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Peak Power Management to Meet Thermal Design 

Power in Fault-Tolerant Embedded Systems 
Mohsen Ansari, Sepideh Safari, Amir Yeganeh-Khaksar, Mohammad Salehi, and Alireza Ejlali 

Abstract— Multicore platforms provide a great opportunity for implementation of fault-tolerance techniques to achieve high 

reliability in real-time embedded systems. Passive redundancy is well-suited for multicore platforms and a well-established 

technique to tolerate transient and permanent faults. However, it incurs significant power overheads, which go wasted in fault-

free execution scenarios. Meanwhile, due to the Thermal Design Power (TDP) constraint, in some cases, it is not feasible to 

simultaneously power on all cores on a multicore platform. Since TDP is the maximum sustainable power that a chip can 

consume, violating TDP makes some cores automatically restart or significantly reduce their performance to prevent a 

permanent damage. This may affect timeliness of the system, and hence, designers face a challenge in deciding how to use 

multicore platforms in real-time embedded systems. In this paper, at first, we study how the use of passive redundancy 

(especially for Triple Modular redundancy) can violate TDP on multicore platforms. Then, we propose a scheme for scheduling 

real-time tasks in multicore systems to conquer the peak power problem in NMR systems. This is because in multicore 

embedded systems an efficient solution for meeting the TDP constraint is reducing the peak power consumption. The proposed 

scheme tries to remove overlaps of the peak power of concurrently executing tasks to keep the maximum power consumption 

below the chip TDP. In the proposed scheme, we devised a policy called PPA-LTF to manage peak power consumption. This 

policy prevents tasks execution that consume higher power according to the tasks’ power traces. Our experimental results show 

that our scheme provides up to 50% (on average by 39%) peak power reduction compared to state-of-the-art schemes. 

Index Terms— Peak Power Consumption, Fault Tolerance, Embedded Systems, Multicore Platforms, Thermal Design Power.  

——————————      —————————— 

1 INTRODUCTION

ITH the advance of VLSI technology, due to the per-
formance and power efficiency, multicore platforms 

are becoming the dominant trend in embedded sys-
tems [1], [2], [3], [4]. This is the main reason for moving 
from single-core to multicore platforms to balance the 
power consumption and computation performance. Mean-
while, technology scaling has increased the number of 
transistors onto a multicore chip while power budget con-
straints restrict the design of multicore embedded sys-
tems [1], [3], [5], [6]. In spite of the high potential for fault-
tolerance techniques in multicore platforms, due to the 
Thermal Design Power (TDP) constraint, designers of 
fault-tolerant embedded systems face a challenge in decid-
ing how to use them. TDP is considered as the highest sus-
tainable power that a chip can dissipate without triggering 
any performance throttling mechanisms [19], e.g. Dynamic 
Thermal Management (DTM) [20]. Keeping the peak 
power consumption below the TDP value causes that the 

system can execute its tasks without reducing reliability 
and performance. If a chip violates its TDP, it automati-
cally restarts or significantly reduces its performance to 
prevent a permanent damage. Therefore, reducing the 
peak power consumption is the main step towards dealing 
with thermal constraints such as TDP [1], [3], [5]. Mean-
while, the scaling of the feature size raises the susceptibil-
ity of digital systems to transient faults [7], [8], [9], [10]. 
Transient faults in underlying hardware (e.g. Soft er-
rors [11]) are the major reliability concerns in digital sys-
tems, especially due to the continuously decreasing feature 
size [12]. Multicore systems provide a great opportunity to 
implement reliability mechanisms against transient faults, 
such as redundant multithreading (RMT) [13], [14], pro-
cess level redundancy [15] and task-level redun-
dancy [2], [16], [17]. The task-level redundancy is a well-
established technique to achieve high reliability against 
different fault types [2] and is well-suited for multicore 
platforms. On the other hand, passive redundancy per-
forms fault masking on the basis of voting. In the passive 
redundancy, N copies of each module are combined as an 
N-modular redundant set that tolerates multiple 
faults [16]. The best-known example of this technique is 
TMR, which consists of three identical copies whose results 
are voted on [2].  

In this paper, at first, we show how the TMR technique 
may increase peak power consumption and consequently 
may result in a chip TDP violation (see Motivational Ex-
ample). Then, we propose a two-phase peak power man-
agement (TP3M) scheme which manages peak power con-
sumption for the NMR technique on multicore platforms 
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(Section 4). This scheme schedules hard real-time tasks on 
cores in a multicore system without violating real-time and 
TDP constraints. Our TP3M scheme aims at removing 
overlaps of the peak power of concurrently executing tasks 
to keep the power consumption below the chip TDP. To do 
this, considering the tasks’ power traces, at first, we parti-
tion the tasks into parts where different parts have differ-
ent peak power values (Section 4.3). Then, we have used 
two phases for scheduling the partitioned tasks. In these 
phases, we have devised a policy called PPA-LTF to reduce 
peak power consumption. In the first phase, the proposed 
scheme schedules more than half the number of copies for 
each task based on the Peak-Power-Aware Longest Task 
First (PPA-LTF) policy. When no fault occurs during this 
phase, the remaining copies of the tasks are not required. 
Otherwise, the remaining copies of the tasks are scheduled 
in the second phase to perform a complete majority voting. 
In this phase, we use PPA-LTF to manage peak power con-
sumption. This leads to a smoothly consumed power and 
results in a reduced peak power. In summary, our scheme 
tries to separate execution of the essential tasks and the re-
dundant tasks to remove overlaps of the peak power of 
them. In this scheme, the tasks that consume higher power 
overlap with the other tasks that consume lower power 
with the aim of keeping the total peak power below the 
chip TDP.  

Motivational Example: This example provides some in-
sight into how the different scheduling algorithms work to 
meet power budget (TDP). Let us consider a quad-core 
chip with 3W of TDP that executes an application tasks 
graph with six tasks {T1, T2, T3, T4, T5, T6}. Fig. 1a shows 
dependencies between the tasks where the number above 
each task is its worst-case execution time at the maximum 
supply voltage and the maximum operational frequency. 
The tasks share a common deadline D=160ms. For simplic-
ity of presentation, we temporarily assume that the tasks’ 
peak power is equal to a constant value so that each task 
consumes 1.2W of power during its execution. After finish-
ing the task, the underlying core goes to sleep mode and 
consumes no power. In the rest of this paper, when we pre-
sent our method each task consumes a different amount of 
power during its execution, depending on its characteris-
tics and computational load and, different tasks have dif-
ferent power traces. In this example, we consider a TMR 
system (i.e. NMR with N=3) where each task has three cop-

ies and the result of them are compared to perform a com-
plete majority voting. Fig. 1 shows three possible schedules 
where meet timing constraint. One way to execute this task 
graph is the parallel execution of all copies of each task on 
three cores of the chip (the conventional triple modular re-
dundancy), as shown in Fig. 1.b. In this way, all copies of 
T1 to T6 are scheduled from t=0ms to t=100ms and all cores 
go to sleep mode after t=100ms (Fig. 1b). Here, the total 
peak power of the system is 3.6W during the time interval 
between 0 and 100ms, and hence, it violates the chip TDP 
of 3W. Another possible execution scenario for this task set 
is shown in Fig. 1c where the system operates in two 
phases, which has been presented in [2]. At first, the sys-
tem operates in its indispensable phase where two copies 
of each task are scheduled using list scheduling with the 
longest task first (LTF) policy. Then, in the conservative 
phase, the third copy of each task is scheduled on the 
schedule to obtain three results for performing a complete 
majority voting. This method effectively reduces energy 
consumption through dropping the third copy of the tasks 
when no fault occurs. Since this method does not consider 
peak power consumption, it may violate the chip TDP. As 
shown in Fig. 1c, in the time interval 20ms to 40ms and the 
time interval 70ms to 80ms all the four cores are active at 
the same time, and hence, the total power consumption of 
the chip is 4.8W that is higher than the chip TDP (i.e. 3W). 
In Fig. 1d, a scheduling method is shown that does not vi-
olate the chip TDP. In this method, at first from the begin-
ning of the execution frame, two copies of each task are 
scheduled on cores with the lowest utilization such that the 
peak power consumption is kept below the chip TDP. 
Then, for scheduling the third copy of the tasks, starting 
from the end of the execution of two other copies of the 
same task, the third copy is scheduled on a core with the 
lowest utilization such that the peak power consumption 
is kept below the chip TDP. In this execution scenario, at 
most time instants at most two cores are active. Since each 
task consumes 1.2W on each core, the maximum total 
power consumption in this scenario is equal to 2.4W (i.e. 
less than the chip TDP).  

Objective: The objective of this paper is to present a Two-
Phase Peak-Power Management (TP3M) scheme. TP3M is 
a method that uses N-modular redundancy (NMR) tech-
nique to achieve fault tolerance in real-time multicore em-
bedded systems such that timing and TDP constraints are 
met. In this method, we focus on scheduling a task set in 

 
 
 
 
 
 
 
 
 

 
 

Fig. 1.  Motivational example of peak power problem of a TMR system (i.e. NMR with N=3) on a multicore system with 4 cores. a) An example 
task graph, b) Parallel execution of all tasks (the conventional triple modular redundancy), c) Delayed execution of the third copy of the tasks, 
d) Scheduling the tasks according to the TP3M policy (our scheme). 
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two phases. In the first phase, more than half the number 
of copies for each task are scheduled based on the Peak-
Power-Aware Longest Task First policy. If no fault occurs 
during this phase, the results must be identical and hence 
the remaining copies are not required. Otherwise, the re-
maining copies must be scheduled and executed in the sec-
ond phase based on PPA-LTF to perform a complete ma-
jority voting. To the best of our knowledge, the power 
management techniques for fault-tolerant systems that 
have been presented in the literature only try to reduce the 
average power consumption and cannot provide a deter-
ministic guarantee to keep power consumption below the 
chip TDP.  

Our Contribution: The main contributions of this work 
are: 

 Proposing a peak-power-aware reliability man-
agement method that manages peak power 
overlaps between concurrently executing tasks. 

 Enabling task replication such that the system 
reliability is preserved while guaranteeing to 
keep the total power consumption of cores be-
low the chip TDP and the power consumption 
of each underlying core below the core TDP con-
straint. 

 Developing a new scheduling algorithm that 
avoids concurrent execution of tasks based on 
the peak-power-aware longest task first policy. 

 Determining the voltage-frequency levels such 
that the tasks meet their timing constraints while 
keeping the total power consumption under the 
chip TDP at each time interval. 

Evaluation: We ran simulations with gem5 [34] and 
McPAT [35] to compare our TP3M method with state-of-
the-art methods (especially with LE-NMR presented in [2]) 
for the worst-case and actual-case scenarios. Our experi-
ments show that TP3M provides up to 50% (on average by 
39%) peak power reduction compared to the other schemes 
in the worst-case scenario. Also, TP3M provides up to 
44.3% energy saving in the actual-case condition through 
canceling unnecessary execution when no fault occurs.  

Organization: The remainder of this paper is organized 
as follows. In Section 2 we review related work. Section 3 
presents models and assumptions. In Section 4, we present 
our TP3M scheme in details. The experimental results are 
presented and discussed in Section 5. Finally, we conclude 
the paper in Section 6. 

2 RELATED WORK 

Some related works have addressed both fault tolerance 
and low power consumption in fault-tolerant real-time 
embedded systems with two processors [21], [22], [23]. To 
reduce the average power consumption, Ejlali et al. [21] 
have proposed a technique where DVS is used for the first 
processor (primary processor) while the second processor 
(spare processor) does not use DVS to preserve the relia-
bility of the system when a fault occurs. The scheme pro-
posed in this work is suitable for non-preemptive and ape-
riodic tasks, while most of the real-time applications on 

embedded systems are inherently periodic [22]. The work 
in [22] has proposed an energy-aware scheduling scheme 
for a standby-sparing system that executes preemptive pe-
riodic real-time applications. They apply Earliest-Dead-
line-First (EDF) scheduling with DVS on the primary pro-
cessor, while the backup tasks are executed on the spare 
processor according to Earliest-Deadline-Late (EDL) 
scheduling. Haque et al. [23] have proposed an energy-
management technique for a standby-sparing system that 
executes preemptive fixed-priority real-time tasks. Tasks 
on the primary processor are scheduled by the Cycle-Con-
serving DVS algorithm that has been proposed for Rate 
Monotonic Scheduling (RMS) in [24]. While the spare core 
uses DPM and dual-queue mechanism that tries to maxi-
mally delay the backup tasks to save more energy. These 
works have not considered multiple faults per task execu-
tion. Some research works, e.g. References [2] and [25] 
have proposed voltage-scaling techniques to reduce the 
energy consumption of N-modular redundancy (NMR). 
The reference [25] reduces the energy consumption of tri-
ple-modular redundancy (TMR) by exploiting voltage-
scaling techniques. Salehi et al. [2] have proposed an N-
modular redundancy (NMR) technique with low energy 
consumption for hard real-time multicore systems. All of 
these works have focused on reducing the average power 
and energy consumption and have not considered peak 
power management.  
Some studies concentrated on thermal management in 
multicore systems [26], [27], [3]. Fisher et al. [26] have pro-
posed a global thermal-aware scheduling to reduce the 
temperature for sporadic tasks. Jejurikar et al. [27] reduce 
energy consumption by using deferment interval for each 
task by considering real-time constraints. [3] has presented 
a new power budget concept, called Thermal Safe Power 
(TSP), which is an abstraction that provides safe power and 
power density constraints as a function of the number of 
simultaneously active cores. Some related works have fo-
cused on reducing the peak power consumption under 
real-time constraints [1], [5], [28]. Lee et al. [1] have pro-
posed a new scheduling algorithm for real-time tasks to re-
duce chip-level peak power consumption, without relying 
on any extra hardware (e.g. DVFS controller). This algo-
rithm restricts the concurrent execution of tasks that are as-
signed to different cores, and perform its schedulability 
analysis. Lee et al. [28] have proposed a task scheduling 
that prevents the occurrence of the peak power consump-
tion for task-graph models. The proposed algorithm in this 
work schedules the tasks by considering data dependency 
information while reduces the peak power. As one of the 
most related work, Munawar et al. [5] have presented a 
scheme to minimize the peak power for frame-based and 
periodic tasks with real-time constraints on multicore sys-
tems. The reference [5] schedules the sleep cycles for each 
active core to manage the peak power. Pagani et al. [29] 
have presented a solution both for energy minimization 
and peak power reduction for periodic real-time tasks on 
multicore systems. These researches that try to reduce the 
peak power do not consider any fault-tolerance techniques 
to deal with transient and permanent faults.  
Generally, the previous works in the context of multicore 
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embedded systems either propose peak power reduction 
techniques without considering reliability like [1] and [5] 
or consider reliability without considering peak power re-
duction like [2], [8], [11], and [22]. In this paper, we exploit 
a fault-tolerance technique (N-modular redundancy) to 
achieve high reliability for real-time multicore systems and 
propose a scheme to keep the chip peak power consump-
tion under its TDP constraint. In this section, we discussed 
the differences between our work and the previous works. 

3 MODELS AND PRELIMINARIES 

In this section, we present our system, application, power 
and fault models. We also provide reliability modeling of 
our system in this section.  

3.1 System and Application Model 

This paper focuses on a multicore system with m cores 
C={C1, C2, …, Cm} similar to Intel SCC [38]. The system ex-
ecutes frame-based applications with hard real-time re-
quirements consisting of n dependent tasks Φ={T1, T2, …, 
Tn}. These tasks share a common global deadline D, which 
is also the period (or frame) of the task set [30], [31], [32]. 
The group of tasks is scheduled based on the precedence 
which modeled by a task graph. A sample task graph is 
composed of some nodes and vertices (see Fig. 1a). Each 
node in the task graph represents a task while the directed 
edges represent data dependencies between the tasks. The 
worst-case execution time for the task Ti at the maximum 
frequency fmax is denoted by Wi and has been written above 
each node. The utilization of a task Ti is defined as 
ui=Wi/D. Also, the total utilization of the system Utot is the 
sum of all the task utilizations.  

3.2 Power Consumption Model  

We adopt a system-level power model where total power 
consumption consists of a static and a dynamic compo-
nent. The dynamic power Pd includes a frequency-inde-
pendent power consumption and a frequency-dependent 
power consumption that are defined as Pind and Pdep, re-
spectively. Pind is driven by the peripheral modules such as 
I/O in the activation mode. On the other hand, the static 
power, Ps, consists of the reverse and sub-threshold leak-
age power that are consumed even when no computation 
are carried out. Since the sub-threshold leakage and the 
frequency-dependent power are dominant in the static and 
dynamic power, respectively, the total power of each core 
can be written as [2], [4], [8], [11], [21], [22], [23]: 

2

s d sub eff ddP P P I V C V f     (1) 

where Ceff, Vdd, and f are the effective switched capacitance, 
supply voltage and operational frequency, respectively. In 
this paper, we use Dynamic Power Management (DPM) to 
manage peak power where whenever a core is temporarily 
idle, it goes into sleep mode to reduce power consumption. 
In addition, we use Dynamic Voltage Scaling (DVS) for re-
ducing total power consumption. When DVS is used, each 
task Ti is executed at a voltage Vi, which is less than Vmax 
(the maximum supply voltage). By considering an almost 

linear relationship between voltage and fre-
quency [2], [25], [31], when a task Ti is executed at the 
scaled voltage maxiiV V , the operational frequency can be 
written as: 

maxi if f  (2) 

where fi is the operational frequency corresponding to Vi 
and fmax is the maximum operating frequency correspond-
ing to Vmax. Therefore, the total power consumption which 
is consumed to execute the task Ti is given by: 

2 2 3

max max maxsub i eff i i i s i dP I V C V f P P         (3) 

where Ps and Pd are respectively the static and dynamic 
powers at the maximum voltage and frequency. 

3.3 Fault Model and Reliability Analysis 

Computer systems are susceptible to faults due to various 
runtime errors. Faults can be categorized into transient and 
permanent faults [16], [21]. Transient faults may manifest 
in the form of single event upset or soft errors with incor-
rect results. These faults are commonly caused by alpha 
particles and cosmic rays that strike chips in unpredictable 
ways. These errors are called soft because they do not lead 
to permanent failure. Transient faults are typically mod-
eled using a Poisson distribution with an average arrival 
rate λ [30]. When the frequency is scaled down using DVS, 
the fault rate λ increases significantly [21]. Therefore, the 
fault rate at frequency f is modeled as [22], [23]: 

min

(1 )

1

0( ) 10

d f

ff 



  (4) 

where λ0 is the average fault rate at the maximum fre-
quency and the exponent d (sensitivity factor) is a measure 
of how the transient fault rate increases when the supply 
voltage and frequency are scaled [30], [31]. Considering (4) 
the reliability of a task Ti running at frequency fi can be ex-
pressed as [2], [22]: 

( )

( )

i
i

i

t
f

f

i iR f e


  (5) 

where ( )if  is given by (4) and ti is the actual execution 
time of the task Ti. Conversely, the probability of failure of 
the task Ti is given by [21]: 

( )

( ) 1 ( ) 1

i
i

i

t
f

f

i i iF f R f e


     (6) 

The reliability of the proposed method is calculated by 
considering the two conditions, i.e., (1) the fault-free con-
dition when all  / 2N  copies of each task are executed cor-
rectly, (2) the faulty condition when some tasks become 
faulty and we require the results of the remaining  / 2N  
copies of tasks. Therefore, the reliability of each task in the 
fault-free condition can be calculated as [2]: 

 /2( ) ( ) N
fault free i i iR T R f   (7) 

where Ri(fi) is given by (5). When up to  / 2N  copies of a 
task Ti become faulty, the reliability of a task Ti can be cal-
culated as [2], [17]: 

 
 

 

/ 2
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where Fi(fi) is given by (6) and k is the number of faults. 
According to Equations (7) and (8), the reliability of a task 
Ti in both the fault-free and faulty conditions can be writ-
ten as: 

 
 / 2

/2

1

( ) ( ) ( )

( ) ( ) ( )

total i fault free i faulty i

N
l N lN

i i i i i i

l

R T R T R T

N
R f F f R f

l







 

 
   

 


 (9) 

Generally, the reliability of a system with n tasks running 
by our proposed method can be calculated as: 

1

( )
n

system total i

i

R R T


   (10) 

4 OUR PROPOSED METHOD 

In this section, at first, we represent a high-level overview 
of our TP3M system. Then, in Section 4.2, we define the 
problem of the task scheduling and mapping on a multi-
core system. In Section 4.3, we explain our proposed Two-
Phase Peak-Power Management (TP3M) scheme, and in 
Section 4.4 we use an example to illustrate how our pro-
posed scheme works. 

4.1 System Overview 

To fulfill the objective of the paper, we propose a peak-
power management scheme that provides a right design of 
the system and ensures that the power dissipation of cores 
meets peak power constraints. Based on a chip-level power 
constraint, the proposed scheme parcels this power budget 
into local power budgets for each core. The local power 
budget is calculated by determining the worst-case 
mapping of cores. These local power budgets can be used 
as power constraints for any possible mapping of cores 
and, as a result, DTM is not triggered at any time. As 
different application tasks have different power traces, 
reliability, failure rates, and execution time properties, the 
proposed method considers all of them. Our proposed 
Two-Phase Peak-Power Management (TP3M) scheme con-
sists of an offline part and an online part that are explained 
in Section 4.3. Also, the TP3M scheme consists of the 
mandatory and conservative phases to take the advantages 
of fault-free scenario. In the offline phase, after scheduling 
the tasks, we apply two different techniques, DVFS and 
DPM, to reduce peak power dissipation and average 
power consumption. For the sake of completeness, in the 
mandatory phase, only half-plus-one copies of each task 
are scheduled according to the PPA-LTF policy and the 
remaining copies must be scheduled in the conservative 
phase according to the PPA-LTF policy to perform a 
complete majority voting. Meanwhile, for the proposed 
scheme, we have exploited different types of slack time to 
reduce the average power consumption through DVS. Al-
gorithm 1 in Section 4.3 shows the pseudo code of the task 
scheduling mechanism of our TP3M scheme. Also, Fig. 2 
shows the overview of our TP3M system along with differ-
ent inputs from the hardware and software components. 
In the following (Section 4.4), we use an example to illus-
trate how our proposed scheme works.  

 4.2 Problem Definition 

In the following, we define the problem of the task sched-
uling and mapping on a multicore system when exploiting 
the NMR technique and different V-f levels for different 
application tasks such that the peak power consumption is 
kept below the chip TDP. To do this, we use the following 
notation to represent the peak power consumption, the re-
liability of the system, V-f levels, and task mapping. In the 
problem formulation, n is the number of tasks, m is the 
number of available and free cores and l is the number of 
V-f levels for each core. Table 1 shows the notation used 
for variables throughout this section. 

 The peak power consumption is represented by 
the matrix

n m l tPPC    , in which PPCijkh is the 
peak power consumption for the task i when is ex-
ecuted on the core j under the V-f level k at time h. 

 The V-f level assignment and task mapping are 
represented by the matrix {0,1}n m lY   , in which 
the task i is mapped to the core j and is executed 
under the V-f level k if and only if Yijk is equal to 1. 

 The reliability of the system is represented by the 
matrix

n m lR   , in which each element Rijk de-
notes the reliability of task i when is executed on 
the core j under the V-f level k. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  The operational flow of our TP3M system. 
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ready queue are scheduled.

Schedule                copies of the 
selected task Ti one by one based 
on the PPA-LTF policy on the cores 

with lowest utilization

If not all the copies are 
scheduled, return infeasible.

Voltage-and-Frequency selection

Idle time extraction
Offline Scheduling



6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 

 

Besides the technique introduced in this paper, we formu-
late the peak-power-aware scheduling problem as a con-
strained 0-1 integer linear program (ILP). Since the goal of 
the paper is to meet reliability, TDP and timing constraints 
in a multicore embedded system that consists of a set of 
tasks with different arrival times and deadlines, the objec-
tive function should be the constant value.  

Minimize ( ) 1F x

x



 
 (11) 

The total power consumption (i.e. the sum of the instanta-
neous power of all underlying cores) should be less than 
the chip TDP constraint at each time interval. Furthermore, 
the peak power of each underlying core should be less than 
the core TDP constraint.  

,

, , ,

ijkh ijkh TDP chip

i j k l

Y PPC P  (12) 

,ijkh ijkh TDP kY PPC P
 (13) 

For timing constraints, the worst-case execution time Wi/fjk 
for the task i on the core j and at the V-f level k should not 
exceed the task timing constraint (defined by the Di).  

i
ijkh i

jk

W
Y D

f
    (14) 

The system reliability is defined by the successful execu-
tion of all tasks. Therefore, the reliability mechanism satis-
fies the reliability requirement Rreq when: 

, , , ,

, ,

 i j k i j k req

i j k

X R R  (15) 

Also, each task can be only mapped to a single core. 

, , : 1ijkh

h

i j l Y   (16) 

The formulated problem is usually classified as an NP-
complete problem [1], [5], and hence we use a heuristic 
method.  

4.3 Algorithm Discussion 

Our proposed Two-Phase Peak-Power Management 
(TP3M) scheme consists of the offline part and online parts 
that are explained as follows. Meanwhile, the offline part 
consists of two phases: mandatory and conservative 
phases. In the offline phase, after scheduling the tasks, we 
apply two different techniques, DVFS and DPM, to reduce 
peak power dissipation and average power consumption.  
Algorithm 1 shows the pseudo code of the task scheduling 
mechanism of our TP3M scheme that receives an applica-
tion task graph (Φ) to make schedules for the mandatory 
and conservative phases. At first, we determine the size of 
the time slots in line 1. For this purpose, the execution 
frame is divided into h=D/CLK_C slots (CLK_C is the clock 
cycle time). In this algorithm, we use a peak power array 
including h slots that determines the peak power con-
sumption of the system in each time slot (i.e. the list PPL in 
line 2). In line 3 to 5, we partition all the tasks into parts 
with different peak power values. Here, the number of 
parts of the task Ti is Wi/CLK_C. In line 6, the algorithm in-
itializes a schedule Si to Null for each core of C (C is the set 

of cores). Next, the algorithm iterates until all the tasks are 
selected (lines 7-61). In line 8, we select the largest unsched-
uled task Ti whose predecessors have all been scheduled. 
We use the variable q to count the number of scheduled 
copies of each task and make the temporary set of available 
cores MC (lines 9 and 10). In line 11 to 31, the algorithm 
iterates until  / 2N copies of each task are scheduled based 
on the PPA-LTF policy. In order to provide core usage ef-
ficiency, we select a core with the lowest utilization to 
schedule the selected task on it (denoted by φ in line 12). 
We use the variable k to determine where the current part 
of Ti (Tij) can be placed. The variable k is initialized to the 
first free time slot after which all predecessors of the se-
lected task have scheduled (line 13). Now, starting from k, 
we check free time slots of the core φ one after another and 
place each part Tij on the first free time slot t (t=k→h) such 
that the peak power consumption of Tij does not exceed the 
core TDP constraint and also does not increase the total 
power consumption beyond the chip TDP. Therefore, we 
place Tij in tth time slot of φ.S in line 18 and update the 
power consumption list PPL in line 19, and update the var-
iable k in line 20. Otherwise, if the core TDP constraint 
(φ.TDP) is not met, the scheduled parts of the selected task 
Ti are deleted from φ.S and the selected core φ is removed 
from MC, then, the algorithm goes back to line 12 to try 
again for scheduling the selected task Ti on another core. If 
not all the copies are scheduled in the mandatory phase, 
the algorithm returns infeasible in line 33. After the manda-
tory phase, we schedule  / 2N copies of the tasks based on 
the PPA-LTF policy in the conservative phase. In line 37 to 
57, the algorithm iterates until  / 2N copies of each task 
are scheduled based on the PPA-LTF policy. To do this, we 
choose a core with the lowest utilization to increase the 
efficiency of the cores. In this phase, the variable k is initial-
ized to the first free time slot after the finish time of the last 
copy of the selected task in the mandatory phase (line 39). 
We place the parts of the tasks, beginning from the first 
part, on time slots that come sooner in the schedule φ.S. 
Then, we check free time slots of the core φ one after an-
other and place each part Tij on the first free time slot t 
(t=k→h) such that the peak power consumption of Tij does 

Table 1. The Notation of the Parameters  

Notation Description 

PPC Peak power consumption matrix 

PPCijkh 

The peak power consumption for task i when is 

executed on the core j under the V-f level k at time 

h  

PTDP,Chip Chip TDP constraint 

PTDP,k Core TDP constraint 

Y 
The V-f level assignment and task mapping 

matrix 

Yijk 
The task i mapped to the core j and executed 

under the V-f level k  

R Reliability matrix 

Rijk 
The reliability of the task i when is executed on 

the core j under the V-f level k  

Rreq Reliability requirement 
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not exceed the core TDP constraint and also does not in-
crease the total power consumption beyond the chip TDP 
(lines 40-43). In this case, Tij is placed in the time slot t of 
φ.S in line 44. The power consumption list PPL is updated 
in line 45 and the variable k is updated in line 46. If the core 
TDP constraint (φ.TDP) is violated, the scheduled parts of 
the selected task Ti are deleted from φ.S and the selected 
core φ is removed from MC, then, the algorithm goes back 
to line 38 to choose another core. It should be noted that 
when the current part of the selected task Ti is placed on a 
time slot t, the next part Tij+1 can be placed on the next time 
slot starting from t+1. Finally, if not all the copies are 
scheduled, the algorithm returns infeasible in line 59.  

As explained later, when no fault occurs, we do not exe-
cute  / 2N  copies for each task, which results in consider-
able power saving as compared with conventional NMR. 
In the following, we explain how the proposed method ex-
ploits static and dynamic slack times to reduce power con-
sumption. The dynamic slack is created when  / 2N  cop-
ies of a task are successfully finished during the mandatory 
phase; therefore, the additional  / 2N  copies of the task 
are not executed in the conservative phase. In the offline 
part, we assume that no dynamic slack time exists because 
the amount of dynamic slack times is unknown at the de-
sign time. The challenge of the offline phase is to make ap-
propriate decisions to guarantee the timing requirements 
while also considering the chip TDP in a system. As each 
part of the task Tij is executed at the scaled supply voltage 
ρijVmax, its worst-case execution time of each part increases 
from Wij to Wij/ρij. Since the power trace of a task depends 
on the supply voltage, operational frequency, and input 
data switching activity, the power traces of the tasks are 
changed whenever DVFS is used. For applying DVFS, we 
exploit free time slots on all the schedules such that the 
power constraints are met. When a part of a task Tij is exe-
cuted at the scaled voltage Vij=ρijVmax, considering a linear 
relationship between voltage and frequency, we have: 
fij=ρijfmax, where fij is the operational frequency correspond-
ing to Vij and fmax is the maximum operational frequency. 
Therefore, the execution time of each part of the task Tij is 
lengthened from Wij to Wij/ρij, and by considering 
Vij=ρijVmax and fij=ρijfmax, the total power dissipation which 
is consumed to execute each part of the task is given by Eq. 
3. But, when the execution time of a part Tij is lengthened 
from Wij to Wij/ρij, this part may overlap with other tasks 
that have high power consumption. In this case, if the chip 
TDP constraint is violated, we do not use DVFS and reduce 
peak power and average power consumptions through 
DPM. In order to apply DPM, let assume we have a break 
to sleep time (tcritical). Therefore, if the idle time of a core is 
greater than tcritical, the core switches to sleep mode. To 
identify when to apply DVFS and DPM in the above dis-
cussion, core utilization is often used to assist the determi-
nation of the use of the techniques. The core utilization re-
fers to the fraction of the time that the core spends non-
idle. When the core utilization is low and slack time is 
greater than tcritical, we can use DPM. If slack time is less 
than tcritical, we try to apply DVFS such that the chip TDP 
and core TDP constraints are met. 
As the final discussion of this section, we discuss the time 

Algorithm 1: The task scheduling mechanism of our TP3M scheme 

Inputs: Φ: Application task graph, D: Deadline, N: Parameter N of 

NMR, C: Set of cores, Available V-f levels for each core, 

Tasks’ power trace, and Chip TDP and Core TDP constraints. 

Output: The task scheduling Si on each core Cj. 

BEGIN: 

1:  h=D/CLK_C;                                                  //Total # of time slots in the frame 

2:  PPL[1...h]={0};                         //Initialize the total power consumption array 

3:  for all tasks in Φ do 

4:      Ti = {Tij, 1≤j≤Wi/CLK_C};                            //partition all the tasks into parts 

5:  end for; 

6:  Si={Null, 1≤i≤m};                                        //Initialize S with an empty schedule 

7:  while (all tasks in Φ are not selected) do 

8:    Ti = Φ.select(); //Select the largest unscheduled task whose predecessors  

--                                     have all scheduled; 

9:    q=1;  

10:  MC=C; 

--    //Mandatory phase: Schedule  / 2N copies  

11:  while (q≤  / 2N & MC≠ Ø) do 

12:    φ= MC.minutilization; 

13:    k= Finish_time_of_predecessor(Ti); 

14:    foreach part Tij starting from the first part do 

15:       foreach free slot t=k→h in φ.S do  

16:             if PPL[t]+peak_power(Tij)  ≤ Chip_TDP then 

17:                 if peak_power(Tij) ≤ φ.TDP then 

18:                      φ.S.add(t,Tij); 

19:                      PPL[t] = PPL[t]+ peak_power(Tij); 

20:                      k=t+1; 

21:                      break;  

22:                 else 

23:                      φ.S.delete(Ti);                                  //Delete the task Ti from φ.S  

24:                      MC.remove(φ);                  //Remove φ from MC for the task Ti 

25:                      goto line 12;  

26:                 end if; 

27:             end if; 

28:       end for; 

29:     end for; 

30:     q=q+1; 

31:   end while; 

32:   if not all the copies are scheduled then 

33:       return infeasible; 

34:   end if; 

35:    q=1;  

36:    MC=C; 

--//Conservative phase: Schedule  / 2N copies  

37:    while (q≤  / 2N & MC≠ Ø) do 

38:       φ= MC.minutilization; 

39:       k= Finish_time_of_last_copy(Ti);        //Last copy in the Mandatory phase 

40:      foreach part Tij starting from the first part do  

41:        foreach free slot t=k→h in φ.S do  

42:             if PPL[t]+peak_power(Tij)  ≤ Chip_TDP then 

43:                 if peak_power(Tij) ≤ φ.TDP then 

44:                      φ.S.add(t,Tij); 

45:                      PPL[t] = PPL[t]+ peak_power(Tij); 

46:                      k=t+1; 

47:                      break;  

48:                 else 

49:                      φ.S.delete(Ti);                                  //Delete the task Ti from φ.S  

50:                      MC.remove(φ);                  //Remove φ from MC for the task Ti 

51:                      goto line 36;  

52:                 end if; 

53:             end if; 

54:         end for; 

55:      end for; 

56:      q=q+1; 

57:   end while; 

58:   if not all the copies are scheduled then 

59:       return infeasible; 

60:   end if; 

61: end while; 

END 
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required to meet the TDP, timing and reliability constraints 
simultaneously. Since we shift some tasks to the next time 
slots to reduce peak power, we need more time slots for 
meeting the deadline. In order to shift tasks to the next time 
slots for execution, we should find the exact execution time 
because tasks should not miss their deadlines. It should be 
noted that in this paper, we have focused on meeting TDP, 
timing and reliability constraints simultaneously. There-
fore, our proposed scheme incurs more time overhead as 
compared to other schemes that consider fewer con-
straints, e.g. the references [1], [2], and [5]. For example, in 
the motivational example, the proposed scheme in [2] (Fig. 
1c) schedules tasks before t=120ms, however, it violates 
TDP in several time slots. Therefore, for meeting TDP, tim-
ing and reliability constraints simultaneously, we must 
consider more time slots.  

4.4 An Illustrative Example 

In the following, using an example we illustrate how the 
algorithm works. For simplicity in presentation, this exam-
ple is considered to show the effectiveness of our scheme, 
however, the proposed scheme works for more complex 
and larger task graphs. Let us consider a quad-core chip 
with 3W of TDP that executes an application tasks graph 
with 7 tasks {T1, T2, T3, T4, T5, T6, T7}. In this example, we 
consider a TMR system (i.e., NMR with N=3). Fig. 3 shows 
the step by step generation of our proposed schedule for a 
given task graph (Fig. 3a) using list scheduling with our 
proposed policy. Fig. 3a shows dependencies between the 
tasks where the number placed above each task is its 
worst-case execution time at the maximum supply voltage 
and the maximum operational frequency. These tasks 
share a common deadline D=180ms. At first, by the use of 
the tasks’ power traces in Fig. 3b, we determine the peak 
power values for the different parts of the tasks. Fig. 3c 
shows the schedule with two copies of each task for the 

mandatory phase and with one copy of each task for the 
conservative phase. Based on the lowest utilization first 
policy, in the mandatory phase, two copies of the task T1 
are respectively scheduled on C1 and C2 from the begin-
ning of the execution frame of their designated core. In the 
conservative phase, the third copy of T1 is placed in the 
time slots between 20ms and 40ms on the schedule of C3. 
Then, based on the level-based longest task first policy, we 
select T2 and schedule two copies of T2 on C4 and C3, re-
spectively, such that the chip TDP and the core TDP con-
straints are met. The third copy of T2 is mapped to C1 and 
is scheduled in the time slots between 20ms and 30ms. For 
simplicity, it is assumed that the tasks are not partitioned 
into parts and the task Ti has only one part. For the next 
selected task T3, we map two copies of T3 to C2 and C4 sep-
arately and schedule T3 in the time slots between 40ms and 
80ms on the schedule of C2 and C4. After scheduling two 
copies of T3, we schedule another copy of T3 in the time 
slots between 80ms and 120ms on the schedule of C1 to ob-
tain three results for performing a complete majority vot-
ing. Then, the algorithm selects T5 and schedules respec-
tively two copies of it on C1 and C3 in the time slot [40ms, 
70ms] and the time slot [70ms, 100ms], respectively. Of 
course, we can schedule the second copy of T5 in the time 
slots between 40ms and 70ms on the schedule of C3, but 
scheduling T5 in these time slots can result in the chip TDP 
violation. For the next selected task T4, we place two copies 
of this task after execution of T3 and T5 on C2 and C3, re-
spectively. Of course, we can schedule the second copy of 
T4 in the time slots between 40ms and 70ms on the sched-
ule of C3, but scheduling T4 in these time slots can result in 
the chip TDP violation. The third copy of T4 is scheduled 
on the schedule of C1 in the time slots between 120ms and 
140ms after the execution of the second copy. To schedule 
the tasks of the third level of the graph, at first, we select T7 
and schedule two copies of it in the time slots between 

 

Fig. 3.  An example of how our proposed method works on a multicore system with 4 cores. a) An example task graph, b) Power traces of the 
tasks, c) the schedule with two copies of each task for the mandatory phase and one copy for the conservative phase, d) Final schedule for 
the worst-case scenario with applying DVS, e) Taking advantage of the fault-free execution, f) Applying DVS and DPM in the fault-free scenario.  
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140ms and 160ms on C2 and C3, respectively. After sched-
uling the two copies, we schedule another copy of T7 on 
the core with lowest utilization C4 in the time slots be-
tween 160ms and 180ms. For the next selected task T6, we 
place two copies of it on C1 and C4 in the time slot [140ms, 
150ms] and [150ms, 160ms], respectively. Of course, we 
can schedule the second copy of T5 in the time slots be-
tween 140ms and 150ms on the schedule of C4, but sched-
uling T6 in these time slots can result in the chip TDP vio-
lation. Finally, we schedule the third copy of T6 in the time 
slot [160ms, 170ms] such that the power constraints are 
met. Fig. 3c shows the final schedule where the peak power 
consumption of the system is kept below the chip TDP con-
straint. For applying DVS and DPM, we select tasks that 
can exploit slack times to achieve even further power re-
duction. For this purpose, we allocate static slack times to 
tasks at design time. When we allocate static slack times, 
we assume that no dynamic slack exists, as the availability 
and the amount of dynamic slack times are not known at 
design time. However, at run-time, we also exploit dy-
namic slacks through our online power management for 
further power reduction. In this example, to meeting task 
precedence constraints, we apply the DVS technique to 
some tasks such as T2, T4, T5, and T6 (see Fig. 3d). In Fig. 3, 
the blue straight line shows the real power values at run-
time.  

As we explained earlier, dynamic slack may create at 
run-time due to correct execution and early completion of 
tasks. As the actual execution time of a task is unknown at 
design time, the amount of the dynamic slack time is also 
not known. Meanwhile, when during the execution of 
tasks no fault occurs, the execution of the tasks in the con-
servative phase can be canceled. Fig. 3e shows the case 
where no fault occurs during the execution of the tasks in 

the mandatory phase and causes the tasks in the conserva-
tive phase are dropped because when  / 2N  copies of a 
task are successfully finished during the mandatory phase, 
the additional  / 2N  copies of the task are not required.  
Therefore, we drop all tasks of the conservative phase to 
reduce further power consumption. For instance, in this 
example, we drop the third copy of the tasks T2, T3 and T4 
from the schedule of C1, the tasks T1 and T6 from the sched-
ule of C3 and the task T5 from the schedule of C4 (see Fig. 
3e). For the use of the dynamic slack, we apply the DVFS 
technique to tasks that meet task precedence constraints af-
ter applying DVFS. In this example, we apply DVFS to 
some tasks from the schedule of all the cores (see Fig. 3f).  

5 RESULTS AND DISCUSSION 

In this section, we evaluate the effectiveness of our pro-
posed method via simulation with various task sets includ-
ing real-life embedded applications of MiBench Bench-
mark suite [33] running on a target multicore chip. At first, 
we describe how to generate the task sets and obtain the 
tasks’ power traces. Then we demonstrate substantial 
quantitative improvements by the proposed method.  

5.1 Experimental setup 

In order to evaluate TP3M, we use gem5 full-system simu-
lator [34]. Since ARM processors are widely used in many 
embedded systems, we consider an ARM processor. 
Therefore, a detailed model of ARM processors provided 
by gem5 is used in this study. ARM processors adopt a 
RISC architecture where only load/store instructions are 
allowed to access the memory. Each component of this pro-
cessor is characterized by its static and dynamic power 
consumption. Meanwhile, we considered that the system 
supports DVS and can work at five different voltage and 
frequency levels between [0.85Volt, 1GHz] and 
[1.1Volt, 2GHz]. The details of simulation configurations 
for a single core system are summarized in Table 2. This 
ARM core has an area of 9.74mm2 with 32KB L1 cache and 
a shared 1MB L2 cache.  
To determine the peak power consumption, we ran several 
embedded benchmark applications with their various in-
puts in MiBench benchmark suites on gem5 [34] and 
McPAT [35]. For each task, 100 inputs were randomly gen-
erated as task inputs to obtain the power traces on different 
executions. Also, the applications were selected such that 

Table 3. Characteristics of the benchmark applications  

 BITCOUNT SUSAN MATH CRC32 SHA QSORT JPEG FFT DIJKSTRA LAME GSM 

Execution time 

(ms) 
193.15 118.09 1098.40 2078.51 39.36 206.82 47.89 960.88 89.90 3055.44 704.46 

Energy 

consumption (mJ) 
112.21 67.95 604.26 1107.95 22.51 120.18 29.44 554.07 56.59 1925.32 409.51 

Min. 

Power 

(mW) 

Dynamic 255.83 272.51 253.19 217.18 272.74 197.61 281.73 252.22 288.13 282.229 282.34 

Static 293.327 

Total 549.16 565.83 546.52 510.51 566.07 490.93 575.05 545.55 581.45 575.56 575.67 

Max. 

Power 

(mW) 

Dynamic 576.54 562.61 473.69 431.94 515.79 479.84 536.81 494.01 431.47 458.52 437.3 

Static 293.327 

Total 869.87 855.94 767.01 725.27 809.12 773.17 830.14 787.33 724.80 751.85 730.63 

 

Table 2. The details of simulation configuration 

Processor 

Single-core, five different voltage and 

frequency levels between [0.85Volt, 1GHz] and 

[1.1Volt, 2GHz]. 

Memory 

Main 

Memory 

4GB, 1 channel, 2 ranks, 8 banks per 

rank, Access time: 100 cycles, 

DRAM 

L1 
32KB, 8KB block-width, 4-way, 

Access time: 2 cycles, SRAM 

L2 
1MB, 16-way, 64B line, Write back, 

write: 20 cycles, STT-RAM 
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they introduce a variety of values for the simulation pa-
rameters, i.e. execution time, min/max power consump-
tion, energy consumption (see Table 3). Based on the peak 
power values shown in Table 3, we set the peak power con-
sumption of each task between the minimum and maxi-
mum values of this table.  

Previous work has studied reliability and energy issues 
in embedded systems, but they do not consider peak 
power management, therefore, we focus on peak power re-
duction such that preserve the reliability of the system at 
an acceptable level. To the best of our knowledge, this pa-
per is the first attempt that addresses peak-power manage-
ment and fault-tolerance in conjunction. Therefore, we 
compare our method with state-of-the-art power manage-
ment techniques. The comparison partners in our evalua-
tions are:  
 LE-NMR: An implementation of the technique that 

was presented in [2]. This technique proposed an N-
modular redundancy with low energy overhead for 
multicore embedded systems. This technique executes 
the tasks in two phases: the indispensable phase and 
on-demand phase. In this paper, when a task has no 
faulty during the indispensable phase, the time which 
is reserved for its copies in the on-demand phase is re-
claimed to significantly reduce energy. We chose LE-
NMR to highlight the important differences between 
peak-power management and energy management. 
Another reason to select LE-NMR for the comparison 
is that it is a recent work with similar situations to our 
proposed method. Our implantation of the technique 
in [2] only considers the two-phase execution of tasks 
along with a simple DVS technique and the DVS opti-
mization proposed in [2] is not considered in this im-
plementation.  

 RAPM: This technique is proposed in [30]. For the fair 
comparison, we assumed that RAPM uses N-1 backup 
tasks for each task to achieve fault tolerance. This tech-
nique proposed both individual-recovery and shared-
recovery based reliability-aware power management 
heuristics.  

 CNMR: The conventional NMR scheme, called 
CNMR, we consider that each task has N-1 copies. All 
N copies of each task are executed in parallel (see Fig. 

1b). The CNMR technique only uses the static slack 
time to reduce average power consumption. 

 [5]-NMR: This technique is proposed in [5], and we 
have assumed that [5] uses N-1 backup tasks for each 
task to achieve fault tolerance. This technique is pro-
posed by scheduling the sleep cycles for each core to 
reduce peak power consumption. 

To compare TP3M with state-of-the-art power manage-
ment techniques, we used both synthetic and practical ap-
plication task graphs. In order to cover both synthetic and 
practical application task graphs, we used the Graphs For 
Free (TGFF) task graph generator [36] and the Standard 
Task Graph set (STG) [37]. The tasks of synthetic task 
graphs were randomly selected from the MiBench bench-
mark and the different parameters of the selected tasks 
were taken from Table 3. In the experiments, task graphs 
with 10, 50, 100, 500 tasks were considered that each task 
graph has different parallelism degree [2]. In our experi-
ments, we considered three classes of task graphs with dif-
ferent parallelism degrees (like the work [2]). We need the 
mentioned parameter to analyze the effectiveness of our 
technique. It is known the height of the task graph can be 
used to take the parallelism degree for task graphs with the 
specific number of tasks [2]. Based on it, in the 
experiments, three classes of task graphs with different 
parallelism degrees are considered. If n be the number of 
tasks in a task graph and h be the task graph height, h can 
vary between 1 (the highest parallelism degree) and n (a 
chained task graph with the lowest parallelism degree). 
Therefore, in the experiments, we consider the following 
classes: i) task graphs with high parallelism degree that the 
height of them is 1≤h≤n/3, ii) task graphs with medium 
parallelism degree that the height of them is n/3≤h≤2n/3, 
and iii) task graphs with low parallelism degree that the 
height of them is 2n/3≤h≤n. We also considered a different 
number of cores in our experiments. We conducted exper-
iments on chips with 4, 8, 12 and 16 cores. We compared 
TP3M with the four selected schemes (LE-NMR, RAPM, 
CNMR, and [5]-NMR) for: i) the worst-case scenario when 
the system consumes the maximum possible power (Sec-
tion 5.2) and ii) the average-case scenario including both 
faulty and fault-free scenarios when the system consumes 
real power (Section 5.3).   
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(c) 
Fig. 4. Power consumption profile in the worst-case scenario on a 4-core system, a) Low parallelism degree, b) Medium parallelism degree, 
c) High parallelism degree. 
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5.2 Worst-case Analysis 

The worst-case scenario determines the maximum power 
consumption by the system because all N copies of each 
task are executed in this scenario (N=5 in this subsection). 
Therefore, it can be considered a good condition for com-
paring peak power and average power management tech-
niques. Fig. 4 shows the power consumption of our TP3M 
scheme and the LE-NMR technique for different parallel-
ism degree with 100 tasks on a 4-core system. This figure 
shows that TP3M consumes less peak power than LE-NMR 
because TP3M distributes power consumption over the 

whole execution frame. In this figure, the dashed line is the 
TDP constraint. As Fig. 4 shows, the LE-NMR technique 
misses this TDP constraint. In Fig. 4, we have used only 
one random task set for each system configuration. To pro-
vide a more detailed analysis, for each system configura-
tion, we used more task sets and then the average results 
are shown in Fig. 5. Each case of this figure was simulated 
for 1000 times with different parameters of the applications 
(i.e., tasks’ worst-case and actual execution times and ap-
plication deadline) and the average results are reported. 
This figure shows the maximum peak power consumption 
for TP3M, LE-TMR, RAPM, CNMR, and [5]-NMR. From 
Fig. 5 it can be concluded that:   
 When the number of cores increases, the peak power 

reduction of TP3M is higher than other schemes. In 
this case, TP3M provides up to 45.3%, 47.6%, 50% and 
27.5% peak power reduction as compared to the LE-
NMR, RAPM, CNMR, and [5]-NMR  schemes, respec-
tively. 

 It can be seen from Fig. 5 that, when the parallelism 
degree of task graphs increases, the peak power con-
sumption of TP3M do not increase, while other 
schemes increase it. The peak power consumption of 
TP3M is always less than the other four systems.  

 When the parallelism degree of task graphs increases, 
the difference between the peak power consumption 
of TP3M and the four schemes increase. In this case, 
the effectiveness of our TP3M scheme than all the 
other schemes has been demonstrated.  

We also compared TP3M with N=3 and N=7 with LE-
NMR, RAPM, CNMR, and [5]-NMR. The experiments 
demonstrate that TP3M completely outperforms the four 
schemes from the peak power consumption viewpoint. 
The TP3M method with N=3 and N=7 provides on average 
respectively 40.1% (up to 50%) and 38.7% (up to 50%) peak 
power reduction as compared to the four schemes.  

5.3 Actual-case Analysis 

In this case, we investigate the actual conditions where 
both faulty and fault-free execution scenarios were consid-
ered. To generate fault rate and pattern, in our experi-
ments, transient faults were generated using a Poisson pro-
cess where the fault rate λ corresponding to different volt-
age levels was modeled using (4) under the parameters 
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(c) 
Fig. 6. Power consumption profile in the actual-case scenario on a 4-core system, a) Low parallelism degree, b) Medium parallelism degree, 
c) High parallelism degree. 

 
 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

(c) 
Fig. 5.  Normalized peak power to the chip TDP in the worst-case 
scenario. a) Low parallelism degree, b) Medium parallelism de-
gree, c) High parallelism degree. 
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λ0=10-6 faults/us and d=2 [22]. Therefore, the fault rate var-
ies between 10-6 faults/us corresponding to fmax and 10-2 
faults/us corresponding to fmin. Therefore, at first, we gen-
erate a fault vector that determines at which times faults 
occur.  Then, based on the fault vector, we decide which 
task becomes faulty during the execution of a task set. 
Since transient faults are rare in nature, our TP3M scheme 
achieves further power reduction at runtime beyond what 
is achieved through the offline part of TP3M at design-
time. Meanwhile, when a task Ti is executed successfully in 
the mandatory phase at runtime and is dropped its copies 
from the schedule of the conservative phase, the dynamic 
slack time is released that can be exploited by DVS to re-
duce the power consumption of the tasks in the mandatory 
phase at runtime. Fig. 6 shows the power consumption 
trace of the execution task sets that were deployed in Fig. 4 
where some tasks may become faulty. Like the worst-case 
scenario, in this case, TP3M consumes less power than LE-
NMR due to its different schedule and better peak power 
management scheme. Also, TP3M distributes power con-
sumption over the whole execution frame and reduces 
peak power over time. It can be seen from Fig. 6 that both 
the schemes consume no power at the end of the execution 
frame. This is because  / 2N copies of each task may have 
already finished successfully (when no fault occurs) and 
 / 2N  copies of the tasks are canceled. Therefore, consid-
ering that the fault rate is low, almost always at the end of 
each execution frame, there is no task to be executed and 

the underlying cores go to sleep mode and consume no 
power.   

Fig. 7 shows the energy consumption of TP3M, LE-NMR, 
RAPM, CNMR and [5]-NMR schemes where the energy 
consumption has been normalized with respect to the en-
ergy consumption of TP3M. These observations can be 
made from Fig. 7:  
 It can be seen from Fig. 7 that when the parallelism de-

gree of task graphs increases, the energy consumption 
decreases. This is because the amount of dynamic 
slack times increases, and hence we can achieve signif-
icant energy savings. However, the energy consump-
tion of TP3M is always less than the other three 
schemes (RAPM, CNMR, and [5]-NMR). 

 When the task graph parallelism degree increases 
from low (Fig. 7a) to high (Fig. 7c), the energy con-
sumption of TP3M is always less than or equal to the 
other schemes. TP3M provides in average respectively 
30.7% (up to 37.8), 23.4% (up to 28%) and 36.5% (up to 
42.5%) energy saving as compared to CNMR, RAPM 
and [5]-NMR.  

 While TP3M provides almost the same energy con-
sumption as LE-NMR (Fig. 6), but TP3M consumes 
much less energy than CNMR, RAPM and [5]-NMR 
(Fig. 7) and consumes much less peak power than four 
schemes mainly because of the more sophisticated 
power-management technique that TP3M uses. 

We also compared TP3M with N=3 and N=7 with RAPM, 
CNMR, and [5]-NMR. The experiments show that TP3M 
completely outperforms the three schemes from both the 
energy and peak power consumption viewpoints. The 
TP3M scheme with N=3 and N=7 provides on average re-
spectively 22.6% (up to 32.7%) and 26.9% (up to 44.3%) en-
ergy saving as compared to three mentioned schemes.  

6. Conclusion 

In this paper, we have presented a solution to reduce peak 
power consumption on multicore embedded systems, 
which uses fault-tolerance techniques to achieve high reli-
ability. We have developed a new scheduling algorithm 
(TP3M) that avoids concurrent execution of tasks based on 
one policy called the peak-power-aware longest task first. 
The proposed method tries to remove overlaps of the peak 
power of concurrently executing tasks to keep the maxi-
mum power consumption below the chip TDP constraint. 
Meanwhile, the proposed scheme considers that the power 
consumption of the core must be less than the core TDP 
constraint. Also, we use the DVS technique to reduce the 
instantaneous power dissipation on each core. At runtime, 
we exploit a scheme that provides further power reduction 
in the realistic scenario. It cancels the execution of the 
 / 2N  copies of those tasks that during the execution of 
their  / 2N  copies no fault has occurred. The experimental 
results show that TP3M provides up to 50% peak power 
reduction and 44.3% energy saving as compared to state-
of-the-art schemes. 
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Fig. 7.  Normalized energy consumption to TP3M in the worst-
case scenario. a) Low parallelism degree, b) Medium parallelism 
degree, c) High parallelism degree. 
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