
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID 1

ReMap: Reliability Management of Peak-Power-

Aware Real-Time Embedded Systems

through Task Replication

Amir Yeganeh-Khaksar, Mohsen Ansari, and Alireza Ejlali

Abstract—Increasing power densities in future technology nodes is a crucial issue in multicore platforms. As the number of cores increases

in them, power budget constraints may prevent powering all cores simultaneously at full performance level. Therefore, chip manufacturers

introduce a power budget constraint as Thermal Design Power (TDP) for chips. Meanwhile, multicore platforms are suitable for the

implementation of fault-tolerance techniques to achieve high reliability. Task Replication is a well-known technique to tolerate transient faults.

However, careless task replication may lead to significant peak power consumption. In this paper, we consider the problem of achieving a

given reliability target while keeping the total power consumption under the chip TDP for a set of periodic soft real-time tasks. For this purpose,

we propose a method for mapping and scheduling periodic soft real-time tasks in multicore embedded systems. The proposed method consists

of three parts: (i) Reliability-Aware Lowest Utilization Mapping, (ii) Maximum-Power-Aware EDF Scheduling, and (iii) Reliability-and-Peak-

Power-Aware Dynamic-Voltage-Frequency-Scaling. Our experiments show that our proposed method provides up to 38.4% (on average by

25%) peak power reduction compared to state-of-the-art methods.

Index Terms—Reliability, Task Replication, Embedded Systems, Multicore Platforms, Thermal Design Power

—————————— ——————————

 Introduction

UE to technology scaling, the power density of multicore
platforms is significantly increased [1][2][3][4]. It is an im-

portant issue because technology scaling continues to allow
more transistors to be integrated onto a multicore chip while
power budgets restrict the design of multicore embedded sys-
tems [1][2][3][4][5][6][30]. It is envisaged that all cores in a mul-
ticore chip cannot be simultaneously powered on at the highest
performance level [1][6][32]. Due to the Thermal Design Power
(TDP) constraint, system designers must decide how to use dif-
ferent cores in multicore platforms. According to [7], TDP is con-
sidered as “the highest sustainable power that a chip can dissi-
pate without triggering any performance throttling mecha-
nisms”. Therefore, TDP is a power constraint that the system
should meet it to operate safely without degrading the system
reliability and performance [11][29][30][32]. Violating the chip
TDP may automatically restart some cores or may significantly
reduce their performance to prevent permanent damage [30].

Apart from the power issue, most of the embedded systems
require high reliability level. It should be noted that the device-
density in the chips because of the technology scaling increases

the probability of fault occurrence, e.g. transient faults. Indeed,
technology scaling raises the susceptibility of these systems to
transient faults [8][9][10][11][24][28][32][38]. Transient faults
may occur in the form of soft errors with incorrect results [8].
Since multicore systems are suitable for implementing reliabil-
ity mechanisms against transient faults such as task-level redun-
dancy [8][12][13], these mechanisms may increase peak power
consumption and may cause violating the chip TDP constraint.
Task replication is a quite viable option for reliability improve-
ment in the embedded systems with multiple processing
cores [8][9]. When multiple copies of the same task are executed
on multiple cores, the correct execution of at least one of them is
required for the system to be functional. Also, it may tolerate
permanent and transient faults and creates a powerful dimen-
sion to improve the system reliability by executing multiple cop-
ies. In the following, we show how careless task replication may
result in a chip TDP violation.

1.1 Motivational Example

For simplicity of presentation, given the homogeneous dual-
core chip with 500mW of TDP that executes three tasks {T1, T2,
T3}, and their replicas. The number of tasks’ replicas, their peri-
ods, and power profiles are shown in Fig. 1a. The hyperperiod
of the task set is 100ms. We assume that each task has the same
reliability on the different cores. It should be noted that in our
ReMap scheme and in the rest of the paper, the tasks have dif-
ferent reliabilities even when executing on the different cores.
Also, they consume different power consumption during their
execution.

Two different possible schedules are shown in Fig. 1. The

[8]-EM method uses task replication in such a way the reliability
level of the system satisfies the reliability target and minimizes

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

D

————————————————

 A. Yeganeh-Khaksar, M. Ansari, and A. Ejlali are with the Department of Com-
puter Engineering, Sharif University of Technology, Tehran 14588, Iran (e-
mail: ayeganeh@ce.sharif.edu; mansari@ce.sharif.edu; ejlali@sharif.edu).

 M. Ansari is also with the Karlsruhe Institute of Technology, Karlsruhe 76131,
Germany (e-mail: {Mohsen.ansari@kit.edu).

Manuscript received 23 Dec. 2019; Revised 2 July 2020; Accepted 19 Aug. 2020;
(Corresponding author: Alireza Ejlali.)
For information on obtaining reprints of this article, please send e-mail to: re-
prints@ieee.org, and reference the Digital Object Identifier below. Digital Object
Identifier no. X.Y/X.Y

mailto:ejlali@sharif.edu

2 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

the energy of the system. As shown in Fig. 1, this method vio-
lates the chip-level TDP constraint in several time slots. Fig. 1c
shows how ReMap schedules tasks according to the modified
EDF scheduling policy to meet the TDP constraint. To achieve
this, the ReMap tries to prevent overlaps of peak power of con-
currently executing periodic tasks. This motivational example
shows [8]-EM cannot solve the problem of meeting TDP for task
replication mechanism considering a reliability target; however,
the ReMap scheme improves the reliability of the tasks through
task replication such that timing and peak power constraints are
met. Note that in Fig. 1 Ti and Bi represent the main task and the
replica task, respectively.

1.2 Our Novel Contribution

In this paper, we propose a peak-power-aware task replication
mechanism (called ReMap) for a set of periodic soft real-time
tasks on multicore embedded systems. The proposed method
employs the task replication mechanism to satisfy the system
reliability target. To satisfy a given reliability target and meet
the TDP constraint, the level of replication and the voltage and
frequency for each task should be determined cautiously. In-
deed, the ReMap method schedules periodic soft real-time tasks
on multiple cores such that satisfies timing constraints, the sys-
tem reliability target, and the chip TDP constraint. For this pur-
pose, ReMap finds the minimum level of task replication, V-F
level assignment, and core allocation for each task at design
time. Then, ReMap schedules tasks according to the modified
EDF scheduling policy to meet the TDP constraint. At run time,
ReMap detects the tasks that have executed successfully
through a low-cost hardware checker and cancels the execution
of their other replicas to reduce further peak power consump-
tion and achieve more energy saving. Indeed, the ReMap
method tries to prevent overlaps of peak power of concurrently

executing periodic tasks such that it keeps the power consump-
tion below the chip TDP. ReMap consists of three parts: (i) Reli-
ability-Aware Lowest Utilization (RA-LU) Mapping, (ii) Maxi-
mum-Power-Aware Earliest-Deadline-First (MPA-EDF) Sched-
uling, and (iii) Reliability-and-Peak-Power-Aware Dynamic-
Voltage-Frequency-Scaling (RPPA-DVFS) for energy manage-
ment.

In order to evaluate ReMap, we ran simulations with
gem5 [14] and McPAT [15] to compare ReMap and state-of-the-
art methods. Our experiments show that ReMap provides up to
38.4% (on average by 25%) peak power reduction compared to
state-of-the-art methods.

The rest of this paper is organized as follows. In Section 2,
we review related work. We present models and assumptions
in Section 3. In Section 4, ReMap is presented in detail. The ex-
perimental results are reported and discussed in Section 5. Fi-
nally, we conclude the paper in Section 6.

 Related Work

The previous work related to this paper can be divided into
three categories: i) peak power management, ii) average power
management, and iii) temperature management.

2.1 Peak Power Management

The references [2], [4], [16], [30], and [32] can be mentioned as
works that their main concern is reducing peak power con-
sumption in compliance with timing constraints. Lee et al. [4]
have presented a scheduling algorithm for real-time tasks while
minimizing power consumption at the chip level. In the men-
tioned algorithm, no extra hardware has been used to reduce
power consumption like the DVFS controller, and the algorithm
only relies on scheduling tasks at the software level, and its
main idea is to create limits to the parallel execution of tasks as-
signed to different cores. Also, it should be noted that this work
does not consider fault tolerance. Munawar et al. [2] have pre-
sented a procedure that minimizes peak power by scheduling
the sleep cycles of active cores in multicore systems with frame-
based tasks that have a shared deadline. Lee et al. [16] have pre-
sented a scheduling algorithm for task graph models with data
dependency, which prevents the violation of peak power con-
straint. Ansari et al. [30] have proposed a method that manages
peak power overlaps between concurrently executing tasks in
N-Modular Redundancy (NMR) systems while keeping the to-
tal power consumption below the chip TDP and the power con-
sumption of each underlying core below the core TDP con-
straint. Recently, Ansari et al. [32] have considered a standby-
sparing system where the main tasks on primary cores are sched-
uled by the PPA-EDF policy while the backup tasks on spare
cores are scheduled by the PPA-EDL policy to meet the chip TDP
constraint.

2.2 Average Power Management

One of the well-known techniques for reducing average power
consumption is “Dynamic Voltage and Frequency Scaling
(DVFS)” which works by scaling supply voltage and operating
frequency [8][9][10][19][20]. The application of this technique
depends on the amount of slack times on the schedule of the
system. Another well-known technique is “Dynamic Power
Management (DPM)” which reduces the power consumption of
the whole system by power gating of inactive components [1][2].

#
 R

e
p

li
c

a
s

P
e

ri
o

d
 (

m
s

)

Power Trace
(×100mW)

T
a

s
k

1
 (

R
e

d
)

T
a

s
k

2
 (

B
lu

e
)

T
a

s
k

3
 (

G
re

e
n

)

T1 2 20 [1-2-3-4-2]
T2 1 50 [1-1-2-3-4-2-3-1] Core1 T1 & B12 B2 ---
T3 0 50 [1-2-1-2-1-3-2-1-3-3-1] Core2 B11 T2 T3

(a)

(b)

(c)

Fig. 1. Peak power problem of careless task replication on a homogeneous
dual-core chip, a) An example set of tasks with their mappings, b) Scheduling
the tasks according to the [8]-EM, and c) Scheduling the tasks according to
the ReMap scheme (Our scheme).

YEGANEH-KHAKSAR ET AL.: ReMap: Reliability Management of Peak-Power-Aware Real-Time Embedded Systems through Task Replication 3

The references [8], [17], [18], [19], and [20] have focused on re-
ducing average power consumption by employing the men-
tioned techniques. Haque et al. [8] have considered the problem
of achieving a given reliability target for a set of periodic real-
time tasks running on a multicore system with minimum energy
consumption. Their proposed method explicitly takes into ac-
count the coverage factor of the fault detection techniques and
the negative impact of Dynamic Voltage Scaling (DVS) on the
rate of transient faults leading to soft errors. Khavari et al. [17]
have proposed a feedback-based energy management approach
to estimate the execution time of real-time tasks, the relationship
between past and future workloads. Ejlali et al. [18] have pro-
posed an energy management method for frame-based tasks
such that the system reliability is preserved at an acceptable
level. Haque et al. [19] have presented an approach to reduce
energy consumption in the form of a standby-sparing system for
preemptive periodic tasks. In this work, the primary core uses
DVFS and the spare core uses DPM to reduce energy consump-
tion. Haque et al. [20] have employed the Rate Monotonic
Scheduling (RMS) algorithm on a standby-sparing system for
fixed priority applications, where DVFS and DPM are used on
the primary core and the spare core, respectively.

2.3 Temperature Management

Related studies that focused on heat and temperature manage-
ment can be found in [1], [21], and [22]. Pagani et al. [1] have
proposed a new power budgeting concept called "Thermal Safe
Power (TSP)", which provides a safe and efficient power alloca-
tion for each core based on the number of active cores in multi-
core systems with heterogeneous and homogeneous cores. The
execution of tasks on cores while their power consumption is
below TSP means that the highest chip temperature is always
lower than the temperature threshold to prevent activating "Dy-
namic Thermal Management (DTM)". Jejurikar et al. [21] have
proposed a method for allocating and scheduling tasks in hard
real-time systems such that it reduces the chip temperature to a
reasonable degree. Fisher et al. [22] have presented a tempera-
ture-aware scheduling mechanism that employs a method that
migrates the tasks between cores and gates the power supply.

Finally, the work in high correlation to ours is [8], but the
objective function of [8] is energy minimization while in this pa-
per is peak power minimization. Indeed, [8]-EM has developed
a solution for managing energy consumption without consider-
ing the chip TDP constraint. However, in this paper, we propose
the MPA-EDF scheduling method that avoids overlaps of peak
power of concurrent execution of periodic tasks, keeping the
power consumption below the chip TDP. Therefore, the appli-
cation can be executed in the system without reliability and per-
formance degradation. Our proposed method along with the
achievement of power reduction due to early completion of task
and cancellation of replicas attempts to prevent overlaps of peak
power of concurrently executing periodic tasks such that it al-
ways keeps the power consumption below the chip TDP con-
straint. The mapping mechanism of [8] is the well-known First-
Fit-Decreasing (FFD) heuristic to allocate the tasks to the cores.
However, in this paper, we propose the RA-LU mapping
method that determines the exact number of replicas for each
periodic task such that system reliability is preserved at an ac-
ceptable level. Also, RA-LU proposes the lowest utilization
mapping mechanism to distribute the slack times on all cores

and reduce the aging effects on the cores. In this paper, we pro-
pose the RPPA-DVFS energy management method that man-
ages static slacks which may be generated during MPA-EDF
scheduling to reduce further power and energy consumption.
Since DVFS reduces the supply voltage and processing fre-
quency, based on Eq. (2), the fault rate increases exponen-
tially [39]. Also, increasing the execution time of tasks due to
frequency reduction may result in deadline violation. Therefore,
we introduced an improved DVFS technique to meet the chip
TDP constraint, reliability target, and real-time constraints sim-
ultaneously in multicore embedded systems.

As discussed, the related work did not solve the problem of
meeting TDP for the task replication mechanism considering a
reliability target. Consequently, this paper proposes a method
that exploits the task replication mechanism to improve the re-
liability of the tasks such that real-time and power constraints
are met.

 Models and Assumptions

In this section, we present our system, application, power, and
fault models. We also analyze the system reliability in this sec-
tion.

3.1 Processor Model and Workload

Our proposed system executes a set of N periodic real-time tasks
T={τ1, τ2, τ3, …, τN} with a soft deadline. It is assumed that the
tasks are independent of each other and there is no data depend-
ency between them [19]. Each task τi has a worst-case execution
time wci in the maximum frequency fmax. Each τi produces a se-
quence of jobs with a period ρi, and the job execution of each
task must be completed before the arrival of the next job of the
task. The utilization of each task τi, as noted by ui, is defined as
wci/ρi. The Utotal is the overall utilization of the system and it is
obtained from the sum of the individual tasks’ utilization. The
workload is executed on M cores C={c1, c2, c3, …, cM}. Each core
cj can execute tasks on K different frequency levels from fmin to
fmax, and F={f1=min, f2, …, fK=max} is used to indicate the feasible
frequency levels. In the frequency fk, the core needs wci/fj time
slots for the execution of task τi. In this paper, Rtarget is the re-
quired and desirable system’s reliability for the special purpose
and for its special design and usage. In order to satisfy Rtarget we
use task replication mechanism. In order to reach this level of
reliability, the number of replicas might exceed the number of
cores.

3.2 Power Model

Our power model is similar to [23], [25], and [27]. The power
consumption of each core is made up of dynamic and static
power. As it is thoroughly discussed in [26], the power con-
sumption of a common CMOS based core at a certain time can
be modeled by [33]:

 2

, , ,

 ,

ind dep

ind

s d sCore dd d d

dd leakage dd d eff dd

f T t P P

V I V T P u t C V f

P V P P P

 (1)

In Eq. (1), uτ(t), Ceff, Vdd, f, and Ileakage are the coefficient of
core transient activity for task τi in the time t, the effective
switching capacity of the core, the power supply, the core oper-
ating frequency, and the leakage current, respectively. Also,

Pdind
 is the frequency-independent dynamic power consump-

tion which indicates the power consumption that the core re-
quires for maintaining the operating mode. Ps is the static power

4 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

and it is mostly determined by the system’s leakage current. It
should be noted that Ps dependent on the supply voltage and
core temperature, i.e. the higher the temperature, the more the
current increases. In this regard, 2. . .eff ddu t C V f

is the dynamic

power consumption which depends on the core frequency and
produced due to the switching activities. ,. dd leakage ddV I V T indi-

cates the leakage power consumption, which is mostly pro-
duced due to the leakage currents. According to the above dis-
cussion, the cores with the lower frequency and voltage levels
lead to lower power consumption.

3.3 Reliability Model

As it was mentioned earlier, one method for increasing the sys-
tem reliability is task replication. If the main tasks and their
replicas are mapped on different cores of a system, the system
will be able to tolerate transient to permanent faults. On the
other hand, considering the occurrence of transient faults, the
task replication method tries to fix the faults through time re-
dundancy. Our fault model is similar to previous work [8]. The
average failure rate of the system is dependent on the fre-
quency of the processing core and is obtained according to Eq.
(2), in which λ0 and d are the failure rate at the maximum fre-
quency and the sensitivity to voltage changes, respectively. In
this paper, we consider d=2 and λ0=10-7 faults/us. Transient

faults are typically modeled as a Poisson distribution using the
average failure rate of λ [8][9]. This rate significantly increases
with the decrease in supply voltage for lower frequency [39].
In the situation of fixed supply voltage, the average fault rate

is modeled as λ(f, V) = λ(f) = λ0∙f b [40]. It reduces linearly
with the decrease of frequency (using Dynamic Frequency
Scaling) due to larger safety margins in clock cycles [40]. On
the other hand, in the situation of voltage scaling, the average
fault rate is modeled as Eq. (2), and decreasing supply voltage
increases the fault rate exponentially, which means if the fre-
quency and supply voltage are reduced (using DVFS), the av-
erage fault rate λ increases significantly . Meanwhile, it should
be noted that the DVFS technique is used in this system, and
hence, Eq. (3) should be used to calculate the task’s reliability
with the actual execution time t in different voltages and fre-
quencies [8][9][10]:

max

0() 10
iV V

d
iV

 (2)

()
() i iV t

i iR e

 (3)

In Eq. 3, λ(Vi) is given by (2). When k identical copies of a task τi
are executed on k different cores, the total reliability of the task

is defined as the probability of having at least one successful ex-
ecution and is calculated as Eq. (4):

1

() 1 (1)
k

jtotal i
j

R R

(4)

Generally, the reliability of a system with n tasks running
by our proposed method can be calculated as:

1

()
n

system total i

i

R R

 (5)

It should be noted that in the paper we employ a low-cost,
low power, and high accuracy hardware checker called Ar-
gus [37]. Our ReMap scheme uses Argus for fault detection on
multicore embedded systems at runtime, like [33]. Runtime ex-
ecution increases on average by 3.9% using Argus [37], and we
consider this overhead within the worst-case execution time of
each task. Indeed, ReMap detects the tasks that have executed
successfully using Argus and cancels the execution of their
other replicas to reduce further peak power consumption and
achieve more energy saving.

 Our Proposed Method

4.1 Problem Definition and System Overview

In this paper, one of the constraints is meeting the reliability tar-
get. Since Eq. 5 is an exponential equation, the mentioned prob-
lem is convex [8][33][36]. The convex formulated problem can
be solved by the available convex (CVX) solvers, and it is cate-
gorized as an NP-Complete problem [1][2][4]. On the other
hand, the complexity of such problems may increase exponen-
tially with the increase of problem size, e.g., with the number of
tasks, cores, and frequency levels. Therefore, we have proposed
a heuristic-based method to provide an effective solution for the
presented problem.

An overview of design flow of ReMap is shown in Fig. 2.
In our framework, the features of the ARM Cortex-A proces-
sors in gem5 and McPAT tools are used to generate power
traces. To achieve the purpose of this study, we provide a sys-
tem-level peak power management method. This method in-
cludes three phases: mapping, scheduling, and energy man-
agement. The Reliability-Aware Lowest-Utilization (RA-LU)
task mapping mechanism, in which mapping operations to the
cores are done with respect to their utilization and with relia-
bility awareness, is discussed in Subsection 4.2. In Subsection
B.2, the Maximum-Power-Aware Earliest-Deadline-First
(MPA-EDF) scheduling mechanism that schedules the tasks
according to their deadline and peak power consumption is ex-
plained. The main purpose of MPA-EDF is offline task sched-
uling in a way that does not violate the TDP. The Reliability-
and-Peak-Power-Aware Dynamic-Voltage-Frequency-Scaling
(RPPA-DVFS) energy management mechanism will also be in-
troduced in the Subsection B.3), which describes the reduction
of average power consumption by DVFS technique and with
the awareness of peak power consumption and acceptable sys-
tem reliability.
4.2 The Proposed Method Discussion

In this section, we express our method’s algorithms. The no-
tation of the parameters used in our algorithms is described
in Table 1.

I) RA-LU Mapping

 Fig. 2. The overview of the design flow of ReMap.

YEGANEH-KHAKSAR ET AL.: ReMap: Reliability Management of Peak-Power-Aware Real-Time Embedded Systems through Task Replication 5

Algorithm 1 shows the pseudo-code of the task mapping mech-
anism of our ReMap method that receives reliability target, sets
of tasks and cores to create tasks’ maps for the scheduling part.
At first, Algorithm 1 initializes the reliability of the system to 1
and makes a copy of the set of tasks, and also constructs the
TCFR table in line 1. In the TCFR table, the reliability values for
all tasks are given for different cores, and voltages/frequencies.
In TCFR, Rijk is the reliability value of the task τi on the core cj
with the frequency fk obtained using Eq. (3). In line 2, two flags,
assignFlag and errorFlag, are defined and initialized to false for
the algorithm. Next, the algorithm iterates as long as there is a

task in the set �̂� (lines 3-11). In line 4, the function findMinU(C)
returns the core with the lowest utilization from the set of core
C. In the next step, when a task is mapped to the selected core,
the algorithm marks the task and changes the assignFlag to true.
This is because, before everything, the algorithm should un-

mark all tasks in �̂� and change assignFlag to false. Now, the algo-

rithm iterates until there is a task in the set �̂� − {marked tasks}
(lines 6-10),. Indeed, the algorithm investigates all the unmarked
tasks to map a core with the lowest utilization. The function find-
MaxR(T,C,f) returns the task with the highest reliability from the
task set T for the frequency f and the set of core C (according to
the TCFR table). In line 7, considering the highest frequency, the

algorithm maps a task in the set �̂� − {marked tasks} with the
highest reliability to the core with the lowest utilization. In line
8, the function assignTask(τ, c) is used to map the task τ to the
core c. If the mapping operation is successful, it returns a zero
value. Otherwise (due to the high utilization), a non-zero value
is returned. If the mapping operation is successful (line 9), the

algorithm omits the selected task from set �̂� and changes as-
signFlag to true, and then the algorithm goes to line 11. Other-
wise (line 10) the selected task is marked and the While loop is
repeated. After the While loop, if assignFlag remains false, which
means none of the initial tasks could be mapped to the core with
the lowest utilization, the algorithm changes errorFlag to true
and returns false (line 35). In line 12, the reliability of all tasks
and the reliability of the system are updated, and also another
copy of the set of tasks is considered. Up to this line, the algo-
rithm attempts to do the initial task mapping. In the following
sequence (lines 13-29), the algorithm iterates and attempts to
replicate tasks to satisfy the reliability target. Similar to the find-
MaxR(T,C,f) function, the findMinR(T,C,f) function returns the

task with the lowest reliability from the task set T for the fre-
quency f and the set of core C. In line 15, considering the highest
frequency and the set of core C, the algorithm selects a task τ in

the set of tasks �̂� with the lowest reliability.
Since the algorithm attempts to distribute replicas between

different cores to tolerate both transient and permanent faults,
all the cores with at least one replica of the task τ are marked in
line 16. In the inner While loop (lines 17-20), the algorithm iter-
ates for each core in the set C − {marked cores}, and then a core
with the lowest utilization is selected from C − {marked cores}
in line 18. If mapping operation is successful (line 19), the algo-
rithm changes assignFlag to true and goes to line 21. Otherwise
the selected core is marked in line 20 and the While loop is re-
peated. After doing inner While loop (lines 17-20), if assignFlag
remains false, the core with the lowest utilization is selected in-
stantly for mapping in line 22. If mapping operation to the core
with the lowest utilization is successful (line 24-25), the algo-
rithm updates the reliability of all tasks and the reliability of the
system and goes to line 13. Otherwise, replicas may increase so
much due to the low-reliability level of each task or the high
level of the desired system reliability, and they cannot be
mapped as the result of timing and utilization constraints. In

 Table 1. The Notation of the Parameters

Notation Description

T A set of tasks
C A set of cores

 Rtarget The reliability target of the system

 Rtotal The reliability of the system
τk,l The lth replica of a task τk

j
τk,l

i The ith job of the task τk,l

j
τk,l

i .f The frequency of the job j
τk,l

i

j
τk,l

i .rt The release time of the job j
τk,l

i

j
τk,l

i .ex The execution time of the job j
τk,l

i

j
τk,l

i .dl The deadline of the job j
τk,l

i

 j
τk,l

i .li The last scheduled time of the job j
τk,l

i

RQ A ready queue of task instances (jobs)
ST A set of slack times

Algorithm 1. The task mapping mechanism (RA-LU) of
ReMap

Input: set of tasks (T), set of cores (C), Rtarget

Output: The tasks mapping on each core

start RA-LU
1: Rtotal ← 1; �̂� ← T; Construct the TCFR table;
2: errorFlag ← false; assignFlag ← false;
3: while (∃ τ ∈ T̂) and !errorFlag
4: c ← findMinU(C);
5: unmark all tasks in �̂�; assignFlag ← false;
6: while (∃ τ ∈ (�̂� − {marked tasks}))
7: τ ← findMaxR(�̂� − {marked tasks}, {c}, f

max
);

8: if ! assignTask(τ, c) then
9: omit task from �̂�; assignFlag ← true; break;
10: else mark task τ;
11: if !assignFlag then errorFlag ← true;
12: update Rtotal; update reliability of all tasks; �̂� ← T;
13: while (Rtotal < Rtarget and !errorFlag)

14: if (∃ τ ∈ �̂�) then
15: τ ← findMinR(�̂�, C, f

max
);

16: mark cores with task τ in C; assignFlag ← false;
17: while (∃ c ∈ (C − {marked cores}))
18: c ← findMinU(C − {marked cores});
19: if ! assignTask(τ, c) then assignFlag ← true; break;
20: else mark core c in C;
21: if !assignFlag then
22: c ← findMinU(C);
23: if ! assignTask(τ, c) then
24: omit task from T̂;
25: update Rtotal; update reliability of all tasks;
26: else
27: errorFlag ← true;
28: else
29: errorFlag ← true;
30: if !errorFlag then
31: while (∃ τ ∈ T)
32: while (∃ j ∈ τ)

33: j
τk,l

i .li ← j
τk,l

i .rt; j
τk,l

i .f ← f
max

;

34: return true;
35: else return false;
end RA-LU

6 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

this situation, the algorithm changes errorFlag to true and goes
to line 35, and then encounters an error. Now, if errorFlag re-

mains false, j
τk,l

i .li and j
τk,l

i .f (See Table 1) for each instance (job) of

each task are initialized. Finally, the algorithm returns true
which means the mapping of the tasks on the cores is ready for
scheduling part of our ReMap method.

II) MPA-EDF Scheduling

Algorithm 2 shows the pseudo-code of the task scheduling
mechanism of our ReMap method that receives TDP, task-to-
core-assignment, sets of tasks and cores to create tasks’ schedul-
ing. In line 1, the algorithm initializes a queue RQ (See Table 1)
with all instances of all tasks. In line 2, the flags assignFlag and
errorFlag are initialized to false. The algorithm iterates until there
is an instance in the RQ (lines 3-14). The getFirstJob(RQ) function
returns the job with the highest execution priority (which means
the earliest deadline and the highest peak power consumption)
from the RQ. In line 4, the algorithm selects the first instance by
the getFirstJob(RQ) function for execution and changes as-
signFlag to false. The inner While loop (lines 5-11) iterates as long
as the last scheduled time of the selected job is smaller than its
deadline. The function isEmpty(c.time(t)) is used to check
whether the time slot t of core c is empty or not. If the mentioned
time slot is empty, it returns a zero value; otherwise, a non-zero
value is returned. The allPower(index) function returns the total
power consumption of all cores at the time slot index. In line 7,
the algorithm adds the power consumption of the first time slot

(j
τk,l

i .time(0).pwr) to the total power consumption in the last

scheduled time (allPower(j
τk,l

i .li)) of selected instance, and then

compares it with TDP constraint. If the total power consumption
meets the TDP constraint, lines 8 to 11 are executed, otherwise,
only line 11 is executed. In line 8, the algorithm decreases the
execution time and schedules the first time slot of the selected
instance. When each task instance is successfully finished dur-
ing the algorithm (line 9), it is omitted from RQ. In line 10, the
algorithm changes assignFlag to true and goes to line 12. At every
iteration, the last scheduled time of the instance increases in line

11. In line 12, if assignFlag remains false due to the TDP and tim-
ing constraints, the algorithm changes errorFlag to true, and then
goes to line 14 and encounters an error. Otherwise, the algorithm
returns true which means the tasks scheduling on each core is
ready.

III) RPPA-DVFS Energy Management

Algorithm 3 shows the pseudo-code of the energy management
mechanism of our ReMap method that receives TDP, the set of
available frequencies, tasks, and cores and the system reliability
target. In line 1, the algorithm initializes ST (See Table 1) with
all slack times of all cores. The flag assignFreqFlag is initialized
to false. Next, the algorithm iterates until there is a slack time in
the ST (lines 3-26). The getFirstSlack(ST) function returns the
slack time with the highest priority (which means the longest
length) called st from the ST. In line 4 and 5, the core correspond-
ing to the selected slack time, called c.st, and an array of all task
instances corresponding to the selected core, called J, are se-
lected. In the first nested While loop (lines 7-8), all the instances
with the release time j.rt greater than the end of slack time st.end
or the deadline j.dl smaller than the start of slack time st.start are
omitted from J. In the second nested While loop (lines 9-26), the
algorithm iterates as long as there is an instance in the J. In line
10, the getFirstJob(J) function returns an instance with the high-
est execution priority (which means the earliest deadline and

Algorithm 2. The task scheduling mechanism (MPA-EDF) of
our ReMap method

Input: set of tasks (T), set of cores (C), TDP
Output: The tasks scheduling on each core

start MPA-EDF
1: RQ ← array of all jobs of all tasks;
2: errorFlag ← false; assignFlag ← false;
3: while (∃ j ∈ RQ) and !errorFlag

4: j
τk,l

i ← getFirstJob(RQ); assignFlag ← false;

5: while (j
τk,l

i .li ≤ j
τk,l

i .dl)

6: if !isEmpty(cτk,l
.time(j

τk,l

i .li)) then

7: if j
τk,l

i .time(0).pwr + allPower(j
τk,l

i .li) ≤ TDP then

8: j
τk,l

i .ex ← j
τk,l

i .ex − 1; schedule first time slot of j
τk,l

i ;

9: if ! j
τk,l

i .ex then omit j
τk,l

i from RQ;

10: assignFlag ← true; break;

11: j
τk,l

i .li ← j
τk,l

i .li + 1;

12: if !assignFlag then errorFlag ← true; break;
13: if !errorFlag then return true;
14: else return false;
end MPA-EDF

Algorithm 3. The task energy management mechanism
(RPPA-DVFS) of our ReMap method

Input: set of tasks (T), set of cores (C), TDP, available fre-
quencies (F), Rtarget

start RPPA-DVFS
1: ST ← array of all slack times of all cores;
2: assignFreqFlag ← false;
3: while (∃ st ∈ ST)
4: st ← getFirstSlack(ST);
5: c.st ← core of st;
6: J ← array of all the jobs of c.st;
7: while (∃ j ∈ J)
8: if (j.rt ≥ st.end) or (j.dl ≤ st.start) then omit j from J;
9: while (∃ j ∈ J)

10: j
τk,l

i ← getFirstJob(J);

11: f
x
 ← f

min
; assignFreqFlag ← false;

12: while f
x
 ≤ f

max

13: if replica(j
τk,l

i , f
x
, Rtotal, Rtarget) then

14: j
τk,l

 ir ← the replication of j
τk,l

i ;

15: add j
τk,l

 ir to J;

16: j
τk,l

 ir .f ← f
max

;

17: j
τk,l

 ir .rt ← j
τk,l

i .li + 1;

18: j
τk,l

 ir .li ← j
τk,l

 ir .rt;

19: j
τk,l

 ir .ex ← j
τk,l

i .ex;

20: if MPA_EDF(J, C, TDP) then
21: assignFreqFlag ← true; break;

22: else j
τk,l

 i .f ← f
max

; omit j
τk,l

 ir from J; f
x
 ← f

x+1
;

23: if !assignFreqFlag then omit j
τk,l

i from J;

24: else break;
25: if (∄ j ∈ J) and !assignFreqFlag then omit st from ST;
26: update ST;
end RPPA-DVFS

YEGANEH-KHAKSAR ET AL.: ReMap: Reliability Management of Peak-Power-Aware Real-Time Embedded Systems through Task Replication 7

the highest peak power) from J. Before any frequency reduction,
the algorithm considers the lowest frequency fmin for applying
to the selected instance and also changes assignFreqFlag to false
in line 11. It should be noted that fx is defined as the lower fre-
quency applied to the task instance. The algorithm attempts
(lines 12-19) to apply the lowest possible frequency in a way that
does not violate TDP in the next slots. The While loop (lines 12-
22) iterates until fx reaches fmax. The function replica() specifies
whether by the decrease of the instance's operating frequency a
replica is needed or not (because it is possible the system relia-
bility does not satisfy the reliability target). If a replica is re-
quired, an additional replica is added (line 14-16) and scheduled
(lines 16-19). This is because if the main job is executed success-
fully, the execution of its replicas can be canceled. The function
MPA-EDF(J, C, TDP) (based on Algorithm 2) checks whether
scheduling operations with lower frequency can be performed.
If this function returns true, in line 21, the algorithm changes as-
signFreqFlag to true and goes to line 25. Otherwise, in line 22, the
algorithm increases the frequency of the task instance to fmax and
omits the additional replica from J, and then increases fx to the
next higher level. In line 23, if assignFreqFlag remains false, task
instance is omitted from J, which means the algorithm cannot
apply lower frequency to the selected task instance. Similarly in
line 25, if assignFreqFlag remains false and there is no task in-
stance in J, the selected slack time is omitted from ST, which
means the algorithm cannot apply lower frequency to any task
instances for the selected slack time. Finally, the algorithm up-
dates ST (line 26) and repeats the above mentioned process until
there is slack time in ST.

4.3 Analysis of Time Complexity

In the proposed algorithms, suppose that N is the number of all
tasks, M is the number of cores, h is the total time slots, and l is
the number of voltage-frequency levels. The main computation
of algorithms is performed to map and schedule all tasks and

then putting them into a max-heap. Therefore, for N tasks, M
cores, and h time slots, building the max-heap is performed in
O(M×N). The first algorithm (RA-LU Mapping) iterates for
O(M×N) times. The second algorithm (MPA-EDF Scheduling) it-
erates for O(M×N×h) times. The third algorithm (RPPA-DVFS
Energy Management) iterates for O(M×N×l) times. Therefore, the
order of the algorithm is max{O(M×N), O(M×N×l), O(M×N×l)}.

4.4 An Example of Our Proposed Method

Let's consider the proposed approach by presenting a more
detailed example. In this example, three periodic tasks of T1,
T2, and T3 are considered to be scheduled on a dual-core sys-
tem with TDP=500mW. The number of replicas, the worst-
case execution time, the period, and the power trace of the
three mentioned tasks are shown in Fig. 3a. In order to deter-
mine the number of replicas and map the main and replica
tasks, we ran Algorithm 1. Therefore, T1, T2, and T3 have 2, 1
and zero replicas, respectively, according to Fig. 3b. Then,
Algorithm 1 maps T1 and the first replica of T1 to Core1 and
Core2, respectively. Also, the second replica of T1 is mapped
to Core1. In order to balance the utilization of cores, Algo-
rithm 1 maps T2 and its replica to Core2 and Core1, respec-
tively. Meanwhile, T3 is mapped to Core2. In the following
example, we have considered Bij as a replica of Jij. At t=0ms,
the first jobs of all the tasks are considered to be scheduled
on the cores. J11, J21, and B11,2 (the second replica of J11) are
ready to be scheduled on Core1. Also, J31, B21 (the replica of
J21), and B11,1 (the first replica of J11) are ready to be scheduled
on Core2. At first, J11 is selected to be scheduled because its
deadline is closer than the deadlines of other ready jobs. The
first time slot of J11 is scheduled on Core1 in the time slot
[0ms, 1ms]. Out of three jobs B11,1, B21, and J31 mapped to
Core2, B11,1 is selected to be scheduled. These decisions are
also established in the time slot [1ms, 2ms]. In the third time

Reliability
#Replicas

before RA-LU
#Replicas

after RA-LU
Period Power Trace (×100mW)

Core

Tasks and their replicas
mapping after RA-LU

T1 0.999999721 0 2 20 [1-2-3-4-2]

T2 0.999999865 0 1 50 [1-1-2-3-4-2-3-1] Task1 Task2 Task3

T3 0.999999917 0 0 50 [1-2-1-2-1-3-2-1-3-3-1] Core1 T1 & B12 B2 ---

System Reliability 0.999999590 0.999999911 --- Core2 B11 T2 T3

(a) (b)

(c)

Fig. 3. An example of how our proposed method works on a homogeneous dual-core system with TDP=500mW and Rtarget=1-10-7. a-b) An example

task set before and after the implementation of the RA-LU with their number of replicas, power traces, and core mapping, c) The MPA-EDF scheduling.

8 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

slot [2ms, 3ms], on the Core1, task J11 is considered to be
scheduled, while on Core2, B11,2 cannot be scheduled because
the peak power consumption exceeds TDP. At t=20ms, when
J12 is released since B12,1 (first replica of J12) has a closer dead-
line relative to J31, it is decided to be scheduled earlier than
J31. On Core1, J12 is also selected to be scheduled because all
the jobs released at t=0ms are scheduled before t=20ms, and
Core1 is in the idle state.

In Fig. 3c, the arrows marked with the number ❶ repre-
sent the times switched between tasks due to TDP violation.
For example, at t=8ms, if B21 is scheduled on Core2, the TDP
constraint is violated, Therefore J31 is scheduled at this time.
As another example at t=42ms, since the execution of B13,1 vi-
olates TDP and there is no other job in the queue to be sched-
uled on Core2, B13,1 is shifted until its execution does not vi-
olate TDP. The other arrows marked with the number ❷ rep-
resent the times when a task with a closer deadline should be
scheduled for execution. For example, at t=64ms, B14,2 should
be scheduled due to the closest deadline relative to J32. At
t=62ms, since the scheduling of B14,2 would have violated
TDP, J32 is considered to be scheduled instead of B14,1. The
arrows marked with numbers ❶❷ indicate that a job is se-
lected to be scheduled due to the closest deadline and also is
selected to be shifted due to TDP violation. For example, at
t=54ms, since B22 has a closer deadline compared to J32, it is
considered to be scheduled but because of TDP violation, it
must be shifted to the next time slot. At t=56ms, between J22
and B22 which have the highest priority on their correspond-
ing cores, B22 is selected to be scheduled on Core2 because of
higher priority than J22. Then, J22 on the Core1 is shifted to
t=57ms because of TDP violation.

As previously stated in Section IV and Subsection B.2,
Jobs with closer deadlines and jobs with higher peak power
consumption compared to other jobs with the same deadline
have the highest priority for scheduling. For example, at
t=20ms, when B12,1 is released, it is immediately selected to
be scheduled because it has a deadline ahead of J31. Also, at
t=14ms, when B21 is fully scheduled, it is removed from the
queue, and J31 is considered to be scheduled. It should be
noted that at this time, between J21 and J31, since J21 has a
higher peak power, at first J21 and then J31 are considered to
be scheduled.

 Results and Discussion

5.1 Experimental Setup
In this section, we investigated the impact of our proposed
method by simulating various tasks based on the MiBench
benchmark suite [31] and on the 4-core, 8-core, and 16-core sys-
tems. Firstly, we clarify how we have produced our tasks’ sets
and their power traces. Then, the comparison between the pro-
posed method and state-of-the-art methods are discussed. We
exploit ARM processors in our evaluations because this kind of
processor is widely used in embedded systems [32]. It is also
assumed that the system supports core-level DVFS, and there
are 6 different frequency/voltage levels from [0.85Volt, 1GHz]
to [1.1Volt, 2GHz]. Various applications from MiBench bench-
mark suite for different inputs are generated in gem5 and
McPAT integrated simulator. We have generated more than
1000 random inputs to achieve power trace, minimum and max-
imum power consumption, suitable voltage/frequency levels,
execution time, and energy for each application.

Some studies focused on cases of reliability and energy, but
they did not pay attention to peak power consumption. Some
other studies have also managed reliability in the form of hard-
ware redundancy with respect to peak power consumption.
One of the research studies that has been done to increase and
maintain reliability and with the goal of minimizing energy
is [8]-EM. In the [8]-EM, as discussed earlier in Section II, tasks
are replicated in such a way the reliability level of the system
reaches the acceptable reliability target and minimizes the en-
ergy of the system. Both of the proposed method and
method [8]-EM use task replication to satisfy the reliability tar-
get of the system, therefore, the peak power of these two meth-
ods are compared together.

5.2 Result Discussion
We evaluate our proposed method in the realistic scenario in
which the fault rate is based on Eq. 2. The peak power consump-
tion analysis provides the best conditions for comparing our
proposed method and [8]-EM. Fig. 4 shows the comparison of
peak power consumption in [8]-EM and our proposed method,
ReMap. It shows that the peak power of ReMap is always less
than that of the method [8]-EM. In Fig. 4, the dashed line ex-
presses the value of TDP. As can be seen, the method [8]-EM
violates TDP constraint in all conditions. In this experiment (Fig.
4a to Fig. 4c), for the per-core utilization of 0.5, an identical ran-
dom task set with the same inputs is given to execute on the 16-
core system, and the reliability targets are 1-10-9, 1-10-7, and 1-10-

(a) (b) (c)

Fig. 4. Power consumption profile in the worst-case scenario on a 16-core system, a) Rtarget=1-10-9, b) Rtarget=1-10-7, c) Rtarget=1-10-5.

YEGANEH-KHAKSAR ET AL.: ReMap: Reliability Management of Peak-Power-Aware Real-Time Embedded Systems through Task Replication 9

5, respectively. As with the above experiment, 1000 other task
sets were performed for each utilization between 0.2 to 0.8 and
the number of cores was 4, 8, and 16. Then, average results are
presented in Fig. 5. These simulations’ results indicate that the
proposed method provides up to 38.4% and on average by 25%
peak power reduction compared to conventional triple modular
redundancy (TMR) [30] and [8]-EM. It should be noted that the
objective function of [8] is energy minimization while in this
paper is peak power minimization. Indeed, [8]-EM has

developed a solution for managing energy consumption
without considering the chip TDP constraint. However, in this
paper, we propose the peak-power-aware mapping and
scheduling method that avoids overlaps of peak power of
concurrent execution of periodic tasks, keeping the power
consumption below the chip TDP. Our proposed method along
with the achievement of power reduction due to early
completion of task and cancellation of replicas attempts to
prevent overlaps of peak power of concurrently executing
periodic tasks such that it always keeps the power consumption
below the chip TDP constraint.

We have also compared our proposed method with the
following real-time scheduling algorithms for schedulability
analysis:

 LST: It is an optimal algorithm with the dynamic prior-
ity assignment that schedules tasks based on laxity. In
this algorithm, the task with the shortest laxity gets the
highest priority [34].

 RM: This algorithm is used for scheduling independent
real-time tasks. It schedules tasks based on their peri-
ods with static priority assignment. In this algorithm,
the task with the shortest period gets the highest prior-
ity [35].

Similar to our MPA-EDF policy, MPA-LST and MPA-RM
are improved to meet the power constraints for the models of
above scheduling algorithms in comparison with the proposed
method. Due to the static priority assignment, the implementa-
tion of MPA-RM is much simpler than MPA-EDF and MPA-
LST. As shown in Fig. 6a, in terms of utilization, static schedul-
ing algorithm, MPA-RM, performed worse than dynamic prior-
ity scheduling algorithms, MPA-EDF and MPA-LST. Whereas
MPA-EDF and MPA-LST are the same or very similar in terms
of schedulability. Many context switches happen in the MPA-
LST due to its scheduling criteria.

As the final discussion, we discuss the schedulability of the
proposed method and [8]-EM in the worst-case scenario on a 16-
core system for different reliability targets. In this scenario, all
tasks are executed. To demonstrate this, we generated 1000 task
sets and repeated the simulations for several utilizations. Fig. 6b
shows the schedulability for our proposed method and [8]-EM.
The results show that our method meets all constraints
simultaneously on average by 43.02% while the [8]-EM meets
the reliability and real-time constraints on average by 37.33%,

whereas it cannot satisfy TDP constraint. Therefore, ReMap is

(a)

(b)

(c)

Fig. 5. Normalized peak power consumption to TDP for the realistic ex-

ecution on homogeneous multicore systems with Rtarget=1-10-7 and core

utilization of 0.5, a) #cores=16, b) #cores=8, and c) #cores=4.

0.8

1

1.2

1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
liz

e
d

P
e
a
k
 P

o
w

e
r

to
 T

D
P

Utilization

ReMap TMR [8]-EM

0.8

1

1.2

1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
liz

e
d

P
e
a
k
 P

o
w

e
r

to
 T

D
P

Utilization

ReMap TMR [8]-EM

0.8

1

1.2

1.4

0.2 0.3 0.4 0.5 0.6 0.7 0.8

N
o
rm

a
liz

e
d

P
e
a
k
 P

o
w

e
r

to
 T

D
P

Utilization

ReMap TMR [8]-EM

(a) (b)

Fig. 6. a) Schedulability comparison of MPA-EDF and the improved LST and RM real-time scheduling algorithms, b) Schedulability in the worst-case

scenario on a 16-core system for different reliability targets.

0

25

50

75

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8

S
c
h
e
d
u
la

b
ili

ty
 (

%
)

Utilization without replicas (per core)

MPA-EDF MPA-LST MPA-RM

0
25
50
75

100

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Utilization Utilization Utilization

- - -

S
c
h
e
d
u
la

b
ili

ty
 (

%
)

Reliability Target

ReMap [8]-EM

1-10-91-10-71-10-5 1-10-7
1-10-9

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, MANUSCRIPT ID

more efficient than [8]-EM for meeting the timing and TDP
constraints simultaneously.

 Conclusion and Future Work

In this paper, we have considered two main objectives in design-
ing real-time multicore embedded systems such as reliability
and peak power consumption. To achieve these two objectives,
a method is proposed for creating replicas of periodic real-time
tasks. Our ReMap method consists of three phases: RA-LU Map-
ping, MPA-EDF Scheduling, and RPPA-DVFS Energy Manage-
ment, which are executed sequentially and in the event of suc-
cessful execution of the previous phase. Due to the fact that they
rarely occur in normal mode, and tasks are usually completed
sooner than their worst-case execution time, successful execu-
tion of tasks has taken place earlier and the execution of replicas
is canceled. We compared the proposed method with state-of-
the-art methods and the results indicate that the peak power is
reduced by 38.4% at best and 25% on average.

Unlike periodic tasks, aperiodic tasks are event-driven and
have irregular arrival times. Due to the nature of aperiodic
tasks, a method with a low order of complexity should be ex-
ploited at runtime to guarantee that all the constraints are met.
We will explore the aperiodic task model in our future work.

References

[1] S. Pagani, H. Khdr, J. Chen, M. Shafique, M. Li, and J. Henkel,
“Thermal safe power (tsp): Efficient power budgeting for heterogene-
ous manycore systems in dark silicon,” IEEE Transactions on Computers,
vol. 66, no. 1, pp. 147–162, Jan 2017.

[2] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J. Chen, and J. Henkel,
“Peak power management for scheduling real-time tasks on heteroge-
neous many-core systems,” in 2014 20th IEEE International Conference
on Parallel and Distributed Systems (ICPADS), pp. 200–209, Dec 2014.

[3] S. Pagani, H. Khdr, W. Munawar, J. Chen, M. Shafique, M. Li, and J.
Henkel, “Tsp: Thermal safe power-efficient power budgeting for
many-core systems in dark silicon,” in 2014 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 1–
10, Oct 2014.

[4] J. Lee, B. Yun, and K. G. Shin, “Reducing peak power consumption in
multicore systems without violating real-time constraints,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, no. 4, pp. 1024–1033,
April 2014.

[5] S. Pagani, A. Pathania, M. Shafique, J. Chen, and J. Henkel,
“Energy efficiency for clustered heterogeneous multicores,” IEEE
Transactions on Parallel and Distributed Systems, vol. 28, no. 5, pp. 1315–
1330, May 2017.

[6] M. Ansari, M. Salehi, S. Safari, A. Ejlali, and M. Shafique, “Peak-Power-
Aware Primary-Backup Technique for Efficient Fault-Tolerance in
Multicore Embedded Systems,” IEEE Access, vol. 8, pp. 142843-142857,
2020.

[7] Intel Corporation, “Dual-core intel xeon processor 5100 series
datasheet, revision 003,” August 2007.

[8] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management
of energy-aware real-time systems through task replication,”
IEEE Transactions on Parallel and Distributed Systems, vol. 28, no. 3, pp.
813–825, March 2017.

[9] M. Salehi, A. Ejlali, and B. M. Al-Hashimi, “Two-phase low energy n-
modular redundancy for hard real-time multicore systems,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 5, pp. 1497–
1510, May 2016.

[10] F. R. Poursafaei S. Safari, M. Ansari, M. Salehi, and A. Ejlali, “Offline
replication and online energy management for hard real-time multi-
core systems,” in 2015 CSI Symposium on RealTime and Embedded Sys-
tems and Technologies (RTEST), pp. 1–7, Oct 2015.

[11] M. Ansari, M. Pasandideh, J. Saber-Latibari, and A. Ejlali, “Meeting
Thermal Safe Power in Fault-Tolerant Heterogeneous Embedded Sys-
tems,” IEEE Embedded Systems Letters, vol. 12, no. 1, pp. 29-32, 2020.

[12] D. K. Pradhan, Ed., Fault-tolerant Computer System Design. Upper Sad-
dle River, NJ, USA: Prentice-Hall, Inc., 1996.

[13] I. Koren and C. M. Krishna, Fault-Tolerant Systems, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[14] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J.
Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M.
Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[15] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and
timing modeling framework for multicore and manycore architec-
tures,” in 2009 42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), pp. 469–480, Dec 2009.

[16] B. Lee, J. Kim, Y. Jeung, and J. Chong, “Peak power reduction
methodology for multicore systems,” in 2010 International SoC Design
Conference, pp. 233–235, Nov 2010.

[17] M. K. Tavana, M. Salehi, and A. Ejlali, “Feedback-based energy
management in a standby-sparing scheme for hard real-time
systems,” in 2011 IEEE 32nd Real-Time Systems Symposium, pp. 349–356,
Nov 2011.

[18] A. Ejlali, B. M. Al-Hashimi, and P. Eles, “A standby-sparing technique
with low energy-overhead for faulttolerant hard real-time systems,” in
Proceedings of the 7th IEEE/ACM International Conference on Hard-
ware/Software Codesign and System Synthesis, ser. CODES+ISSS ’09. New
York, NY, USA: ACM, pp. 193–202, 2009.

[19] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware standby-sparing
technique for periodic real-time applications,” in 2011 IEEE 29th Inter-
national Conference on Computer Design (ICCD), pp. 190–197, Oct 2011.

[20] M. A. Haque, H. Aydin, and D. Zhu, “Energy management of standby-
sparing systems for fixed-priority real-time workloads,” in 2013 Inter-
national Green Computing Conference Proceedings, pp. 1–10, June 2013.

[21] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic
voltage scaling for real-time embedded systems,” in Proceedings. 41st
Design Automation Conference, pp. 275–280, July 2004.

[22] N. Fisher, J. Chen, S. Wang, and L. Thiele, “Thermal-aware global real-
time scheduling on multicore systems,” in 2009 15th
IEEE Real-Time and Embedded Technology and Applications Symposium,
pp. 131–140, April 2009.

[23] S. Safari, S. Hessabi, and G. Ershadi, “LESS-MICS: A Low Energy
Standby-Sparing Scheme for Mixed-Criticality Systems,” in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
(TCAD), 2020, doi: 10.1109/TCAD.2020.2977063.

[24] Z. Shirmohammadi, M. Ansari, S. K. Abharian, S. Safari and S. G. Mire-
madi, “PAM: A Packet Manipulation Mechanism for Mitigating Cross-
talk Faults in NoCs,” 2015 IEEE International Conference on Computer and
Information Technology; Ubiquitous Computing and Communications; De-
pendable, Autonomic and Secure Computing; Pervasive Intelligence and
Computing, Liverpool, 2015, pp. 1895-1902.

[25] S. Safari, M. Ansari, M. Salehi, and A. Ejlali, “Energy- Budget-Aware
Reliability Management in Multi-Core Embedded Systems with Hy-
brid Energy Source,” The CSI Journal on Computer Science and Engineer-
ing (JCSE), vol. 15, no. 2, pp. 31-43, 2018.

[26] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, “New trends in
dark silicon,” in 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6, June 2015.

[27] M. Ansari, S. Safari, F. R. Poursafaei, M. Salehi, and A. Ejlali, “AdDQ:
Low-Energy Hardware Replication for Real-Time Systems through
Adaptive Dual Queue Scheduling,” in The CSI Journal on Computer Sci-
ence and Engineering (JCSE), vol. 15, no. 1, pp. 31-38, 2017.

[28] J. Saber-Latibari, M. Ansari, P. Gohari-Nazari, S. Yari-Karin, A. M. H.
Monazzah and A. Ejlali, “READY: Reliability-and Deadline-Aware
Power-Budgeting for Heterogeneous Multi-Core Systems,” in IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2020, doi: 10.1109/TCAD.2020.3003288.

[29] M. Ansari, J. Saber-Latibari, M. Pasandideh, and A. Ejlali, “Simultane-
ous Management of Peak-Power and Reliability in Heterogeneous
Multicore Embedded Systems,” in IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 31, no. 3, pp. 623-633, 1 March 2020.

[30] M. Ansari, S. Safari, A. Yeganeh-Khaksar, M. Salehi, and A. Ejlali,
“Peak Power Management to Meet Thermal Design Power in Fault-

YEGANEH-KHAKSAR ET AL.: ReMap: Reliability Management of Peak-Power-Aware Real-Time Embedded Systems through Task Replication 11

Tolerant Embedded Systems,” IEEE Transactions on Parallel and Distrib-
uted Systems, vol. 30, no. 1, pp. 161-173, 2019.

[31] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, "MiBench: A free, commercially representative embedded
benchmark suite," Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538), Aus-
tin, TX, USA, pp. 3-14, 2001.

[32] M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali, “Peak-Power-
Aware Energy Management for Periodic Real-Time Applications,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 4, pp. 779-788, April 2020.

[33] S. Safari, M. Ansari, G. Ershadi, and S. Hessabi, “On the Scheduling of
Energy-Aware Fault-Tolerant Mixed-Criticality Multicore Systems
with Service Guarantee Exploration,” in IEEE Transactions on Parallel
and Distributed Systems, vol. 30, no. 10, pp. 2338-2354, 1 Oct. 2019.

[34] Peter Brucker, “Scheduling Algorithms”, Springer, fifth edition.
[35] C.L. Liu and James W. Layland, “Scheduling Algorithms for Multipro-

gramming in a Hard Real Time Environment,” Journal of the Associa-
tion of Computing Machinery, Vol. 20, No. 1, January 1973, pp. 46-61.

[36] S. Boyd and L. Vandenberghe, “Convex Optimization”, 2004.

[37] A. Meixner, M. E. Bauer and D. Sorin, “Argus: Low-Cost, Comprehen-

sive Error Detection in Simple Cores,” IEEE/ACM Int’l Symp. on Micro-

architecture (MICRO), 2007.

[38] N. George, C. R. Elks, B. W. Johnson, and J. Lach, “Transient fault mod-

els and AVF estimation revisited,” in 2010 IEEE/IFIP International Con-

ference on Dependable Systems & Networks (DSN), 2010.

[39] S. Yari-Karin, A. Sahraee, J. Saber-Latibari, M. Ansari, N. Rohbani, and
A. Ejlali, “A Comparative Study of Joint Power and Reliability Man-
agement Techniques in Multicore Embedded Systems,” in 2020 CSI
Symposium on Real-Time and Embedded Systems and Technologies
(RTEST), pp. 1-8, 2020.

[40] D. Zhu, R. Melhem, and Mosse, “The effects of energy management on
reliability in real-time embedded systems,” in Proceedings of Int’l Conf.
Computer Aided Design, pp. 35–40, 2004.

Amir Yeganeh-Khaksar received his M.Sc. de-
gree in computer engineering from Sharif Univer-
sity of Technology (SUT), Tehran, Iran, in 2019,
and the B.Sc. degree from Ferdowsi University of
Mashhad (FUM), Mashhad, Iran, in 2016. From
2016 to 2019, he was a member of Embedded
Systems Research Laboratory (ESRLab) at the
department of computer engineering, Sharif Uni-
versity of Technology. He was honored to be a

member of the national elites foundation in 2019. His current re-
search interests include low power design, real-time embedded sys-
tems, and fault-tolerant embedded systems.

Mohsen Ansari received the M.Sc. degree in
computer engineering from Sharif University of
Technology, Tehran, Iran, in 2016. He is currently
working toward the PhD degree in computer engi-
neering at Sharif University, Tehran, Iran, from
2016 until now. He is now a visiting researcher in
the Chair for Embedded Systems (CES), Karls-
ruhe Institute of Technology (KIT), Germany. Also,

he is a member of Embedded Systems Research Laboratory (ESR-
LAB) at the department of computer engineering, Sharif University
of Technology. His research interests include low-power design of
embedded systems and multi-/many-core systems with a focus on
dependability/reliability.

Alireza Ejlali received the PhD degree in com-
puter engineering from Sharif University of Tech-
nology in, Tehran, Iran, in 2006. He is currently an
associate professor of computer engineering at
Sharif University of Technology. From 2005 to
2006, he was a visiting researcher in the Elec-
tronic Systems Design Group, University of South-
ampton, Southampton, United Kingdom. In 2006,
he joined Sharif University of Technology as a fac-

ulty member in the department of computer engineering and from
2011 to 2015 he was the director of Computer Architecture Group
in this department. His research interests include low power design,
real-time embedded systems, and fault-tolerant embedded sys-
tems.

