing units into two subsets: visible v and hidden units h, we obtain.

Es(v,h)= —v'Rv—v'Wh—-h"Sh—b'v—-c'h

4. The joint probability distribution defined as

exp(—E(v, h)))
Zy

Zy is Partition function that ensures )" p,(x) = 1.

pg(V, h) -
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Boltzmann Machine (BM)

Example:

X1 X2 X3 W12 X1 X2 W13X1X3 W23 X2.X3 b2X2 H(X) exp(H(x)) p(X)

-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-10-1 1 -1 1 -2 -1 -3 0.050 0.0003
11 -1 1 -1 -2 1 -3 0.368 0.0021
101 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 -1 -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2,718 0.0158

Z =172.420

Figure: Roger Grosse
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Boltzmann Machine (BM) @}‘

Marginal probabilities:

pla=1)= 2 3 ep(H(x)

x:x1=1

20.086 + 0.050 + 0.368 + 2.718

172.420
=0.135

X1 X X3 | wixixe wisxixs  wasxexs  boxo | H(x) | exp(H(x)) p(x)

-1 -1 -1 -1 -1 2 -1 -1 0.368 0.0021
-1 -1 01 -1 1 -2 -1 -3 0.050 0.0003
.11 -1 1 -1 -2 1 -3 0.368 0.0021
-1 1 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 =1l 3 20.086 0.1165
1 -1 1 1 -1 =2 =1l -3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Z =172.420

Figure: Roger Grosse
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Boltzmann Machine (BM)

Conditional probabilities:

ZX'X =1, x=—1 exp(H(x))
pxi=1lx=-1)= —=—"
Zx:x2:fl exp(H(x))
B 20.086 + 0.050
~0.368 + 0.050 + 20.086 + 0.050 +1

= 0.980

X1 X X3 | wixixe wizxixs  wesxexs  boxe | H(x) | exp(H(x)) p(x)

-1 -1 -1 -1 =1l 2 =1l =1l 0.368 0.0021
-1 -1 1 -1 1 -2 =1l -3 0.050 0.0003
-101 -1 1 -1 -2 1 -3 0.368 0.0021
-101 1 1 1 2 1 5 148.413 0.8608
1 -1 -1 1 1 2 -1 3 20.086 0.1165
1 -1 1 1 -1 -2 =1l =3 0.050 0.0003
1 1 -1 -1 1 -2 1 -1 0.368 0.0021
1 1 1 -1 -1 2 1 1 2.718 0.0158

Figure: Roger Grosse
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Boltzmann Machine Learning

1. Learning algorithms for BMs are usually based on maximum likelihood.

2. All BMs have an intractable partition function, so the maximum likelihood gradient must

be approximated.

3. An interesting property of BMs is that the update for a particular wj; depends only on the

statistics of x; and x;.

20/ 73



Boltzmann Machine Learning

1. A BM admits the following likelihood for points x(1), ... x(".
n -
£(xW, . x) =T p(x?)
i=1
2. We will work with the log-likelihood instead of the true likelihood.
(x(k)
log £(xY), ... Z log exp exp(H(xT)
= Z log (exp(H(x(k)))> —log Zy
k=1

= Z H(x ) — log Zy
k=1

3. The aim is to maximize .., [£(x)]

E [ﬂ x) Zpdata X = x(k))ﬁ(x(k )

X~ Pdata k=1
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Boltzmann Machine Learning

1. Now, deriving the gradient with respect to the weights (V,, ; log £)

n
= Z pdata(x = x(k))vwi,j H(x(k))
k=1

VW;,,’ [i pdata(x = x(k)) (H(x(k)) - |0g Z)
k=1

- Z pdata(x = x(k))vw,',j lOg Z@

2. The first term equals to

(k k)
Zpdata X—X vW,,H Zpdata X—X W,J ZWIJX )X(

i#j

+ 3 pastalx = x) bix )

i

- Zpdata - ,(k) J( )

= E [xx]
X~ Pdata
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Boltzmann Machine (BM)

1. The second term equals to

Vi, logZyg =V, Iogz exp(H(x))

- D ex;(H(x))vW’J Z exp(H(x)) = Zl Vi, Z exp(H(x))
= 2, 3 oPHE) Vo HE) =3 =g, e

= Pe(X)Vu, H(x)

= Z Po (%) [Xixj]

= EXNPQ [X/'XJ']

2. By combining the above equations, the gradient w.r.t weights becomes

Vi 108 £= B py 9 [xix5] = B p, () [Xi3]

3. By combining the above equations, the gradient w.r.t biases becomes

Vi, log £ = EXNPS [Xi] - EXNPB [Xi]
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Generating a sample by Boltzmann Machine

1. In BM, we generate in two steps:
o Pick the hidden states from p(h).

o Pick the visible states from p(v|h).

Q 0 hidden
oo

2. The probability of generating a visible vector, v, is computed by summing over all possible
hidden states.

p(v) = p(h)p(vlh)

h
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Gibbs sampling

1. Given an ordered set of variable, xi, ..., xy, and a starting configuration x° = (x{,..., xy

Gibbs sampling uses the following procedure

o Repeat until convergence for t = 1,2, ...,
m Set x < x'71
m For each variable x; in the order we fixed:
1) Sample x/ ~ p(x; | x_;).
2) Update x < (x1,...,x/,...,xq).

m Set x' + x

We use x_; to denote all variables in x except x;.

2. It is often very easy to performing each sampling step, since we only need to condition x;

on other variables.

3. Note that when we update x;, we immediately use its new value for sampling other

variables x;.
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Gibbs sampling (example)

1. We drive p(x;|x_;) using probability of axioms and discarding bias terms

p(xi =1,x_;)
p(xi =1,x_;) + p(x; = 0,x_;)

exp( [Zi;éj Winj] )

- 1+ exp([zi# w,-jij
1

1+ exp([— Dot w,-jij

=0 | D wigx

JF#i

p(xi = 1|x_;) =
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Gibbs sampling (example)

1. Let d = 3, we need to define
xg ~p(xo|x1, x2)
xq ~p(x1|xg; x2)

X3 ~p(x2lx0, x1)

2. Each dimension is binary, the above 3 models must necessarily return the probability of

observing a 1.

3. Note that when we update x;, we immediately use its new value for sampling other

variables Xx;.
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Gibbs sampling (example)

1. We drive p(xo|x1, x2) using probability of axioms

p(xo =1,x1,x2)  p(xo=1,x1,x2)
pla, ) Yeqor) Px0, 1, %)
p(xo = 1,x1,x2)
p(xo = 0,x1,%) + p(xo = 1, x1,x2)

p(xo = 1|x1, %) =

_ 1 _ 1
- p(x0=0,x1,%) exp(H(x0=0,x1,%2)))

1+ p(xgzl,xi,xz) 1+ exp(H(xg:I,xi,xz)))

1
14+ exp(H(xo = 0,x1,x2) — H(xo = 1, x1, %))
1
S+ exp(Zi;éj WiixiXj + 32 bixi — (Zi;ﬁj wiixiXj + 3 ; bixi))
1

1+ exp(— Zj;éi:o wiix; — b;)

=0 Z w;i jXj + b;
J#i=0
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Likelihood Based Methods

Restricted Boltzmann Machine (RBM)



Restricted Boltzmann Machine (RBM)

1. The tractability of the joint distribution is one of the biggest drawbacks of BMs.

2. RBMs are a special type of BMs with two layers: One visible and one hidden layer.

hiden units

visible units

3. The connections in an RBM are undirected and the graph is a bipartite graph.

4. The probability density is calculated by

p(v,h) = Zig exp(—Egy(v, h))

Ep(v,h)= —v Wh—-b'v—c'h

Zy= Y. > exp(—Eg(v,h))

ve{0,1}P he{0,1}F
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Restricted Boltzmann Machine (RBM)

1. This bipartite architecture allows us to have more control over the joint distribution.

2. RBMs are a powerful replacement for fully connected BMs when building a deep
architecture because of the independence of units within the same layer, which allows for
more freedom and flexibility.

3. The latent variables can act similarly to hidden units in a MLP.
4. RBMs can be trained using the techniques of maximum likelihood.

5. Sampling from an RBM can be done using Gibbs sampling method or any other Markov
Chain Monte Carlo (MCMC) method.
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Restricted Boltzmann Machine (RBM)

1. Hidden units are conditionally independent given the visible units and vice versa.

p(V,':].|h):0' ZW,'jhj—f—b,'
J

p(hj=1v) =0 (Z w;jvi + Cj)

2. Given visible v, we can sample each h independently.

3. Given hidden h, we can sample each v; independently.
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Restricted Boltzmann Machine (RBM)

1. The model assigns the following probability to a visible vector v

V)= plv,h)
h

2. The hidden variables can be explicitly marginalized out

1
pv) = 5 3 exp(—~E(v.h)
h
1 T T T
= — exp(v Wh+b'v+a' h
ZQEh: p( )
F

:ieprT H Z exp(ajh; +ZWUV:

Jj=1h;e{0,1}

F
1
= Z exp(b v )H (1 + exp(a; + Z W,~J~v,-)>
j=1 i
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Restricted Boltzmann Machine (RBM)

1. Bipartite graph structure of RBM has the following property.

2. Conditionals p(h|v) and p(v|h) are factorized and easy computed.
p(h,v 1
pnly) = PV

1 T T T
= exp(b' v+c' h+v' Wh
o)~ p(v) 2 )

1
= exp(c c'h+v' Wh)

1
== exp(z cjhj + Z v W, h;)
J J

1
= ? H eXp(thj + VTW;jhj)
J

3. Normalizing the distributions over individual binary h
Bk = 1lv)

B(h; = Ov) + B(h; = 1]v)
ol +vIW,)

exp((0)) + exp(c; +v W)

p(h = 1v) =

J(Cj + VTW;J')

4. Similarly

p(V,' = ].lh) = O'(C,' + W,h)
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Restricted Boltzmann Machine (RBM)

1. Given a set of observations {v1,...,vn}, the derivative of the log-likelihood with respect

to the model parameters is

1 <~ dlog p(vk)
; Z .. Epdata[vihj] - Epe[vihj]

=1 6W,‘j
1 <~ dlog p(vi)
; ; aCJ = Epdata[hj] - ]EPG [hf]

8|og p Vi)
- Z = Epdata[vi] - IEPS[V"]

2. Exact maximum likelihood learning in this model is intractable because exact computation
of the expectation of p, takes time that is exponential in min{D, F}.

3. In practice, learning is done by following an approximation to the gradient of a different
objective function, called the Contrastive Divergence (CD) algorithm

AW = a(E,, [vhT] - E,_ [vhT])

Pdata

where « is the learning rate and p; represents a distribution defined by running a Gibbs
chain initialized at the data for T full steps.
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Restricted Boltzmann Machine Training (Contrastive Divergence)

Step 1 Initialize model parameters

Step 2 Take input vector to the visible nodes
Step 3 Compute probabilities of hidden nodes
Step 4 Sample hidden configuration

Step 5 Reconstruction visible nodes

Step 6 Update model parameters

Step 7 Repeat steps 2-6 for multiple iterations

&
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Gaussian—Bernoulli Restricted Boltzmann Machine (RBM)

. For modeling real-valued vectors, we extend RBMs to Gaussian—Bernoulli variant

. Let ve RP, and h € {0,1}F. The energy of the joint state {v,h} of the Gaussian RBM is
defined as follows:

ST S N o) SN ch

i=1 i=1 j=1

. The marginal distribution over the visible vector v takes the following form:

Z exp(—Ep(v, h))

py(v) = 7

h

. The conditional distributions are

p(vi = x | h) =

exp| —

1
V2o 202

Vi
p(hj:1V):J<1+ZWij0';>

. Each visible unit is modeled by a Gaussian distribution, the mean of which is shifted by

the weighted combination of the hidden unit activations. 0



Restricted Boltzmann Machine

1. The learned receptive fields of Bernoulli-Bernoulli RBM

Training samples Learned receptive fields

2. The learned receptive fields of Gaussian—Bernoulli RBM

Training samples Learned receptive fields
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Likelihood Based Methods

Deep Belief Networks



Deep Belief Networks (DBN)

1. A single layer of binary features is not the best way to capture the structure in

high-dimensional input data.

2. DBN is a hybrid PGM involving both directed and undirected connections.

3. Deep belief networks consisting of many hidden layers.

o Connections between top two layers are undirected

o Connections between all other layers is directed, pointing towards data.

'0

N s [
‘\G,

p(v,h 1@, h(0)) = p(v|hM)p(h D). .

A '
a@
- @

p(h*=D[h*=D)p(h(D ()

4. p(h*=1) h(k)) (the marginal distribution over the top two layers) is an RBM.
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Deep Belief Networks

1. Now obtain the joint distribution over {v, h)} of the DBN (drive the following):

po(v, h™M) = py(v | h™) Z po(h™, h®)
1
= H pe(vi | h(V) x FH 1+exp Z Wj(lz)hj(l)
i 0 i J
exp(v,-z. W-(-l)h(-l)) 1

X
14 exp(v, >, h(l)) 2(52) i j

1
- W] I exp| vi E W,-S-l)hj(-l) because W’.J(.l) = Wj(i2) and Zg(l) — 2(52)
Z ; -
! J

1 D, 4D
S &P Zwij vih
0 ij

which is identical to the joint distribution over {v,h(\)} defined by an RBM.
weight matrices W) . W),

. It contains k + 1 bias vectors b(®) ... b®) where b(%) is bias vector for visible layer.
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Deep Belief Networks

1. Probability distribution represented by DBN is
p(hk )cxexm[ BT Rk=1) 4 plk— nTh()+hu—nTmﬂmhwq)
p(hY) —»uhf+1) o (b9 + WY HRG+D)

p(vi = 1h®) = o (5 + WPh®)

2. For generating a sample from a DBN, do
o Use several Gibbs sampling steps from top two hidden layers.

o Use a single pass of ancestral sampling through rest of model.
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Deep Belief Networks Training

1. Deep belief networks training
1.1 We first train the bottom RBM with parameters W%,

1.2 We then initialize the second layer weights to W® = W®) ensuring that the
two-hidden-layer DBN is at least as good as our original RBM.

1.3 Improve the fit of the DBN to the training data by untying and refitting parameters W?.

(OOO?OOO) b

RBM
Y
G00g000 #  @OOO0T0) #
OOO?OOO 0000000 h
RBM we
Y i 4
GO0PO00 #  QO0G000 #  @OOQC0D) #
OOOSEOOO OOOIOOOO DO000OO0O0) h
RBM W W
‘V |" 1
©O00000D v ©O00000 Y  GEOGTD) v
(a) Stage 1 (b) Stage 2 (c) Stage 3

2. Find the variational lower bound of the log-likelihood of the two-hidden-layer DBN.,, ,



Likelihood Based Methods

Deep Boltzmann Machine



Deep Boltzmann Machine (DBM)

1. DBM is an undirected deep network of several hidden layers (Salakhutdinov and Larochelle
2010).

2. Every unit is connected to every unit from the adjacent layers.

3. There are no connections between units of the same layer.

4. Derive the conditional probability of each layer given its above layer.

5. Derive derivative of the log-likelihood with respect to the model parameters.
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Deep Boltzmann Machine (DBM)

1. DBMs can also be viewed as a group of RBMs stacked together.

(s) (&)
SO,
C o
(= JOC= XXX
RO =0

N2,
N
O\Q;

2. Training of DBMs is often done in two stages:

L
A

o A pre-training stage where every RBM is trained independently.

o a fine tuning stage where the network is trained at once using backpropagation.
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Deep Boltzmann Machine (DBM) @3

1. Considering two architectures for MNIST dataset.

1000 units
( 1000 units ) (500 units )
28 x 28 28 x 28
pixel pixel
image image

2. The results using Gibbs sampling.

2-

=

ayer B Training Samples

L0 F2) 9
LEXLOY S
) 8 42 606
798 & 33
SOST19¢
§ 720650
sS4 8447

GWaNGOQ Wiy
-~ oW\ bo\

O
b
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é
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A
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¥ 7
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21
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7
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Deep Boltzmann Machine (DBM)

1. Considering the following architecture for NORB dataset.

4000 units

|

4000 units

R

4000 units

Preprocessed
transformatwn
é é Stereo pair

2. The results using Gibbs sampling.

Training Samples Generated Samples

% o &\ = K
€| K| =
~| g\ K
(x| ¢
EIE AL
R H (N
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Score-Based Generative Models




Maximum Likelihood Training

1. The density function given by an EBM is

o) - TP

2. The gradient of negative log-likelihood (NLL) is decomposed to:
Vi log pg(x) = —VgEg(x) — Vg log Zy

3. The first gradient term, —VEy(x), is straightforward to evaluate with automatic
differentiation, but the exact computation of the second term is interactable.

Volog Zy = Exp, ([~ VoEa(x)]
4. Sampling converges slowly in high dimensional spaces and is thus very expensive, yet we
need sampling for each training iteration in contrastive divergence.
5. The goal is training without sampling
o Score Matching
o Noise Contrastive Estimation

o Adversarial training
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Score Matching (SM)

1. Let f(x) and g(x) be two continuously differentiable real-valued functions.
2. If f(x) and g(x) have equal first derivatives everywhere, then f(x) = g(x) + Constant.

3. When f(x) and g(x) are log-pdfs with equal first derivatives, the normalization
requirement implies that | exp(f(x))dx = [ exp(g(x))dx =1 and f(x) = g(x).

4. We can approximately learn an EBM by matching the first derivatives of its log-pdf to the
first derivatives of the log-pdf of the data distribution.

5. If they match, then the EBM captures the data distribution exactly.

6. The first-order gradient function of a log-pdf is also called the score of that
distribution.

7. For training EBMs, it is useful to transform the equivalence of distributions to the
equivalence of scores, because the score of an EBM can be easily obtained.
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Score Matching (SM)

1. The score of an EBM can be easily obtained by Vy log py(x) = —VyEp(x), which does not
involve the typically intractable normalizing constant Zy.

2. The basic score matching objective minimizes a discrepancy between two distributions
called the Fisher divergence:
1 2
Dr(Paata(*) Il Po(x)) = Ep,,.,0 | 51IVx 108 Pasea(x) = Vix log py(x)]]

3. The first term admits a trivial unbiased Monte Carlo estimator using the empirical mean
of samples x ~ p,.,(x).

4. The second term is generally impractical to calculate since it requires knowing
Vxlog py(x).

5. Under certain regularity conditions, the Fisher divergence can be rewritten using
integration by parts, with second derivatives of Ey(x) replacing the unknown first
derivatives of p,..(x):

DF(Paata(X) || Py(x)) = E p () l; i}(agi(:()>2 + (82525)())2

6. Computation of full second derivatives is quadratic in the dimensionality D, thus does not
scale to high dimensionality. 48/13
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Score Matching (SM)

1. The Fisher divergence can be rewritten as:

+ Constant

Dr (asa(®) | Po(X) = Epie [; z(f”;j)) + (85())

i=1

2. SM only requires the trace of the Hessian, but it is still expensive to compute even with
modern hardware and automatic differentiation packages.

3. For this reason, the implicit SM formulation has only been applied to relatively simple
energy functions where computation of the second derivatives is tractable.

4. Score Matching assumes a continuous data distribution with positive density over the
space, but it can be generalized to discrete or bounded data distributions.
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Denoising Score Matching (DSM)

1. The Score Matching objective requires several regularity conditions for log p .., (x):
o it should be continuously differentiable
o it should be finite everywhere

2. These conditions may not always hold in practice, such as distribution of gray level of
pixels in images.

3. The distribution of digital images is typically discrete and bounded.

4. Therefore, log pg...(X) is discontinuous and is negative infinity outside the range, and
therefore SM is not directly applicable.

5. To alleviate this difficulty, one can add a bit of noise to each data point: X = x+ ¢

6. As long as the noise distribution p(e) is smooth, the resulting noisy data distribution
a(X) = [ q(X | X) pgaza(x)dx is also smooth.

7. Thus the Fisher divergence De(q(X) || py(X)) is a proper objective.
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Denoising Score Matching (DSM)

1. It has been shown that the objective with noisy data can be approximated by the
noiseless Score Matching objective plus a regularization term.

2. This regularization makes Score Matching applicable to a wider range of data
distributions, but still requires expensive second-order derivatives.

3. One elegant and scalable solution to the above difficulty, is to show

DF(a(3) | (%) = Eog|511Vlog a(%) ~ Valog po(R)13

1 - .
B i | 3175108 (% | ) — Vi log py(R)1E] + Constan

4. The above expectation is again approximated by the empirical average of samples, thus
completely avoiding both the unknown term p,..,(x) and computationally expensive
second-order derivatives.

5. This estimation method is called Denoising Score Matching (DSM).
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Denoising Score Matching (DSM)

1. The major drawback of adding noise to data arises when p,,.(x) is already a well-behaved
distribution that satisfies the regularity conditions required by Score Matching.

2. In this case, DF(q(X) || pg(X)) # Dr(pyaa(X) || Po(x)), and DSM is not a consistent
objective because the optimal EBM matches the noisy distribution q(X) not pg,;,(x).

3. This inconsistency becomes non-negligible when q(X) significantly differs from p,;,(x).
4. One way to attenuate the inconsistency of DSM is to choose q ~ p,;,-
5. This often significantly increases the variance of objective values and hinders optimization.

6. For example, suppose q(x | x) = N(% | x,0?l), where o ~ 0. The corresponding DSM
objective is

O(a0) | P = [ Eeerion [ 5] 2 + Tt e+ o2

12 : I
o S e e
2m = 2
where {x() ... x(™} are some iid samples from p,,...
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Denoising Score Matching (DSM)

1. When o — 0, we can leverage Taylor series expansion to rewrite the Monte Carlo
estimator to obtain

y 5 1 [2/ _ 202
De(a(X) [| pe(X)) =~ >m Z{(z(’)>TVx log pg(x(’)) + HU2H2} + Constant

g

i=1

2. When estimating the above expectation with samples, the variances of

_ , 02
(21) TV log py(x) /o and HZU# will both grow unbounded as o — 0 due to division by
o and o2,

3. This enlarges the variance of DSM and makes optimization challenging.

4. Some methods were proposed to solve this issue.
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Sliced Score Matching (SSM)

1. By adding noise to data, DSM avoids the expensive computation of second-order
derivatives.

2. However, DSM does not give a consistent estimator of the data distribution.

3. In order to use score matching for learning deep energy-based models, we have to compute
IV log py(x)[|3 and tr(V5 log py(x)).

4. Term ||Vy log py(x)||3 can be computed by one simple backpropagation of Ej(x).
5. Term tr(V2log p,y(x)) requires much more number of backpropagations to compute.

6. Computing tr(VZlog py(x)) requires a number of backpropagation that is proportional to
the data dimension D (Martens, Sutskever, and Swersky 2012).

7. Therefore, score matching is not scalable when learning deep energy-based models on
high-dimensional data.

8. Sliced Score Matching is an alternative to Denoising Score Matching that is both
consistent and computationally efficient (Song, Garg, et al. 2019).

54 /73



Sliced Score Matching (SSM)

1. The idea is that one dimensional data distribution is much easier to estimate for score
matching.

2. Song et. al. proposed to project the scores onto random directions, such that the vector
fields of scores of the data and model distribution become scalar fields (Song, Garg, et al.
2019).

3. Then comparing the scalar fields to determine how far the model distribution is from the
data distribution.

4. Two vector fields are equivalent if and only if their scalar fields corresponding to
projections onto all directions are the same.

5. Let v be a random projection direction and p, as its distribution.

6. The random projected version of Fisher divergence is

1
Dse(Paata(X) [| Po(x)) = 5 Ep,,, | (VTVx 108 Pgaa(x) — TV log ps(x))?
called sliced Fisher divergence.
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Sliced Score Matching (SSM)

1. Unfortunately, sliced Fisher divergence has the same problem as Fisher divergence, due to
the unknown data score function Vy log p,..(X).

2. By using integration by parts, we obtain the following tractable alternative form

1
Dsr(Paata(%) || Po(x)) = E,,, |vTV5 log py(x)v + 5 (vT Vi log py(x))’ | + Constant

3. Term vTV, log py(x) can be computed by one backpropagation for deep energy-based
models.

4. Term vTV2log py(x)v involves Hessian, but it is in the form of Hessian-vector products,
which can be computed within O(1) backpropagations.

5. Therefore, the computation of sliced score matching does not depend on the dimension of
data, and is much more scalable for training deep energy-based models on high
dimensional datasets.
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Sliced Score Matching (SSM)

1. Instead of minimizing the Fisher divergence between two vector-valued scores, SSM
randomly samples a projection vector v, takes the inner product between v and the two
scores, and then compare the resulting two scalars.

2. Sliced Score Matching minimizes the following divergence called the sliced Fisher

divergence

1 OEs(x) \°
D (paas) | ) = B | B 5 3T ) + 203 ety

i=1

+ Constant

3. All expectations in the above objective can be estimated with empirical means.
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Theoretical guarantees of learning with SSM

1. Let {xy,...,x;,} be iid samples from the data distribution p,,..

2. For each data point x;, randomly draw M random projection directions

3. The sliced score matching objective can be estimated with empirical averages, giving rise
to the following finite-sample estimator:
m M

it 20 2 { VBT o8 pax vy + 5 (v Pslog pu(x) |

4. Let gmM be the minimizer of the above empirical estimator, and let #* be the true
parameter corresponding to the data distribution such that py. = pg.e,.

~

5. It has been shown that under some regularity conditions, 6.,y is consistent and
asymptotically normal.
6. Formally, for any M € N, when m — oo, we have
Ot 2 0
\/E(émM - 9*) 4 N0, %)

where Y is some covariance matrix.
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Noise Contrastive Estimation (NCE)

1. The core idea behind NCE is to distinguish data samples from a dataset (signal) from
artificially generated noise samples.

2. This is achieved by training a binary classifier that learns to classify whether a given
sample comes from the actual data distribution or from a noise distribution.

3. The classifier implicitly learns the parameters of the data distribution.
4. NCE involves the following steps:

4.1 A noise distribution is chosen, which should ideally be simple enough to sample from and
calculate probabilities.

4.2 Noise samples are generated from this noise distribution.

4.3 A logistic regression model is trained to discriminate between samples from the true data
distribution and the noise samples.

4.4 The parameters learned by the logistic regression model are then used as estimates for the
parameters of the true data distribution.
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Noise Contrastive Estimation

1. Advantages of NCE over MLE methods

1.1 Computational Efficiency: NCE avoids the computation of the partition function, which
can be intractable for large models.

1.2 Scalability: NCE scales well with the size of the dataset and the complexity of the model.

1.3 Flexibility: NCE can be applied to a wide range of models, including those where MLE is
not feasible.

2. Challenges and considerations of using NCE

2.1 Choice of Noise Distribution: The performance of NCE is sensitive to the choice of noise
distribution. A poor choice can lead to suboptimal parameter estimation.

2.2 Hyperparameter Tuning: NCE requires careful tuning of hyperparameters, including the
number of noise samples and the learning rate for the classifier.

2.3 Convergence: Ensuring convergence of the estimation process can be challenging, especially
for complex models with many parameters.
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Noise Contrastive Estimation

1. NCE is based on the idea that we can learn an Energy-Based Model by contrasting it with
another distribution with known density.

2. Let py..(x) be the data distribution, and let p,(x) be a chosen distribution with known
density, called a noise distribution.

3. This noise distribution is usually simple and has a tractable pdf, like A/(0,1), such that we
can compute the pdf and generate samples from it efficiently.

4. Let y be a binary variable with Bernoulli distribution, which we use to define a mixture
distribution of noise and data:

pn,data(x) = p(y = 0) pn(x) + p(y = 1) pdata(x)

5. Based on the Bayes' rule, given a sample x from this mixture, the posterior probability of

y=0is
X =0
Pndata(y = 0] x) = Prdaa(X | ¥ )p(y) - Pn(x) Drive this equation.
’ pn,data(x) pn(x) +a pdata(x)
_ p(y=1)
where o = 7=
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Noise Contrastive Estimation

1. Let our energy-based model has the following form:

) = 20

2. Unlike other EBMs, Zy is treated as a learnable (scalar) parameter in NCE.

3. Given this model, we can define a mixture of noise and the model distribution:

Pro(x) = p(y = 0) p,(x) + p(y = 1) pp(x)

4. The posterior probability of y = 0 given this noise/model mixture is

Pa(x)

Pno(y =0]x) = (%) + apa(x)
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Noise Contrastive Estimation

L. In NCE, we indirectly fit py(x) to p...(x) by fitting p, o(y | x) to p, 4aea(y | x) through
a standard conditional maximum likelihood objective:

0" = arg mineEpn)data(X,y) [DKL(pn,data(y | X) || pn,9(y | X))]

argmaxy E, [log pho(y | X)] Derive this objective function

2. This optimization problem can be solved using stochastic gradient ascent.

3. Like any other deep classifier, when the model is sufficiently powerful, p, 5. (y | x) will
match p, 4,..(y | x) at the optimum.

Pn,ox (y =0 | X) = pn,data(y =0 | X)

P,(x) _ P,(x)
T ) T aPre () Pa(X) T APy garal(X)
<~ pO* (X) = pdata(x)

4. Consequently, Ey«(x) is an unnormalized energy function that matches the data

distribution p,,,(x), and Zy- is the corresponding normalizing constant.
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Adversarial training

1. When training EBMs with MLE, we need to sample from the EBM per training iteration.

2. Sampling using multiple MCMC steps is expensive and requires careful tuning of the
Markov chain.

3. One way to avoid this difficulty is to use non-MLE methods that do not need sampling,
such as Score Matching and Noise Contrastive Estimation.

4. We can sidestep costly MCMC sampling by learning an auxiliary model through adversarial
training, which allows fast sampling.

5. From the definition of EBMs, we can rewrite the maximum likelihood objective by
introducing a variational distribution q,(x) parameterized by ¢:

Ep (108 Po(x)] = pdata(x)[_EG(X)] —log Zy
= Byl E(x)] - Iog | exp(~Ex(x)

- Eppol-E(0] - log [ en(-E(x) 2
— | exp(—Ep(x q¢(x) sing Jensen inequali
< Epul-B00] — [ o0(-E() 205 Using Jensen inequaly

= Ep,,00l—Eo(x)] = E%(x)[ng(x)] — H(q,(x))
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Adversarial training

1. The upperbound of E, . [log py(x)] is

Ep g po(x)] < Ep,, 0[—Eo(x)] = Eq,0[—Eo(x)] — H(a4(x))

2. For EBM training,

o First minimize the upper bound with respect to q,(x) so that it is closer to the likelihood
objective.

e Then maximize with respect to Eg(x) as a surrogate for maximizing likelihood.
3. This amounts to using the following maximin objective

max m¢in Eq,lEo(x)] — Ep,,.0[Ea(x)] — H(a4(x))

4. Optimizing the above objective is similar to training GANs and can be achieved by
adversarial training.

5. The variational distribution q,(x) should allow both fast sampling and efficient entropy
evaluation to make the maximin objective function tractable.
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Hybrid Modeling

1. Consider using deep generative modeling in the context of finding the joint distribution
over observables and decision variables that is factorized as

p(x,y) = p(y | x)p(x)
where x € RP and y € {0,1,..., K — 1}.
2. By taking the logarithm of the joint we obtain two additive components:

log p(x,y) = log p(y | x) + log p(x)

3. How can we model the above problem using EBMs?

4. Let Eg(x,y) be parameterized by a neural network NNp(x) where its input is x and returns
K values: NN, : RP — RX,

5. This means that we can define energy function as

Eo(x,y) = —NNy(x)[y]

where [y] denotes the specific output of the neural networks NNy(x).
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Hybrid Modeling

1. Then, the joint probability distribution is defined as

) = 2l

_ exp(NNo(x)[y])
Zy

2. The mariginal distribution p(x) is

Po(x) = p(x,y)

y

22y exp(NNg(x)[y])
- %

3. We can re-write the numerator in the following manner:

> exp NNy (x)[y] = exp(log{ > exp(NNy(x)[y]) })

y

= exp(LogSumExp, (NN (x)[y]))

4. We can say that the energy function of the marginal distribution is expressed as
—LogSumExp, (NNg(x)[y]).
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Hybrid Modeling

1. The conditional distribution py(y | x) is

p0(x7)/)

Po(x)

exp(NNo (x)[y])
_ Zy

X, exp(NNe (x)[y])
Zy

_ exp(NNp(x)ly])
5, exp(NN,(x)[y])’

Po(y [ X) =

2. This means that the energy-based model could be used either as a classifier or a marginal
distribution.

3. Any any classifier could be seen as an energy-based model (Grathwohl et al. 2020).

4. The logarithm of the joint distribution is

exp(fo(x)[y]) o >, exp(NNy(x)[y])
L exp(NNp (D) 0 Z
= log Softmax(NNg(x)[y]) + (LogSumExp,(NNy(x)[y]) — log Zp)

log py(x,y) = log 5
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Hybrid Modeling

1. The model requires a shared neural network that is used for calculating both distributions.

o (y]x) Do (x)
Softmax LogSumExp,

ON No(x)[y]

2. We have a single neural network to train and the training objective is the logarithm of the
joint distribution.

3. The training objective is a sum of the logarithm of the conditional py(y | x) and the
logarithm of the marginal p,(x).

4. Calculating the gradient with respect to the parameters 6 requires taking the gradient of
each of the component separately (Derive the weight update equations).
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Summary




Summary

1. Both Variational Autoencoders and EBM learn the parameters by maximizing the
(marginal) log-likelihood, which can be interpreted also as the minimization of

DKL(pdata H pé))'

2. VAEs are intrinsically latent variable models imposing an information bottleneck and
approximating the posterior on the latent variables p,..,(z | x)p(z—x) through variational
inference, whereas EBMs generally are not.

3. EBMs can easily extended to latent variable models (Xiao, Yan, and Amit 2020).

4. Che et. al. showed that GANs can be better understood through the lens of EBM (Che
et al. 2020).

5. They showed that GAN generators and discriminators collaboratively learn an implicit
energy-based model.
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