
Abstract— Tackling the dark silicon problem in a
heterogeneous multi-core system, the temperature constraints
across the system should be addressed carefully by assigning a
proper set of tasks to a pool of the heterogeneous cores during
the run-time. When such a system is utilized in a reliable/real-
time application, the reliability/timing constraints of the
application should also be augmented to the temperature
constraints and make the tasks mapping problem more and
more complex. To solve the mapping problem in such a
situation, we propose READY; an online reliability- and
deadline-aware mapping and scheduling algorithm for
heterogeneous multi-core systems. READY utilizes an adaptive
power constraint (as a metric for temperature measurement)
that is updated according to the number and position of the
active cores on the chip. READY, first, attempts to meet the
reliability target of the system by improving the reliability of
each task. Then, it performs the mapping and scheduling of the
tasks on cores of different islands, so that the peak power and
timing constraints are met. The simulation results illustrate that
while READY guarantees the timing constraints and meets
reliability targets, it improves the peak-power-aware system
schedulability (chip performance) by 23.77% (up to 40.69%).

Index Terms— Power constraint, Reliability, Timing
constraint, Schedulability, Heterogeneous architectures.

I. INRODUCTION
ETEROGENEOUS multi-core processors are a branch
of multi-core systems where the architectural

heterogeneity and diversity in features of different parts
enable digital designers to have more ability in managing and
balancing power consumption [1] and reliability of the
system. Due to this heterogeneity, different tasks, by running
on distinct parts with diverse frequencies and voltages,
consume different average power. These variations in system
characteristics can be used to achieve the application’s
desired goals including power, energy consumption, and
reliability. Real-time applications are one of the important
domains that benefit from heterogeneous architectures [4]. In
real-time applications, any violation of constraints will cause
critical conditions and systems failure [4][9][46]. For this

reason, these applications should have high reliability, which
is achieved through fault tolerance techniques [37].

Tasks replication is one of the effective approaches to
achieve high reliability in multi-core systems
[4][10][11][12]. In this approach, by scheduling the task
replicas on different cores, the probability that at least one of
them runs correctly will increase, and therefore the reliability
of the system will improve. While this approach theoretically
increases the reliability of the task, it can impose another
reliability challenge to the design, which is thermal violation
due to activating more and more cores across the multi-core
chips to run the replica tasks [6][7][11][12]. As a result, it is
critical to managing the temperature and peak power of the
fault-tolerant real-time systems [6][7][19].

Generally, in today's multi-core systems, the size of the
processing cores relative to the operating voltage is
disproportionately shrinking [13][24][31][32][35]. This
process increases the power density of the chips, which
causes excessive temperature rise on the chip. As a result, a
part of the chip must be inactive so that the system operates
within a safe temperature range, which is called dark silicon
[14][33]. For real-time systems, designers consider an upper
limit of power consumption to ensure that the temperature on
the chip is within the safe range [6][7][12]. Thermal Design
Power (TDP) is an estimate of the upper limit of power
consumption that is considered at system design time
[6][7][12]. This power constraint has been widely used in
designing systems [6][7][15]. However, TDP is a
conservative estimate, with the assumption that the chip
works at the worst level of voltage and frequency, and
workload [2][16]. Recently, a more efficient core-level power
constraint than TDP has been introduced, which is called
Thermal Safe Power (TSP). TSP is dynamically calculated
and is a function of the number of active cores and their
locations [8]. In order to map an application on a core, this
power constraint is determined by considering the interactive
temperature effect of the active and inactive cores around the
target core [8]. The work [6] is the closest research to our
work. The authors in [6] have considered similar constraints
and targets in their work, but by disregarding to the
heterogeneity of the system and exploiting a pessimistic
power constraint, reduced system schedulability.

Motivational Example: Here we will see how READY
outperforms state-of-the-art approaches in dealing with
reliability and power consumption constraints. To this end,
we consider a graph-based application which is received as
input. For this application, the execution of its tasks has data
dependency with each other. Since we consider
heterogeneous multi-core processor with two different types
of islands (each of them consists of 3 homogeneous cores),
each task has a different worst-case execution time when
running on different islands. Fig. 1 depicts the task graph
(equipped with the deadline and the duration of each task) of

Javad Saber-Latibari, Mohsen Ansari, Pourya Gohari-Nazari, Sina Yari-Karin,
Amir Mahdi Hosseini Monazzah and Alireza Ejlali

READY: Reliability- and Deadline-Aware Power-
Budgeting for Heterogeneous Multi-Core Systems

H

————————————————
Manuscript received Jan 31, 2020; revised May 4, 2020 and June 9, 2020;
accepted June 12, 2020. Date of publication M D, Y; date of current version
M D, Y. This paper was recommended by Associate Editor Z. Shao.
(Corresponding author: Alireza Ejlali)
• J. Saber-Latibari, M. Ansari, P. Gohari-Nazari, S. Yari-Karin, and A. Ejlali

are with the Department of Computer Engineering, Sharif University of
Technology, Tehran, Iran. (E-mails: jsaber@ce.sharif.edu,
mansari@ce.sharif.edu, gohary@ce.sharif.edu, sinayari@ce.sharif.edu,
and ejlali@sharif.edu)

• A. M. H. Monazzah is with the School of Computer Engineering, Iran
University of Science and Technology, Tehran, Iran and with the School of
Computer Science, Institute for Research in Fundamental Sciences (IPM),
Tehran, Iran. (Email: monazzah@iust.ac.ir)

the considered application (Fig. 1a) and the three different
mapping and scheduling scenarios for the tasks in a
heterogeneous multi-core processor. For the sake of
comparison, we considered two other mapping and
scheduling approaches besides READY in this example, one
is the traditional triple modular redundancy (TMR) which is
depicted in Fig. 1b [30] and the other is a state-of-the-art
approach i.e., two-phase peak-power management (TP3M)
[6] which is illustrated in Fig. 1c. Furthermore, the mapping
and scheduling Gantt chart of the READY approach can be
seen in Fig. 1d. According to Fig. 1b, the traditional TMR
scheduling approach first attempts to increase the reliability
by considering three replicas for each task, i.e. the parallel
execution of the tasks with TMR technique. It then maps and
schedules the tasks by considering the load of each core
regardless of the type of cores and the data dependencies
between the tasks. Because of the lack of attention to the
priority of tasks, core heterogeneity, and peak power
consumption, this approach violates application deadline at
time 70ms and also TDP constraint on the chip at the time
slot [30ms to 50ms] and [85ms to 95ms]. Considering
Fig. 1.c, TP3M method provides three replicas for each task
to improve the reliability of the system. The overall goal of
TP3M is peak power-aware reliability management. This
approach assigns tasks to less-loaded cores, regardless of
system heterogeneity. Its scheduling goal is to reduce the
overlaps between the tasks with the highest peak power
consumption while keeping the maximum power
consumption below the chip TDP constraint. Also, at first it
executes two replicas of each task in parallel and then
schedules the third replica because when no fault occurs, the
third replica of the tasks is not required. This policy
drastically reduces system schedulability due to the disregard
of system heterogeneity and imposing the pessimistic TDP
constraint and violates the deadline of the application, e.g. at
the time 70ms. Now let’s see how READY resolves the
previous challenges in mapping and scheduling the soft real-
time tasks on a heterogeneous multi-core processor. Fig. 1d
illustrates that READY, by considering system reliability
target, provides a different number of replicas for each task
to prevent extra execution of replicas for the tasks. In order
to improve the schedulability and performance, READY
employs TSP constraint as an adaptive power constraint on
each core. TSP is dynamically calculated and is a function of
the number of active cores and their locations [8]. In order to
meet the application deadline, READY determines the tasks
that are on the critical path and then they are assigned to the
higher performance cores along with their replicas. Then, the
remaining application’s tasks and their replicas are assigned
to cores that are capable of meeting deadline and peak power

constraint with the lowest TSP. In order to schedule the tasks,
READY first checks the TSP constraint of the designated
core. If the selected task meets the TSP constraint, the task
can be scheduled, otherwise, the execution of task shifts to
the next time slots. This shifting increases the probability of
meeting the deadline because if we shift the whole of the
mentioned task to the next time slots, we should re-schedule
its other data dependent tasks. Therefore, in order to increase
the probability of deadline meeting and utilize the core
efficiently, we use this shift. Indeed, READY decides about
the scheduling each part of a task individually. Accordingly,
this example demonstrates that READY has been able to
increase tasks schedulability (system performance) by
adhering to deadlines, power constraints, and system
reliability target. In the following subsection, we will
introduce how we can apply READY to its target system.

In this paper, we present READY; a mapping and
scheduling algorithm by exploiting the features of
heterogeneous multi-core systems and considering the power
constraints that are calculated according to the state of the
chip. Our proposed method improves the reliability of
applications by exploiting fault tolerance techniques. The
mentioned reliability improvement imposes more
computational workload to the system, which increases the
temperature of the chip. As a result, READY employs
adaptive power constraints at the core-level to manage the
temperature of the system. Furthermore, power constraints
are updated during run-time to keep the performance of the
system at an acceptable level.

In summary, READY’s contributions in this work are as
follows:

• Proposing a reliability improvement method for
graph-based applications that inserts the different
required number of replicas for each task such that a
specific system reliability target is met.

• Presenting a mapping and scheduling algorithm for
task graph model with respect to power constraints
in heterogeneous multi-core systems.

• Providing a dynamic frequency scaling method
based on graph-based applications (Sub-Frame-
Based DFS) for heterogeneous multi-core systems.

We evaluated READY by exploiting Gem5 [26], McPAT
[27], HotSpot [28], and TSP [8] simulators. We used a set of
applications from PARSEC Benchmark [29]. Our simulation
results show while READY guarantees the timing constraints
and preserves reliability target it improves the peak-power-
aware system schedulability (chip performance) by 23.77
percent (up to 40.69 percent).

The rest of this paper is organized as follow. In section II
we will explore the related work. Section III explains the

(a) (b) (c) (d)

 Fig. 1. Motivational example. a) Task graph of a graph-based applications (task graph model), b) TMR mapping and scheduling [30], c) TP3M mapping and
scheduling [6], and d) READY mapping and scheduling.

T1

T4
T2 T3

T5 T6

T7

{25,10}

{20,5}{15,5}

{20,10}{15,5} {30,15}

{40,25}Critical Path

Input App

Core 3
Core 2
Core 1

Low Power Island

Time(ms)

Core 3
Core 2
Core 1

High Performance Island

Low Power Island

High Performance Island

Low Power Island

High Performance Island

25 50 95

App Deadline

70 25 50 60 65 70 9075

App Deadline

100 115 155 195

App Deadline

Core 1

Core 1

10 20 35 6050 70

4W
5W

6W 7W
3W

70W
50W 40W

50W
45W

6W
8W

30W

70W
60W 80W

30

Chip

15W
90W

120W

40

193.5W

13.5W
30

Time(ms)
85

90W

180W

80
10W 5W

92W 82W
105W

85

75W

15W 9W
45W

12W 6W

Time(ms)

110W 110W

Peak Power TDP TSP

T2

T2

T2

T3

T3

T3

T1

T1

T1

T4

T4

T4

T5

T5

T5

T6

T6

T6

T7

T7

T7

T1

T1

T1

T4

T4

T4

T6

T6

T6

T7

T7

T7

T3

T3

T3

T2

T2

T2

T5

T5

T5

T1

T1

T3

T3

T6

T6

T6

T7

T7

T7 T7

T5T4 T4

T2T4

T5T2T4

8.5W

preliminaries on the system model. In section IV we will
introduce READY in detail. Section V presents our
evaluation system setup and results. Finally, in section VI we
conclude the paper.

II. RELATED WORK
Generally, researches related to the power-budgeting and

energy management in heterogeneous multi-cores real-time
systems which take into account reliability are divided into
two categories: (i) Power/energy management in
heterogeneous multi-core systems, regardless of the
reliability, (ii) Reliability-aware power management in
homogeneous multi-core systems.

Several works have been carried out on heterogeneous
multi-core processors that focus on the voltage/frequency
scaling method applied to each core [17]. However, very few
works have been done to reduce energy in heterogeneous
multi-chip processors with the VFIS model (the cores are
homogeneous on the island, but the islands can differ in terms
of the number and type of cores with each other)
[1][2][3][18][36][38][44]. Muthukaruppan et al. in [1] seek
to observe performance constraints along with reduced power
consumption. It should be noted that this study did not
consider real-time constraints. In addition, diminishing
power does not always mean that we have reduced energy
consumption [2][6][7]. One of the works done in the field of
energy reduction in heterogeneous processors is the work
[18]. This work attempts to balance overall utilization on each
island by exploiting Equally-Worst-Fit-Decreasing (EWFD)
algorithm. Furthermore, [2] provides a mapping algorithm by
using task partitioning and considering the energy factor for
each task, which aims to reduce the energy consumption of
the system. Finally, the authors in [5] have provided a method
for managing the processor's resources with the goal of
increasing the system’s performance and respect to the power
density constraints.

A lot of studies has been done to maximize performance
by taking into account various parameters such as process
variation, reliability, and temperature considerations
[20][21][22][23][39]. Kanduri.et. al. in [25] have presented a
temperature management scheme to meet the power
constraints on the chip in a way that the performance of the
processor is not degraded. This paper presents a sparse
mapping algorithm that is superior to dense mapping
algorithms in terms of cumulative heat on the chip. Also,
several works have been done to study both power and
reliability in the homogeneous multi-core systems [6][7][15].
Salehi et al. in [15] have developed a reliability management
system for dark silicon processors by taking into account
TDP, soft errors, and process variations. Ansari et al. [6] have
proposed a peak-power-aware reliability management
method that manages peak power overlays among tasks
running concurrently such that the system reliability is
preserved at an acceptable level. Also, in the work [7], the
authors have tried to meet TDP in the standby-sparing
systems by proposing two distinct scheduling policies for
primary and backup tasks.

However, unlike the presented READY approach, the two
concepts of reliability and power-budgeting are not
simultaneously considered for graph-based applications in
heterogeneous multi-core systems, which are widely used
today. Previous works either managed these two concepts in
the homogeneous multi-core systems or only managed power

and energy in the heterogeneous multi-core systems for this
type of application.

III. PRELIMINARIES ON SYSTEM MODEL
To introduce and evaluate the READY approach, first,

we need to explain our system model. In this section we
declare application model, platform model, power model, and
fault model.

A. Application Model
READY is considered to utilize soft real-time workloads

that benefits from graph-based applications. Each application
consists of n tasks Φ= {T1, T2, …, Tn} that has data
dependency with each other and can be modeled as a graph
which nodes and edges respectively represent tasks of
application and their data dependency [6]. Fig. 1a depicts an
abstract example of this graph. The deadline for all tasks of
an application is defined commonly and depicted with D.
Also, the worst-case execution time of the task Ti at the
maximum frequency is shown with WCETi.
B. Platform Model

We considered READY to be implemented on top of an
island-based architecture of heterogeneous multi-core
processors like [2][3]. In island-based architecture, each
island benefits from multiple processing cores. We consider
that each processor has two distinct types of islands: (1) Low
Power Island (LPI) and (2) High-Performance Island (HPI).
Each of the islands has several cores, the cores type and their
voltages are the same in each island. However, due to
applying the Dynamic Frequency Scaling algorithm (DFS),
each of the cores of an island can have different frequencies.
We declare the number of cores in islands LPI and HPI,
respectively, with N!"# and	N$"#, and the total number of
processor cores with N=NHPI + NLPI.

C. Power Model and Analysis
Power consumption in real-time systems includes

dynamic power and static power, which is mostly consumed
by leakage currents and system activity, respectively [8][15].

(1)

where Isub is a subthreshold leakage current, α is the system
activity factor, Vi and fi are supply voltage and operational
frequency, and CL is the average switched capacitance.

In order to reduce the power consumption, Dynamic
Voltage Scaling (DVS) and Dynamic Frequency Scaling
(DFS) methods are used such that tasks’ timing constraints
are not violated. However, exploiting any of these methods in
the systems has its own advantages and disadvantages. DVS
enables the systems to reduce the power consumption as
much as possible, but this method is hardware-dependent, and
for its implementation, each core requires additional circuits
(i.e. additional hardware overhead) [40][41]. Due to the
increasing number of cores on the processors and their
heterogeneity, implementation of these circuits imposes
unacceptable overhead [6][40][41]. On the other hand, DFS
is the software-dependent method and, by decreasing the
frequency, is able to reduce the power consumption to meet
the power constraint of the system. Also, it should be noted
that exploiting the DVFS technique has a very negative
impact on the system reliability in two aspects [30]. First, by
scaling the supply voltage, the fault rate of the system
increases exponentially. Second, reducing the frequency

2(,)total i i static dynamic i L i isubP V f P P I V C V fa= + = +

increases the execution time of tasks and has a negative effect
on the reliability of the task, as a result degrading the system
reliability. However, by exploiting the DFS technique, the
fault rate of the system did not change and just the execution
time of tasks increases [30]. Hence, in this work, we use the
dynamic frequency scaling method which is developed for
heterogeneous multi-core architecture.

D. Fault Model and Reliability Analysis
In this paper, we consider two common types of faults, (i)

permanent, and (ii) transient [4][6][7]. The incidence of any
occurrence that violates the peak power constraints causes
system failure and is considered as a permanent fault [6][7].
Also, any perturbed occurrence on the underlying core
without permanent damage is considered as a transient fault
[4][6][34]. The average fault rate can be represented as
follows [6][7]:

(2)

Where V is the supply voltage, λ0 is the transient fault rate at
the maximum value of V and d determines the system
sensitivity to voltage scaling. It should be noted that in this
work since we exploit the DFS method in order to manage
power consumption, the value of supply voltage is constant.
Hence, the value of d doesn't have any effect on the fault rate
and the fault rate is equal to λ. Meanwhile, the reliability
function of a task can be expressed as follows [6][7]:

(3)
Where λ(V)⤬FVI is task failure rate and Function
Vulnerability Index (FVI) is the susceptibility of software to
failure owing to transient fault occurrence in hardware-level
and 𝒘𝒄𝒊 is worst-case execution time of 𝑻𝒊 [6][7]. Given that
several copies may be considered for each task and these
copies may have different reliability due to the heterogeneity
of the cores; the reliability of each task can be written as [6]:

(4)

Since each application consists of several tasks then it’s
reliability can be calculated as [6]:

(5)

Finally, the system workload consists of several applications,
then the reliability of the system can be written as [6]:

(
(6)

IV. HOW DOES READY WORK?
In this section, we will introduce the READY approach

in details and explain how READY meets timing, power
constraints and reliability target and simultaneously improve
schedulability of the heterogeneous multi-core processors for
graph-based applications.

 READY in Details
In this paper, we seek to provide a timing constraint- and

reliability-aware power-budgeting method for applications
mapping and scheduling in heterogeneous multi-core
systems. Previous studies have shown that existing power
budgeting on the chip surface are not appropriate for
heterogeneous multi-core processors. These power budgets
for preventing temperature violations are often considered
very pessimistic which can violate the applications deadline.
The goal of our proposed method is to meet the core-level

power constraints, preserving the system reliability at an
acceptable level and meeting the deadlines of applications.
Hence, two algorithms are presented for the applications
mapping and scheduling with the desired characteristics and
the frequency scaling to reduce the power consumption. The
first step of READY is determining the required number of
replicas for each task according to the system reliability
target. It should be noted that READY never eliminates any
tasks such as low-reliability tasks, however, it improves the
reliability of them. Indeed, a task with the minimum
reliability gets more attention from READY. Because the
reliability improvement algorithm in each iteration finds the
task with the minimum reliability and introduces the selected
task as the system bottleneck in the application, and then
inserts a replica for the selected task. This process continues
until the reliability of the application satisfies the reliability
target. Moreover, it should be mention that READY in any
situation is able to meet the reliability target because we

() 0 1 0
maxV V
dVl l
-

= ´

() () iV FVI wc
iR T e l- ´ ´=

1 2
1

(, ,...,) 1 (1)
i n k

n

task replica replica replica replica
k

R R R R R
=

= - -Õ

1 2
1

(, ,...,)
i n k

n

app task task task task
k

R R R R R
=

=Õ

1 2
1

(, ,...,)
n k

n

system app app app app
k

R R R R R
=

=Õ

Algorithm 1. READY mapping and scheduling algorithm
INPUT: readyApps: graph-based applications (each of them consist of n
tasks with the global deadline) with worst-case execution time,
resources: Two set of available cores with different types: ΦHPI={C1, …,
CNHPI}, ΦLPI={C1, …, CNLPI}, power-budget: initial core power constraint
PinitialTSP,core.
OUTPUT: applications Mapping to cores of islands and applications
scheduling.
Body:
 1: Slotssize= max (the deadlines of all readyApps); #Size of time slots in
 the frame
----------------------------------Offline Part--------------------------------------
.2: while (Rsystem < Rsystem_target) do #Meeting the system reliability target
 3: MinR_App= index.min (the reliability of all readyApps);
 4: MinR_task= index.min (the reliability of AppMinR_App ‘s all tasks);
 5: Insert.replica (MinR_task); #Insert a replica of taskMinR_task
 to AppMinR_App
 6: Rsystem =Update_reliability (); #Based on Eq. 6
 7: end
 8: while (readyApps is not empty) do #Mapping ready applications
 9: MinD_App= Index.min (the deadlines of all readyApps);
10: Parallelization_factor= max_size(levels of AppMinD_App);
11: Cores_NumberMinD_App=Cores.number(Parallelization_factor);
12: Critical_Path_Tasks= find_Critical_Path(AppMinD-App);
13: CMinTSP_HPI =find_Core(TSP of cores - Critical_Path_Tasks
 estimated p-power, Cores_NumberMinD_App);
14: CMinTSP_HPI.add (Critical_Path_Tasks);
 #Finding min value TSP of HPI cores according to
 Cores_NumberMinD_App and mapping critical path tasks
15: AppMinD_App.remove(Critical_Path_Tasks);
16: Non_Critical_Path_Tasks=AppMinD-App - Critical_Path_Tasks;
17: while (Non_Critical_Path_Tasks have a task) do
18: Longest_Task_First = find_task(Non_Critical_Path_Tasks);
 #Finding longest task in terms of WCET
19: CMinTSP =find_Core (TSP of cores - Longest_Task_First
 estimated p-power, Cores_NumberMinD-App);
 #Finding nearest larger TSP among cores that able to meet the deadline
20: CMinTSP.add (Longest_Task_First);
21: AppMinD_App.remove (Longest_Task_First);
22: end
23: readyApps.remove (MinD_App);
24: end
----------------------------------Online Part--------------------------------------
25: for (all cores) #Scheduling part
26: while (tasks are able to scheduling) do #Scheduling tasks in each
 core
27: first_task = find_first_task(each core tasks set);
28: if all cores TSP constraints will be satisfied
29: schedule (MinD_task);
30: update_TSP (all cores);
31: else
32: Shift_forward (remained partitions of first_task);
33: end
34: end
35: if all the tasks are not scheduled then
36: return infeasible;

consider the replica insertion in the offline phase (design
time) but we don't claim that READY is able to meet a tight
deadline in any condition. If there is an application with high
utilization and the deadline of the application be very tight,
READY may miss the deadline of the application. In this
paper, we will illustrate that in the comparison with the state-
of-the-art methods, READY is able to improve the
PPA_Sceduablity (i.e. READY executes more tasks by
considering deadlines, peak power constraint, and reliability
target). Considering a feasible solution, it should be
mentioned that the proposed problem is an NP-hard problem
[15][32]. Therefore, we cannot find an optimal solution for
tasks mapping and scheduling (by considering several
constraints) in the polynomial-time in runtime. As a result,
we have proposed READY as a heuristic method that meets
the power constraint, the reliability target, and the deadlines.

Here, we focus on applications mapping to the cores of the
islands and tasks scheduling on the cores. In order to solve
the mentioned problem, we have presented a heuristic
algorithm in Algorithm 1. First, it should be noted that the
value of a time slot depends on the simulation tool and the
accuracy of it1. Algorithm 1 has two parts: (i) the offline part,
and (ii) the online part. In the offline part, at first, in order to
reach the system’s reliability target, we find the application
with the lowest reliability which is the bottleneck of the
system. Then, we find the task of this application with the
minimum reliability, and then, a replication of the selected
task is inserted into the application to improve the system’s
reliability. This process is repeated until the system’s
reliability target is met (lines 2-7). In order to map the
applications, the mapping operations start with an application
that has the closest deadline to meet the timing constraints
(line 9). For mapping the selected application, the algorithm
considers a parallelization factor (line 10). In order to allocate
appropriate numbers of cores to each application, we have
determined this factor for each application. The way to
determine this factor is that the algorithm for each application
finds the maximum number of tasks that can be executed
concurrently (based on the application’s task graph). Based
on the mentioned factor, the number of cores considered for
one application is calculated in line 11. The application
mapping operation is followed in two steps. In the first step,
tasks that are in the critical path of the application are
identified and then mapped to the cores on the high-
performance island to meet the application deadlines (line
12). In order to achieve system power efficiency, the cores on
the high-performance island are selected that have the nearest
larger TSP than the estimated peak power consumption of the
application (lines 13-14). It should be noted that in the offline

1 In this work, we have exploited the gem5 architecture simulator
and in our simulation, we have captured the system profile every
1ms.

phase there are the peak power consumption estimations table
of tasks when running on the available processors. After
mapping the tasks on the critical path, the second step of the
mapping operation continues with the remaining tasks of the
application, where the priority of mapping is with the longest
tasks in terms of WCET (lines 16-22). The philosophy of
using this policy is that, when we select the priority of the
tasks with the longest worst-case execution time, the
probability of executing the tasks in the critical path increase.
Indeed, by applying this policy, we increase the probability
of meeting the application deadline. After completing the
mapping of an application, we are looking for the next
application that has the closest deadline. The mapping section
of Algorithm 1 (lines 8-24) ends with the mapping of all
applications. In the online part (lines 25-36), the priority of
the tasks scheduling on each core is with the longest
unscheduled task whose predecessors have all been
scheduled. If the cores do not violate their TSP, we schedule
the tasks and then update all TSP values. Otherwise,
Algorithm 1 calls Shift_forward function and the execution
of task shifts to the next time slots (line 32). Indeed, for
meeting the TSP constraint at each time slot, we check the
power consumption of the mentioned task on the designated
core at each time slot. If shifting is required, the current time
slot of the selected task is moved to the next time slot that
TSP is met. These shifting increases meeting the deadline
because if we shift the whole of the mentioned task to the next
time slots, we should re-schedule its other dependent tasks.
Therefore, in order to increase the deadline meeting and
utilize the core efficiently, we use this shift. Finally, after the
end of the online part, if not all the tasks are scheduled, the
algorithm returns infeasible (lines 35-36).

In order to further reduce power consumption, READY
utilizes the sub-frame based DFS algorithm which is
illustrated in Algorithm 2. If there are time slots on a core that
are not used for any tasks, we consider these time slots as
slack time. The algorithm can use these slack times to further
reduce power consumption (scaling the frequency). In the
graph-based applications, the tasks of an application have
data dependency with each other. It should be noted that
according to this data dependency the finish time of a task
may be the start time of another task. Hence, we cannot apply
EVEN DFS algorithm in all slack times. As we mentioned in
the description of Algorithm 1, we consider the numbers of
cores for each application. In the assigned cores to one
application, we find sub-frames that tasks of the application
do not have data dependency with each other. Algorithm 2
divides the whole of the system’s frame (execution time-bar)
into a number of sub-frames (line 1). In each sub-frame, the
execution of all the tasks is independent of each other. Then,
Algorithm 2 executes the EVEN DFS function for all sub-
frames (lines 2-4). The EVEN-DFS technique [42] distributes
slacks evenly among all tasks that are able to exploit these
slack time (according to the application deadline and other
constraints). In this function (lines 5-8), Algorithm 2 finds
the slack time of each sub-frame and then assigns them to the
tasks that their deadlines and TSP constraints are not violated
by allocating these slack times. Also, it should be noted that
the algorithm after scaling the frequency checks the reliability
of the system with the reliability target. If system reliability

Algorithm 2. READY Sub-Frame-Based DFS algorithm
Body:
----------------------------------Online Part--------------------------------------
 1: (Subframes , NumberofSets) = Find_Subframes(Time-Frame);
 2: for i=1: NumberofSets
 3: DFS(Subframesi);
 4: end
Function DFS(Sf)
 5: Slack_Time ← Extract_Slack(Sf);
 6: Taskij = Find_Scalable(tasks in Sf);
 7: freqij = max (fee,

!"!"
!"!"#	%&'"(_*+,-

);

 8: Perform Taskij at freqij;

does not meet the target our algorithm increases the
frequency in order to meet the target. Finally, we repeat the
mentioned steps for the cores of another application until all
cores are covered. By assigning these slack times, Algorithm
2 can decrease the execution frequency of the tasks, and
hence, the power consumption of the system is further
reduced.

 Complexity Analysis
To explore the complexity of the READY’s Algorithm,

first we define a set of notations. We showed the number of
applications with A, the tasks of each application with Ti
(i denotes the identification number of the task), the most
time consuming task with Tmax which is defined as max(T1,
T2, ..., TA), the number of core in HP island with CHPI, the
number of core in LP island with CLPI, the total number of
cores with C and the slot size with T. In order to find slot size,
the maximum values of application deadlines can be found in
O(A). Also, in the reliability improvement while loop, the
minimum value of applications' reliability founded in O(A)
and also the tasks' reliability minimum value of selected
application can be found in O(Ti). It’s should be noted that in
the worst case our algorithm considers 3 replicas for each task
of each application (according to reliability target and initial
reliability of tasks). Therefore, in the worst case the reliability
while loop executed in O(A*Tmax) * max(O(A),O(Tmax)).
In the next step (offline part) in Algorithm 1, in order to map
the tasks of applications to the cores of islands, the minimum

values of applications deadlines found in O(A), also the worst
case the maximum values of parallelization factor can be
found in O(Tmax), in the worst case the critical path of one
application can be found in O(Tmax), finding core for tasks
in the critical path can be done in O(CHPI), similarly the
algorithm can find non-critical tasks and core respectively in
O(Tmax) and O(C). Mapping the tasks of one application can
be done in O (Tmax * C) and also the mapping of all tasks
can be done in O(A*Tmax*C). In the next step (online part)
in Algorithm 1, in order to schedule each task, the scheduling
operation in each core can be done in O(T) and the scheduling
of all tasks can be done in O(T*C). Finally, in order to further
reduce power consumption, applying the sub-frame-based
DFS can be finished for each time in O(C) and overall, in
O(T*C). Therefore, the time complexity of READY is the
max(O(A*Tmax)* max(O(A), O(Tmax)), O(A*Tmax*C) ,
O(T*C),O(T*C)) that is equal to the max(O(A*Tmax)*
max(O(A),O(Tmax)),O(A*Tmax*C),O(T*C)). In
comparison with the two mentioned methods, the time
complexity of TMR and TP3M is
max(O(A*Tmax),O(A*Tmax*C), O(T*C)).

Considering READY’s space overhead during the
runtime, it should be noted that in order to manage peak
power consumption, we have employed TPS [8] in READY.
The TSP computes the number of simultaneously active cores
and determines their positions in the chip with each other. We
have calculated all the possible combinations that cores may
be active (2^CHPI + 2^CLPI) in the design time and then
used the results in runtime. As we mentioned, we have
2^CHPI + 2^CLPI possible combinations and each value of
the power constraint needs a byte. Therefore, we need
2^CHPI + 2^CLPI Byte in order to work with peak power
consumption in runtime. Moreover, we have a power profile
for each task. In our simulation we have exploited 7 types of
benchmark, with average execution time 4420ms, therefore
we need 30KB (7*4420) space to work with Benchmarks.
Also, we had CHPI and CLPI cores in our architecture.
Hence, based on system slot size, C*T Bytes are needed for
having a power trace on all cores.

V. EXPERIMENTAL SETUPS AND RESULTS
In this section, we evaluate the efficiency of READY in
comparison with state-of-the-art approaches. Fig. 2 illustrates
the overview of READY by exploiting several simulation
tools. To this end, we implemented READY in gem5
simulator [26]. As the workloads of our experiments, we
utilized the PARSEC benchmark suite [29]. The power, area,
and timing information which is used in this study are
retrieved from McPAT [27]. To model the temperature in this
study we utilized HotSpot [28], and TSP [8] simulators. Other
useful tools such as [43] can also be considered for our

 (a) (b) (c) (d)

Fig. 3. PARSEC benchmark characterization running on ARM Cortex-A15 and Alpha21264 processors. a) Execution time, b) Reliability, c) Peak power, and d)
Energy.

80

400

2000

10000

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

St
re

am
cl

us
te

r

Sw
ap

tio
ns

Ex
ec

ut
io

n
Ti

m
e

(m
s)

ARM Cortex-A15 Alpha21264

0.97

0.975

0.98

0.985

0.99

0.995

1

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

St
re

am
cl

us
te

r

Sw
ap

tio
ns

Re
lia

bi
lit

y

ARM Cortex-A15 Alpha21264

1

3

9

27

81

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

St
re

am
cl

us
te

r

Sw
ap

tio
ns

Pe
ak

 P
ow

er
(W

)

ARM Cortex-A15 Alpha21264

3

9

27

81

243

Bl
ac

ks
ch

ol
es

Ca
nn

ea
l

Fe
rr

et

Fl
ui

da
ni

m
at

e

Fr
eq

m
in

e

St
re

am
cl

us
te

r

Sw
ap

tio
ns

En
er

gy
 (J

)

ARM Cortex-A15 Alpha21264

 Fig. 2. The design flow of READY

Design Flow
System-Level Parameters

T1

T2 T3

T4T5

Application Task graph Application Set

• Tasks interdependency
• Application Deadline

`

T6

Reliability information

• Calculate Reliability of
each task and the system

Hardware-Level Parameters

READY Algorithm

Gem5 McPAT HotSpot

Off-line Parameters

On-line Parameters TSP

HP
island

LP
islandPo

we
r (

W
)

time

Power trace

() 0 1 0
maxV V
dVl l
-

= ´

() () iV FVI wc
iR T e l- ´ ´=

1 2
1

(, ,...,)
n k

n

system app app app app
k

R R R R R
=

=Õ

Find the task with minimum
reliability and insert a replica

while the reliability target is met

Map the Tasks according to are
in critical path or not in cores

of different islands

Schedule the tasks based on
meeting TSP constraint and
Update all TSP values after

each task scheduling

Use the sub-frame based
DFS algorithm to reduce
power consumption in

 all tasks are
scheduled?

YES NO

Finish Infeasible

TSP

Online

Off-line

approach in our future works. The hardware configuration of
the simulation is a processor with two heterogeneous islands
(each of them including 9 homogeneous cores) which
executes different number of tasks (between 36 to 90 tasks).
The cores on High-performance Island are considered to be
Alpha21264 type, in which execution of tasks have less
execution time and more reliability. On the other hand, the
cores on Low Power Island, are considered ARM Cortex-A15
which execute tasks with more execution time and less power
consumption. In the following, the reliability target and
power constraint are introduced, and then the execution
scenario is explained to highlight the aspects that are
evaluated in the experiments. The results are included in the
analysis of the schedulability and feasibility of the system.
Finally, we investigate and discuss the insights behind the
experimental results.

 Reliability Target and Power Constraint
Regarding the system reliability target, our target is

defined according to the avionics DO-178B standard that
defines five reliability levels from A with highest to E with
lowest reliability levels. Safety requirements of each
reliability level are shown in [24] and [45]. In this paper based
on the mentioned references, we consider 0.99999 as our
reliability target. About considering the deadlines of
applications, in the graph-based applications, we consider 20-
40 percent more than the execution times of tasks in the
critical path as the application deadline [6][31][46]. Finally,
about peak power constrains, based on our simulation result

from TSP, the peak power constraint in the low power and
high-performance island varies between, 4-8.2 watt and 55.9-
87.3 watt, respectively.

To clarify our motivation for exploiting heterogeneous
platform, we have measured the worst-case execution time,
reliability, peak power, and energy consumption values by
using the mentioned simulation tools on ARM Cortex-A15
and Alpha21264 processor. The mentioned information is
shown in Fig. 3. The measured values represent how
heterogeneity can help designers to achieve the desired goals
in multi-core real-time systems. Therefore, it is important to
provide an efficient power budgeting algorithm in these
systems.

 Execution Scenario
We evaluated READY in the realistic-case execution

scenario on a processor consisting of two islands, low power,
and high-performance islands. Each of the islands includes 9
cores. In this scenario, based on the rare nature of the fault
occurrence (fault rate λ=10-6) during a task execution, if each
of the tasks' copies is performed correctly, the execution of
the remaining copies will be canceled. Fig. 4 shows the power
consumption profile and TSP power constraint adaptation on
the cores of Alpha21264 and ARM Cortex-A15 when
READY is applied to them. The simulation results in Fig. 4
show that our method performs task scheduling by
considering a fair peak-power constraint on each core so that
neither peak power violation occurs nor reduce system
performance loss.

We compared the simulation results of the proposed
algorithm in realistic-case execution scenario with the
following approaches:

• TP3M: This work presents a peak-power-aware
reliability management approach, which removes
the overlaps of the peak power of concurrently
executing tasks to keep the maximum power
consumption below the chip TDP.

• TMR: The conventional Triple Modular
Redundancy (TMR) approach attempts to increase
the system reliability by considering three replicas
for each task executed in parallel.

 Analysis of Schedulability
TP3M approach meets the chip-level constraint but the

simulation results in Fig. 5 show that it reduces tasks
schedulability by considering a pessimistic power constraint.
On the other hand, although the TMR approach has better
schedulability relative to TP3M, this approach violates the
chip-level and core-level power consumption constraints.
READY, by exploiting adaptive power constraint and
considering the priority of tasks and system heterogeneity,
has been able to have a much better system schedulability.
Since READY considers and exploits the features of system
heterogeneity, it executes the tasks as soon as possible to
meet their deadlines. Hence, the schedulability of READY is
higher than other schemes, i.e. TP3M and TMR.

 Analysis of Feasibility
In order to evaluate READY, from meeting power

constraints and improving the task schedulability
perspectives simultaneously we have defined peak-power-
aware schedulability factor. PPA_Schedulability factor is the
ratio of the number of time slots, which the peak power
constraint is met, to the total execution time slots of the frame

a) Alpha21264

b) ARM Cortex-A15

Fig. 4. Power consumption profile and TSP power constraint adaptation on
the cores of Alpha21264 and ARM Cortex-A15 when READY is applied
to them.

Fig. 5. Schedulability factor analysis.

0
0.2
0.4
0.6
0.8

1

36 45 54 63 72 81 90

Sc
he

du
la

bi
lit

y

Number Of Task

TMR [6]-TP3M READY

READY

READY

multiplied by the ratio of the number of tasks which meet
their deadline to the total number of tasks.

(7)

PPA_Schedulability can decline 0, in the worst-case
power-aware schedulability, and can achieve 1 in the best
case.

In Fig. 6, a comparison of the simulation results of
READY with the two mentioned approaches in
PPA_Schedulability factor is shown. Fig. 6 shows that
READY performs better in PPA_Schedulability factor.
READY has been able to improve PPA_Schedulability by
23.77 percent (up to 40.69 percent). Note that READY and
TP3M consider the power constraint for the system, but
READY considers the core-level power constraint instead of
the chip-level power constraint. Since considering the chip-
level power constraint is pessimistic and reduces the
performance of the system, READY considers the core-level
power constraint, and hence, it performs better in
PPA_Schedulability factor. i.e. READY is higher than other
schemes in terms of feasibility.

VI. CONCLUSION
In this paper, we presented READY “reliability- and

deadline-aware power budgeting” method. Additionally, we
have also proposed a Sub-Frame-Based DFS mechanism to
further reduce the power and energy consumption in
heterogeneous multi-core systems. READY employs a
heuristic algorithm for mapping and scheduling the graph-
based applications. Our experimental results show that, in
comparison with state-of-the-art approaches, READY has
succeeded to improve the peak-power-aware system
schedulability by 23.77 percent (up to 40.69 percent) such
that the applications’ timing constraints, the core-level power
constraint, and the system’s reliability target are met.

REFERENCES
[1] T. S. Muthukaruppan, A. Pathania, and T. Mitra, “Price theory-based

power management for heterogeneous multi-cores,” in ASPLOS,
ACM, New York, NY, USA, pp. 161-176, 2014.

[2] S. Pagani, et al., “Energy Efficiency for Clustered Heterogeneous
Multicores,” in IEEE Trans.on Parallel and Dist. Systems, vol. 28, no.
5, pp. 1315-1330, 1 May 2017.

[3] H. Khdr et al., “Power Density-Aware Resource Management for
Heterogeneous Tiled Multicores,” in IEEE Transactions on
Computers, vol. 66, no. 3, pp. 488-501, 1 March 2017.

[4] F. R. Poursafaei, S. Safari, M. Ansari, M. Salehi and A. Ejlali, “Offline
replication and online energy management for hard real-time multicore
systems,” 2015 CSI Symposium on Real-Time and Embedded Systems
and Technologies (RTEST), pp. 1-7, 2015.

[5] H. Kopetz, “Real-Time Systems: Design Principles for Distributed
Embedded Applications,” in Springer US, pp I-378, 2011.

[6] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi and A. Ejlali,
“Peak Power Management to Meet Thermal Design Power in Fault-
Tolerant Embedded Systems,” in IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 1, pp. 161-173, 1 Jan. 2019.

[7] M. Ansari, A. Y. Khaksar, S. Safari and A. Ejlali, “Peak-Power-Aware
Energy Management for Periodic Real-Time Applications,” in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 4, pp. 779-788, April 2020.

[8] S. Pagani, et al., “Thermal Safe Power (TSP): Efficient Power
Budgeting for Heterogeneous Manycore Systems in Dark Silicon,”
in IEEE Trans. on Computers, vol. 66, no. 1, pp. 147-162, 1 Jan. 2017.

[9] M. Ansari, S. Safari, F. R. Poursafaei, M. Salehi, A. Ejlali, “AdDQ:
Low-energy hardware replication for real-time systems through
adaptive dual queue scheduling,” CSI J. Comput. Sci. Eng., vol. 15, no.
1, pp. 31–38, 2017.

[10] S. Yari-Karin, A. Sahraee, J. Saber-Latibari, M. Ansari, N. Rohbani,
and A. Ejlali, “A Comparative Study of Joint Power and Reliability
Management Techniques in Multicore Embedded Systems,” 2020 CSI
Symposium on Real-Time and Embedded Systems and Technologies
(RTEST), pp. 1-7, 2020.

[11] M. Ansari, M. Pasandideh, J. Saber-Latibari, and A. Ejlali, “Meeting
Thermal Safe Power in Fault-Tolerant Heterogeneous Embedded
Systems,” in IEEE Embedded Systems Letters, vol. 12, no. 1, pp. 29-
32, 2020.

[12] M. Ansari, J. Saberlatibari, M. Pasandideh, and A. Ejlali,
“Simultaneous Management of Peak-Power and Reliability in
Heterogeneous Multicore Embedded Systems,” in IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 3, pp. 623-633, 1
March 2020.

[13] A. Rahmani, et al., “The Dark Side of Silicon,” in Springer, Cham,
2017.

[14] H. Esmaeilzadeh, et al., “Dark silicon and the end of multicore
scaling,” 2011 38th Annual International Symposium on Computer
Architecture (ISCA), pp. 365-376, San Jose, CA, 2011.

[15] M. Salehi et al., “dsReliM: Power-constrained reliability management
in Dark-Silicon many-core chips under process variations,” 2015
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), pp. 75-82, Amsterdam, 2015.

[16] “Intel Xeon Processor - Measuring Processor Power, revision 1.1, “in
White paper, Intel Corporation, April 2011.

[17] C. Yang, J. Chen, T. Kuo and L. Thiele, “An approximation scheme
for energy-efficient scheduling of real-time tasks in heterogeneous
multiprocessor systems,” Design, Automation & Test in Europe
Conference & Exhibition, pp. 694-699, Nice, 2009.

[18] A. Elewi, M. Shalan, M. Awadalla, and E. M. Saad, “Energy-efficient
task allocation techniques for asymmetric multiprocessor embedded
systems,” in ACM Transactions on Embedded Computing Systems
(TECS), vol. 13, no. 2s, pp. 71:1–71:27, Jan. 2014.

[19] M. Salehi et al., “DRVS: Power-efficient reliability management
through Dynamic Redundancy and Voltage Scaling under
variations,” 2015 IEEE/ACM International Symposium on Low Power
Electronics and Design (ISLPED), pp. 225-230, Rome, 2015.

[20] J. Zhan, Y. Xie and G. Sun, “NoC-sprinting: Interconnect for fine-
grained sprinting in the dark silicon era,” 2014 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), pp. 1-6, San Francisco, 2014.

[21] B. Raghunathan, Y. Turakhia, S. Garg and D. Marculescu, “Cherry-
picking: Exploiting process variations in dark-silicon homogeneous
chip multi-processors,” 2013 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 39-44, Grenoble, France, 2013.

[22] N. Kapadia and S. Pasricha, “VARSHA: Variation and reliability-
aware application scheduling with adaptive parallelism in the dark-
silicon era,” 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1060-1065, Grenoble, 2015.

[23] Y. Liu, Y. Ruan, Z. Lai and W. Jing, “Energy and thermal aware
mapping for mesh-based NoC architectures using multi-objective ant
colony algorithm,” 3rd International Conference on Computer
Research and Development, pp. 407-411, Shanghai, 2011.

[24] S. Safari, M. Ansari, G. Ershadi and S. Hessabi, “On the Scheduling of
Energy-Aware Fault-Tolerant Mixed-Criticality Multicore Systems
with Service Guarantee Exploration,” in IEEE Trans. on Parallel and
Distributed Systems, vol. 30, no. 10, pp. 2338-2354, 1 Oct. 2019.

[25] A. kanduri, et al., “adBoost: Thermal Aware Performance Boosting
Through Dark Silicon Patterning,” in IEEE Transactions on
Computers, vol. 67, no. 8, pp. 1062-1077, 1 Aug. 2018.

[26] N. Binkert, et al., “The gem5 simulator, “ in 2011 ACM SIGARCH
Computer Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[27] S. Li, et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” 2009 42nd
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 469-480, New York, NY, 2009.

_ __
_ _

MetPowerConstr Times MetDeadline TasksPPA Scheduability
Time Frame Size NumberOfTasks

= ´

Fig. 6. PPA_Schedulability factor analysis.

0
0.2
0.4
0.6
0.8

1

36 45 54 63 72 81 90

PP
A

_S
ch

ed
ul

ab
ili

ty

The number of tasks

TMR [6]-TP3M READY

[28] W. Huang, et al., “HotSpot: a compact thermal modeling methodology
for early-stage VLSI design,” in IEEE Trans. on Very Large-Scale
Integ. (VLSI) Sys., vol. 14, no. 5, pp. 501-513, May 2006.

[29] C. Bienia, S. Kumar, J. P. Singh and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” 2008
International Conference on Parallel Architectures and Compilation
Techniques (PACT), pp. 72-81, Toronto, ON, Canada, 2008.

[30] D. Zhu, R. Melhem, D. Mosse and E. Elnozahy, “Analysis of an energy
efficient optimistic TMR scheme,” Proceedings. Tenth International
Conference on Parallel and Distributed Systems, ICPADS 2004, pp.
559-568, Newport Beach, CA, USA, 2004.

[31] M. Salehi, A. Ejlali and B. M. Al-Hashimi, “Two-Phase Low-Energy
N-Modular Redundancy for Hard Real-Time Multi-Core Systems,”
in IEEE Trans. on Par. and Distr. Sys., vol. 27, no. 5, pp. 1497-1510,
1 May 2016.

[32] J. Lee, B. Yun and K. G. Shin, “Reducing Peak Power Consumption in
Multi-Core Systems without Violating Real-Time Constraints,”
in IEEE Trans. on Parallel and Distr. Sys., vol. 25, no. 4, pp. 1024-
1033, April 2014.

[33] S.-H. Hung, et al., “A real-time, energy-efficient system software suite
for heterogeneous multicore platforms,” in Proceedings of the 8th
IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS ’12), ACM, pp. 23-32, New
York, NY, USA 2012.

[34] Z. Shirmohammadi, M. Ansari, S. K. Abharian, S. Safari and S. G.
Miremadi, “PAM: A Packet Manipulation Mechanism for Mitigating
Crosstalk Faults in NoCs,” 2015 IEEE International Conference on
Computer and Information Technology; Ubiquitous Computing and
Communications; Dependable, Autonomic and Secure Computing;
Pervasive Intelligence and Computing, Liverpool, 2015.

[35] S. Safari, M. Ansari, M. Salehi, and A. Ejlali, “Energy- Budget-Aware
Reliability Management in Multi-Core Embedded Systems with
Hybrid Energy Source,” The CSI Journal on Computer Science and
Engineering (JCSE), vol. 15, no. 2, pp. 31-43, 2018.

[36] M. Rapp, et al., “Power-and Cache-Aware Task Mapping with
Dynamic Power Budgeting for Many-Cores,” in IEEE Trans. on
Comp., 2020.

[37] P. Mercati, et al., “WARM: Workload-Aware Reliability Management
in Linux/Android,” in IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Sys., vol. 36, no. 9, pp. 1557-1570, Sept. 2017.

[38] J. Zhou, et al., “Reliability and temperature constrained task scheduling
for makespan minimization on heterogeneous multi-core platforms,” in
Journal of Systems and Software, vol. 133, pp. 1-6, 2017.

[39] J. Zhou, et al., “A Framework to Solve the Energy, Makespan and
Lifetime Problems in Reliability-Driven Task Scheduling,”
International Conference on iThings and IEEE (GreenCom and IEEE
(CPSCom and IEEE Smart Data, pp. 608-614, Atlanta, GA, USA,
2019.

[40] H. S. Jung, A. J. Gil, and J. T. Kim. “A Case Study of Limited Dynamic
Voltage Frequency Scaling in Low-Power Processors,” International
Journal of Electrical and Computer Engineering, no. 12, pp 1523-
1526, 2017.

[41] Q. Wang, et al., “Impact of DVFS on n-tier application performance,”
Proceedings of the First ACM SIGOPS Conference on Timely Results
in Operating Systems - TRIOS ’13, 2013.

[42] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “System-Level Design
Techniques for Energy-Efficient Embedded Systems,” vol. 53, no. 9.
Springer Science & Business Media, 2004.

[43] S. Pagani, J. Chen, M. Shafique and J. Henkel, “MatEx: Efficient
transient and peak temperature computation for compact thermal
models,” 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), Grenoble, 2015, pp. 1515-1520.

[44] L. Yang, et al., “Dark silicon-aware hardware-software collaborated
design for heterogeneous many-core systems,” ASP-DAC, Chiba,
2017, pp. 494-499.

[45] L. A. Johnson, “DO-178B: Software considerations in airborne sys-
tems and equipment certification,” in Radio Technical Commission for
Aeronautics (RTCA), 1992.

[46] S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A Low Energy
Standby-Sparing Scheme for Mixed-Criticality Systems,” in IEEE
Trans. on Comp.-Aided Design of Integrated Circuits and Sys., 2020.

Javad Saber-Latibari received his M.Sc. degree in
computer engineering from the Sharif University of
Technology, Tehran, Iran in 2020. Also, he is a member
of Embedded Systems Research Laboratory (ESR-LAB)
at the department of computer engineering, Sharif
University of Technology. He is currently planning to
start his Ph.D. degree at the University of California,
Riverside. His research interest lies in computer

architecture, especially in Embedded Systems and reconfigurable systems.

Mohsen Ansari received the M.Sc. degree in computer
engineering from Sharif University of Technology,
Tehran, Iran, in 2016. He is currently working toward
the PhD degree in computer engineering at Sharif
University, Tehran, Iran, from 2016 until now. He is
now a visiting researcher in the Chair for Embedded
Systems (CES), Karlsruhe Institute of Technology
(KIT), Germany. Also, he is the member of Embedded
Systems Research Laboratory (ESR-LAB) at the

department of computer engineering, Sharif University of Technology. His
research interests include low-power design of embedded systems and multi-
/many-core systems with a focus on dependability/reliability.

Pourya Gohari-Nazari received the B.Sc. degree in
computer engineering from the University of Isfahan.
He is currently working toward the M.Sc. degree in the
Department of Computer Engineering at the Sharif
University of Technology, Tehran, Iran. His research
interests are thermal management in many-core systems
and design embedded systems with a focus on low-
power and reliability.

Sina Yari-Karin received his B.Sc. degree in computer
engineering from the Ferdowsi University of Mashhad
in 2017. He is currently an M.Sc. student in computer
engineering at the Sharif University of Technology,
Tehran, Iran. Also, he is a member of Embedded
Systems Research Laboratory (ESR-LAB) at the
department of computer engineering at Sharif
University of Technology. His research interests are
embedded system design, low power system design,

fault-tolerant system design, and computer architecture.

Amir Mahdi Hosseini Monazzah received his Ph.D
degree in computer engineering from Sharif University
of Technology, Tehran, Iran, in 2017. He was a member
of the Dependable Systems Laboratory from 2010 to
2017. As a Visiting Researcher, he was with the
Embedded Systems Laboratory, University of
California, Irvine, CA, USA from 2016 to 2017. As a
postdoc fellow he was with the school of computer
science, institute for research in fundamental sciences

(IPM), Tehran, Iran from 2017 to 2019. He is currently a faculty member of
the School of Computer Engineering, Iran University of Science and
Technology (IUST), Tehran, Iran. His research interests include investigating
the challenges of emerging nonvolatile memories, hybrid memory hierarchy
design, and IoT applications.

Alireza Ejlali received the PhD degree in computer
engineering from Sharif University of Technology in,
Tehran, Iran, in 2006. He is cur-rently an associate
professor of computer engineer-ing at Sharif University
of Technology. From 2005 to 2006, he was a visiting
re-searcher in the Electronic Systems Design Group,
University of Southampton, Southampton, United
Kingdom. In 2006, he joined Sharif University of
Technology as a faculty member in the depart-ment of

computer engineering and from 2011 to 2015 he was the director of
Computer Archi-tecture Group in this department. His research interests in-
clude low power design, real-time embedded systems, and fault-tolerant
embedded systems.

