
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  MANUSCRIPT ID 1 

 

Simultaneous Management of Peak-Power 
and Reliability in Heterogeneous Multicore 

Embedded Systems 
Mohsen Ansari, Javad Saber-Latibari, Mostafa Pasandideh, and Alireza Ejlali 

Abstract— Analysis of reliability, power, and performance at hardware and software levels due to heterogeneity is a crucial 

requirement for heterogeneous multicore embedded systems. Escalating power densities have led to thermal issues for 

heterogeneous multicore embedded systems. This paper proposes a peak-power-aware reliability management scheme to 

meet power constraints through distributing power density on the whole chip such that reliability targets are satisfied. In this 

paper, we consider peak power consumption as a system-level power constraint to prevent system failure. To balance the 

power consumption, we also employ a Dynamic Frequency Scaling (DFS) method to further reduce peak power consumption 

and satisfy thermal constraints on the chip. We illustrate the benefits of our scheme by comparing it with state-of-the-art 

schemes, resulting in average in 26.5% less peak power consumption (up to 54.3%). 

Index Terms— Power Consumption, Reliability, Embedded Systems, Dynamic Frequency Scaling, Thermal Safe Power, 

Thermal Design Power. 

——————————      —————————— 

1 INTRODUCTION

ITH the advance of technology scaling, the integra-
tion of multiple cores into a chip naturally makes 

the system suitable for implementation of fault-tolerance 
mechanisms [1][2][3][4][5][8]. Since power efficiency is 
one of the desired properties of embedded systems and 
the use of fault-tolerance techniques can increase power 
density on a chip, an efficient solution must be used for 
power reduction in these systems [1][5][9][15][16][17]. 
Power-aware task scheduling, Dynamic Voltage and Fre-
quency Scaling (DVFS), and Dynamic Power Manage-
ment (DPM) are widely exploited for average and peak 
power reduction in embedded systems [1][5][9][40]. Re-
cently, heterogeneous multicore systems provide an effec-
tive solution wherein every core can have an individual 
voltage but it is costly for implementation [4][6]. Due to 
the heterogeneity, the worst-case execution time and the 
power consumption of tasks change according to the task-
to-core mapping, presenting a new challenge for aver-
age/peak power reduction. There is a tradeoff between a 
global supply voltage for all cores and an individual volt-
age per core because a global supply voltage is energy 
inefficient and an individual voltage is very expensive 
[6][7]. Therefore, it is better to use platforms with multi-
ple voltage islands in embedded systems. In such 
platforms, processing cores in an island share the same 

voltage while different islands can have a different sup-
ply voltage. Meanwhile, multicore platforms provide a 
large opportunity for implementation of fault-tolerance 
techniques to tolerate transient and permanent faults, but 
it incurs significant power overheads. Due to the Thermal 
Design Power (TDP) constraint, it is impossible to simul-
taneously power on all cores on a chip [3]. TDP is the 
maximum sustainable power that a chip can dissipate 
safely. Violating TDP makes some cores automatically 
restart or significantly reduce their performance to pre-
vent a permanent failure [3]. This may affect the 
timeliness of the system, and hence, designers face a criti-
cal problem with system design in deciding how to use 
multicore platforms in embedded systems. Recently, a 
new power budget concept called Thermal Safe Power 
(TSP) provides safe and efficient power constraint [3]. 
Therefore, it is necessary to keep the power consumption 
of the cores below TSP in order to avoid excessive tem-
perature increase [3]. TSP is computed in the offline phase 
for the worst-case scenarios, or unlike TDP in the online 
phase for a specific mapping of cores. When core hetero-
geneity or timing guarantees are involved, TSP can also 
guide task partitioning and mapping decisions. It should 
be noted that TDP is the chip-level power constraint and 
TSP is the core-level power constraint. In order to meet 
the TDP/TSP constraints, some solutions like heat-sink 
and chip’s cooling are proposed while due to their nega-
tive effects on the system reliability these solutions are 
not used in reliable embedded systems [3]. In this paper, 
we consider TSP as the core-level power constraint. 
Consequently, heterogeneous multicore systems are an 
appropriate solution for power efficiency and reliability 
improvement since they have a great potential for reduc-
ing the power consumption due to per-island DVFS [4] 
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and improving the system reliability due to intrinsic re-
dundancy in multicore systems. High power consump-
tion can lead to increasing chip temperature, which can 
aggravate the fault rate [5]. To achieve high reliability, 
most of the studies had used fault-tolerance techniques 
[5][9][11]. Task replication is a powerful way to meet reli-
ability targets in multicore embedded systems [1][21][27]. 
By scheduling multiple copies of the same task on multi-
ple cores, the likelihood of successful execution of at least 
one of them increases significantly. The advantages of 
task replication are achieving high reliability and having 
the potential of tolerating permanent faults in addition to 
improving reliability in terms of tolerance to transient 
faults [1][12][14][18][19][20]. The other reason that affects 
the system reliability is violating the chip TDP. Therefore, 
the occurrence of peak power must be managed in fault-
tolerant embedded systems. Dynamic Power Manage-
ment (DPM) and Dynamic Voltage Scaling (DVS) are two 
ways for reducing the instantaneous power consumption 
and average power consumption, however, the DVS 
technique brings a number of overhead penalties: increas-
ing instrumentation costs, prolonging the execution time, 
charging and discharging the capacitances of the chip 
[5][28], and etc.  

In this paper, we minimize the instantaneous power 
consumption while keeping the system reliability under a 
given reliability target and meeting tasks timing con-
straints in Heterogeneous Multicore Embedded Systems. 
Also, due to the disadvantages of DVS, in this paper, we 
employ a Dynamic Frequency Scaling (DFS) method that 
reduces peak power consumption and satisfies thermal 
constraints. Also, in our proposed method, each island 
has a separate supply voltage, but each core of the island 
can operate at a different frequency. Due to the power 
and performance heterogeneity of the islands, effective 
management of the islands is an objective for reducing 
the power consumption and improving the system relia-
bility. This is because the power profile and worst-case 
execution time of the tasks change according to the task 
mapping policy. For example, Fig. 1 shows power con-
sumption profile, energy consumption, worst-case execu-
tion time and system-level reliability for applications 
from the MiBench benchmark suite [24], where it can be 
observed that due to the heterogeneity an application has 
different characteristics when running on the different 
types of cores.  
Objective: The goal of the paper is to minimize the in-
stantaneous power consumption while keeping the sys-
tem reliability under a given reliability target and meet-
ing tasks timing constraints in heterogeneous multicore 

embedded systems. To achieve the mentioned goal, we 
rely on mapping, scheduling and replicating tasks such 
that the power constraints are met.  

To address the above goal, we make the following con-
tribution:  
1) Proposing a peak-power-aware reliability management 
scheme that distributes the power consumption on the 
whole chip and determines the number of replicas for 
each task to keep the system reliability at an acceptable 
level. Also, the proposed method assigns applications to 
different islands and maps them to the cores of them 
based on balancing the utilization among all cores.  
2) Employing a dynamic frequency scaling technique to 
reduce peak power consumption such that timing con-
straints are met. 
Evaluation: To compare our method with state-of-the-art 
methods, we have used gem5 [25], McPAT [26], HotSpot 
[29], and TSP [3]. Our experiments show that our pro-
posed method provides up to 54.3% (on average by 26.5%) 
peak power reduction compared to the other schemes in 
the worst-case scenario.  
Organization: In order to evaluate the effectiveness of the 
proposed method, we compared our method with state-
of-the-art techniques. The rest of this paper is formed as 
follows. Section 2 reviews related work and section 3 pre-
sents our system model. In section 4, we present the de-
tails of our solution. The experimental results are shown 
in section 5 and we conclude the paper in section 6. 

2 RELATED WORK 

Homogenous multicore systems have been widely stud-

ied in both power and reliability aspects. An example of 

the reliability-aware peak power management for ho-

mogenous multicore embedded systems is the work pre-

sented in [2]. In this paper, Ansari et al. have proposed a 

method that manages peak power overlaps between con-

currently executing tasks such that the system reliability 

is preserved at an acceptable level while guaranteeing to 

keep the total power consumption of cores below the chip 

TDP and the power consumption of each underlying core 

below the core TDP constraint. It should be noted that the 

application model in [2] is the task graph and hard real-

time, while the model in this paper is the periodic and 

soft real-time. In the context of real-time systems, this 

difference in the application model is very fundamental 

[36][37]. Moreover, the system model in the mentioned 

paper is the homogenous multicore system, while the 

system model in this paper is based on an island architec-

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
Fig. 1.  Peak power consumption, worst-case execution time, reliability, and energy values based on simulations in gem5 [25] and McPAT [26], 
and measured on ARM Cortex-A7, Cortex-A12, and Cortex-A15, for applications from the MiBench benchmark suite [24]. 
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ture of heterogeneous multicores. Indeed, this difference 

in application and system model results in the difference 

in almost all the other aspects including scheduling poli-

cies, energy management, experiments, and experimental 

setup, etc. As energy-aware reliability management for 

homogenous multicore systems, several works have been 

recently presented [9][22][27]. Salehi et al. [9] have pro-

posed an N-modular redundancy (NMR) technique with 

low energy consumption for hard real-time multicore 

systems. Haque et al. [22] have proposed an energy-

management technique for a standby-sparing system that 

executes preemptive fixed-priority real-time tasks. The 

reference [27] finds the level of task replication, voltage 

and frequency assignment, and task mapping at design 

time, in order to achieve a given reliability level while 

reducing the energy consumption. On the other hand, 

some related works have addressed the problem of power 

reduction and performance improvement tradeoff on het-

erogeneous multicore systems without considering the 

reliability requirements [3][4][6][7][10]. Pagani et al. [3] 

have presented a new power budget concept, called 

Thermal Safe Power (TSP), that provides safe power and 

power density constraints. Khdr et al.  [4] have focused on 

improving the overall system performance under a criti-

cal power constraint for heterogeneous tiled multicore 

systems. Pagani et al. [6] have presented an efficient 

method to reduce the total energy consumption while 

satisfying the timing constraints of real-time tasks in het-

erogeneous multicore systems. This method consists of 

the conscious selection of the voltage and frequency lev-

els for each island of the chip. Also, they have proposed a 

task partitioning strategy that considers the energy con-

sumption of the task executing on different islands and at 

different frequencies. Pagani et al. [7] have presented a 

solution both for energy minimization and peak power 

reduction, called Single Voltage Approximation (SVA) 

scheme, for periodic real-time tasks on heterogeneous 

multicore systems with a shared supply voltage in a volt-

age island. Munawar et al. [10] have exploited the free 

cycles for each active core to reduce the peak power. 

However, reliability and power management for het-
erogeneous multicore embedded systems have different 
issues related to the heterogeneity and hence have more 
complexity. Since the power, worst-case execution time, 
energy, and reliability characteristics of applications sig-
nificantly differ from a core type to another one in heter-
ogeneous multicore embedded systems, we should con-
sider the peak power and reliability management simul-
taneously. The previous works in the context of multicore 
systems either consider power reduction on heterogene-
ous platforms without considering reliability or consider 
reliability improvement without considering peak power 
on homogenous platforms. 

3 SYSTEM MODELS AND ASSUMPTIONS 

3.1 Task Model 

We consider a set of periodic soft real-time tasks ψ={T1,…, 
Tn}, which each task Ti has a period Pi, a worst-case execu-
tion time wci. The jth job of a task Ti (Jij) arrives at time 
rij=(j−1)×Pi and must complete by its deadline j×Pi. Also, 
the relative deadline Di of the job Jij is equal to the period 
Pi. The utilization of the task Ti is defined as wci/Pi. 

3.2 System and Power Model 

The proposed system model is based on an island archi-
tecture of heterogeneous multicores consisted of two het-
erogeneous islands [41][42][43][44], i.e. (1) High 
Performance Island (HPI), (2) Low Power Island (LPI), 
where each island has a number of homogeneous pro-
cessing cores, and the number of cores in HPI and LPI is 
denoted as NHPI and NLPI, respectively. Therefore, the total 
number of cores in the system is defined as N=NHPI+ NLPI. 
We consider that each core has an L1 cache, that each is-
land has an L2 cache shared between their cores, and that 
there is an L3 cache shared between two islands. In each 
island, all cores share a voltage level. However, due to 
supporting Dynamic Frequency Scaling, each core may 
have different frequency level.  

The total power consumption of the system consists 
of static and dynamic power components [1][3][5][31]. 
The static power (Pstatic) is dominated by the leakage cur-
rent. Dynamic power (Pdynamic) is mainly consumed due to 
system activity. 

2

0
( , )

Vth

VT

total static dynamic eff ii i i i
P V f P P I e V C V f



    (1) 

where Ceff is the effective switched capacitance, η is a 
technology parameter, Vi and fi are supply voltage and 
operational frequency, and (α) is the activity factor. Under 
DVS, the voltage Vi that is used for the execution of the 
tasks in an island may be less than the maximum voltage 
Vmax. We denote the normalized voltage ρi as [13]: 

maxV

Vi
i 

 
(2) 

Let Vmax be the maximum voltage corresponding to the 
maximum frequency fmax. Considering the almost linear 
relationship between voltage and frequency [5], [9], we 
can write: ρi=Vi/Vmax=fi/fmax. Therefore, Eq. 1 can be rewrit-
ten as: 

2

0 max max max

3( , ) ( ) ( )
Vth

VT

total Li iP V f I e V C V f  


  (3) 

Under the Dynamic Frequency Scaling (DFS) technique, 
the frequency fi that is used for the execution of the tasks 
may be less than the maximum frequency fmax. We denote 
the normalized frequency βi as: 

max

i
i

f

f
 

 
(4) 

Now, Eq. 1 can be rewritten as:  

2

0 max max max
( , ) ( )

Vth

VT

total LiP V f I e V C V f  


  (5) 

The relationship between DVS and DFS are determined 
by the system overheads with the different operation 



4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,  MANUSCRIPT ID 

 

modes to achieve the power efficient operations, i.e. the 
difference between DVS and DFS is the tradeoff between 
the system efficiency and the power efficiency. It should 
be noted that per-core DVS, due to chip-area cost and 
power consumption overhead of on-chip controllable 
power supplies, may not be applicable for multicore em-
bedded systems, e.g. for a single chip with 16 and 32 
cores. Moreover, due to heterogeneity, all types of cores 
should have separate DVS controller, and hence, the 
overheads of DVS increase. Moreover, since DVFS reduc-
es the level of voltage, the fault rate increases. But exploit-
ing DFS does not have any negative effect on the fault 
rate. 

3.3 Fault Model and Reliability Analysis 

In this paper, we consider permanent and transient faults. 
We consider peak power consumption as a system-level 
power constraint to prevent system failure (permanent 
faults). Meanwhile, we consider transient faults that per-
turb the underlying core without causing permanent 
damage [5][2]. The average fault rate λ is dependent on 
the supply voltage whereby decreasing supply voltage V, 
λ increases exponentially. The average fault rate on the 
supply voltage V can be expressed as [5]:  

max

0
( ) 10

V V

dV 



   (6) 

where λ0 is the transient fault rate at Vmax and d deter-
mines the sensitivity of the system to voltage scaling. The 
task failure rate can be expressed by λ(V) FVI, where the 
Function Vulnerability Index (FVI) is the software’s sus-
ceptibility to failure due to hardware-level transient faults 
at instruction-level [5][11]. Therefore, the functional relia-
bility of a task can be written as: 

( )
( ) i

i

V FVI wc
R T e

  
  (7) 

where wci is the worst-case execution time of Ti. Due to 
the core heterogeneity of the heterogeneous multicore 
systems, the task reliability on each core is different from 
each other. Therefore, when k identical copies of a task i 
are executed on k different cores, the total reliability of the 
task is defined as the probability of having at least one 
successful execution and is calculated as [5]:  

1

( ) 1 (1 )
k

jtotal i
j

R T R


    (8) 

Generally, the reliability of a system with n tasks running 
by our proposed method can be calculated as: 

1

( )
n

system total i

i

R R T


  (9) 

4 PROBLEM DEFINITION AND OUR 

PROPOSED METHOD 

In this paper we aim at distributing the power consump-
tion on heterogeneous multicores platforms such that the 
system reliability is preserved at an acceptable level 

[39][40]. From [4] we know that chip-level power budgets 
are not suitable for heterogeneous multicore platforms, 
and hence, we must adopt a new power constraint for 

avoiding any thermal violation. Therefore, it is important 
to propose a method that meets the constraints and con-
siders power constraints on the processing cores and the 
chip. As discussed in Section 1, executing tasks at a high-
frequency level makes lower execution time and fault 
rate, however, the power consumption at a high-
frequency level may exceed the power constraint of the 
chip. To balance the power consumption, we propose a 
scheme that performs tasks mapping, tasks scheduling, 
and frequency level assignment under power constraints 
on a heterogeneous multicore chip. The overview of the 
design-time step and run-time of our proposed system 
are shown in Fig. 2 (To explain the proposed method, see 
Section 4.2). It should be noted that in Fig. 2 two flows 
run simultaneously and finally result in the code versions 
with high-reliability and low-power consumption (i.e. 
these flows have no dependency on each other). Indeed, 
we determine and highlight the mentioned code versions, 
and then in the next step of design flows we exploit them. 
At design time, for each task, we find a set of code ver-
sions that provide high reliability and low power con-
sumption. The high-reliability code version of a task is a 
code that has the highest functional reliability among all 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Overview of our Simultaneous Management of Peak-
Power and Reliability flow. 
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code versions of the mentioned task (according to Eq. 7). 
Meanwhile, the low-power-density code version of a task 
is a code that has lowest peak power and average power 
consumption among all code versions of the mentioned.  
In order to calculate the resulting power density of exe-
cuting different code versions of the task, we run all the 
code versions of tasks on all the types of cores and make a 
table with all information (peak power consumption, 
worst-case execution time, reliability, and energy) before 
assigning the tasks to the cores. Then, based on the men-
tioned table, we map and schedule the applications. 

4.1 Problem Definition 

We use the following notation to represent the system 
reliability and power consumption, frequency level, and 
task-to-island mapping, and task-to-core mapping. In this 
formulation, n is the number of tasks, m is the number of 
islands, c is the number of free cores in an island j, and v 
is the number of available frequency levels for each core: 
 The task reliability is represented by the matrix 

Rϵℝn×m×c×v, in which each element Rijkl denotes the reli-
ability of task i when the task is executed on the core k 
of the island j under the frequency level l. 

 The power consumption is represented by the matrix 
Pϵℝn×m×c×v, in which each element Pijkl denotes the 
power consumption for the task i when the task is ex-
ecuted on the core k of the island j under the frequen-
cy level l. 

 The task-to-island mapping, task-to-core mapping, 
and frequency level assignments are represented by 
the matrix Xϵ{0,1}n×m×c×v. The task i is mapped to the 
core k of the island j and is executed under the fre-
quency level l if and only if Xijkl = 1. 

The goal of the proposed method is to minimize the in-
stantaneous power consumption while keeping the sys-
tem reliability under a given reliability target and meet-
ing tasks timing constraints (deadlines). As power-
reliability optimization knob, in our system tasks can po-
tentially execute on different islands supporting different 
frequency levels, and can execute with frequency varia-
tions on each core of them, resulting in separate power 
profiles, reliability and worst-case execution time. We 
formulate the above problem as a convex problem.  
Optimization Goal: Minimize the total average power 
consumption defined by the sum of the power consump-
tion of all tasks executed on the system. 

Minimize systemP  (10) 

Chip Power Constraint: The instantaneous power con-
sumption of the chip, i.e. the sum of the power of all un-
derlying cores should be less than the chip TDP constraint 
in each time slot of the frame of the system. 

, , , , , , ,

, , ,

i j k l i j k l TDP chip

i j k l

X P P
 

(11) 

Cores Power Constraint: The instantaneous power con-
sumption of each underlying core should be less than the 
core TSP constraint [3] in each time slot. 

, , , , , , ,i j k l i j k l TSP kX P P
 

(12) 

Tasks Timing Constraint: The worst-case execution time 

wci/fk,l for a task i on the core k and at the frequency level l 
should not exceed the task timing constraint (defined by 
the Di). 

, , ,

,

i
i j k l i

k l

wc
X D

f


 
(13) 

Task Reliability Target: For each task, the reliability 
mechanism should satisfy its reliability requirement Rreq.  

: i reqi R R 
 

(14) 

Core Assignment Constraint: Each task can be only mapped 

to a single core of a single island. 

, , ,, : 1i j k l

j k

i l X  
 

(15) 

Frequency Levels Assignment Constraint: Each task can 
be only executed under a single frequency level on a core 
(the frequency level does not change during the task exe-
cution). 

, , ,, , : 1i j k l

l

i j k X 
 

(16) 

Since Eq. 14 is an exponential equation, the mentioned 
problem is convex [17][38]. The convex formulated prob-
lem can be solved by the available convex (CVX) solvers 
[30], and it is categorized as an NP-Complete problem 
[8][33][32]. On the other hand, the complexity of such 
problems may increase exponentially with the increase of 
problem size at run-time, e.g., with the number of ready 
tasks, islands, cores, and frequency levels. Accordingly, 
when the ready tasks and free cores are determined at 
run-time and a dynamic mapping is required, CVX solv-
ers cannot be employed in online scenarios. Therefore, we 
propose a heuristic-based algorithm to provide an effec-
tive solution for the presented problem. 

4.2 Simultaneous Management of Peak-Power and 
Reliability 

In this section, we focus on the task mapping to islands 
and the task scheduling on the cores. To solve these prob-
lems, we propose a heuristic method which maps the 
tasks to the cores of the islands such that the power con-
straint, the task-level reliability target, and deadlines are 
satisfied.  Fig. 2 shows the overview of our system flow, 
while its run-time pseudo-code is presented in Algorithm 
1. At design time, we choose the proper code versions for 
each task between different compiled codes and use them 
at run-time by Algorithm 1. For this purpose, at first, for 
each task, the code version with the lowest power density 
is determined. Then, among the other code versions, we 
select those that have more reliability than the code ver-
sion with the less execution time. The selected tasks are 
defined as Low-Power-Density (LPD) codes. Since the 
reliability of a single task execution may not satisfy the 
task reliability target, the use of a task-level redundancy 
is required. To do this, we select a code version with high 
reliability to replicate it, improving the task reliability. 
Then, we select power-density-wise best code versions 
and, finally, from them, we choose code versions with the 
lowest execution time. In the task replication step, the 
selected tasks are defined as High-Reliability (HR) codes.  
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Algorithm Discussion: Algorithm 1 presents the pseu-
do-code of the run-time step of our proposed method. 
Algorithm 1 gets the ready tasks with their execution time 
and deadline, the set of free cores, different code versions 
for each task, and available frequency levels for each core, 
the core power constraint PTSP,core, and the chip power 
constraint PTDP,Chip. At first, we compute hyperperiod h 
which is defined as the least common multiple of all task 
periods (line 1). In line 2, we use a power density array 
including h slots that determines the power consumption 
of the system in each time slot. Then, the algorithm initial-
izes two schedules S_HPIi and S_LPIi to Null for each core 
of Φ (Φ is the set of islands which each of islands have 
multiple cores). In line 5 to 17, the algorithm iterates until 
all the main and replica tasks are assigned onto a core of 
an island such that the power constraints are met. For this 
purpose, we choose a task from its Low-Power-Density 

code versions which has minimum peak and average 
power consumption and assign it to an island that its 
power constraint is not violated. Then, based on the low-
est utilization first policy, we map the selected task to a 
core which has the lowest utilization. Also, in lines 10-16, 
the algorithm iterates until the reliability of the selected 
task becomes higher than its reliability target. To do this, 
the algorithm inserts a replica task into the selected task 
one after another to satisfy Rreq. In lines 22 to 34, the algo-
rithm iterates until all the jobs of each task are scheduled 
based on the PPA-EDF (Peak-Power-Aware Earliest 
Deadline First) policy [15]. In line 19, the algorithm selects 
a job which has the earliest deadline and partitions the 
selected job into parts with different power consumption. 
In line 21, the variable k is initialized to the release time of 
the selected job. The algorithm places the parts of the 
tasks, beginning from the first part, on time slots that 
come sooner in the schedule C.S. In lines 22-25, the algo-
rithm checks free time slots of the core C one after another 
and places each part Jijl on the first free time slot t such 
that the power consumption of Jijl does not exceed the 
core TSP constraint and also does not increase the power 
consumption of the chip beyond the chip TDP. If these 
terms are met, Tij is placed in the time slot t of C.S in line 
26. The power density array PDA is updated in line 27 
and the variable k is updated in line 28. Finally, if not all 
the copies are scheduled, the algorithm returns infeasible 
in line 36.  

In Algorithm 1, suppose that m is the number of all 
tasks (the primary and replica tasks), N is the number of 
free cores, h is the total time slots. The main computation 
of Algorithm 1 is performed to map and schedule all 
ready tasks and then putting them into a max-heap. 
Therefore, for m ready tasks, N free cores and h time slots, 
building the max-heap is performed in O(m×N). The first 
while loop iterates for O(m×N) times. The main while 
loop iterates for O(m×N×h) times. Therefore, the order of 
the algorithm is max{ O(m×N), O(m×N×h)}.  

Task Dropping Mechanism: The second part of the 
problem is to exploit the opportunities created during the 
actual execution of the tasks at runtime to reduce further 
power consumption. This can be satisfied through the 
addition of an online monitor to the system. The respon-
sibility of the online monitor is to control the execution 
accuracy of different instances of each task, handle the 
run-time state of the system, and apply DPM and DFS. 
The online monitor needs to find the first copy of each 
task that has finished successfully and cancels the execu-
tion of the remaining part of the other copies on the other 
cores. Based on the rare nature of the faults, most of the 
time, there is no need to execute all copies of a task com-
pletely. So, as soon as the first copy of a task finishes suc-

Algorithm 1. Simultaneous Management of Peak-Power and Reliability 

INPUT: ready tasks  with the execution time and the deadline, set of free 
cores Φ={HPI:{C1, … , CNHPI}, LPI:{C1, …, CNLPI}}, code versions for each task, 
available frequency levels for each core, core power constraint PTSP,core and 
chip power constraint PTDP,Chip. 
OUTPUT: task Mapping and task scheduling  
BEGIN 

1:  h=LCM(the periods of all tasks);         //Total # of time slots in the frame 

2:  PDA [1...h]={0};                //Initialize the total power consumption array 

3:  S_HPIi={Null, 1≤i≤NHPI};                //Initialize S with an empty schedule 

4:  S_LPIi={Null, 1≤i≤ NLPI};                //Initialize S with an empty schedule 

5:  while ( is not empty) do 

6:       Ti=.remove();                        /Select a task chosen from LPD Codes                                       

7:       φ= find_island();                                                  //Find the best island  

8:       C= φ.minutilization;       //Find a core of the island with lowest utilization 

9:       C.add(Ti);                    
10:     while (RT< Rreq) do 

11:          Ti.insert();        //Insert a replica task chosen from HR Codes to  
12:          Update_reliability(RT);                         // update the task reliability  

13:          φ= find_island();                                                     //Find the island  

14:          C= φ.minutilization;  //Find a core of the island with lowest utilization 

15:          C.add(Ti);        //Insert a replica task chosen from HR Codes to           

16:    end while 

17: end while  

18: while ( is not empty) do 

19:      Jij=.remove();         //Select a job chosen which has highest priority 

20:      Jijl = {Jijl, 1≤l≤wci};                      /Partition the selected job into parts 

21:      k=release_time(Jij); 

22:      foreach part Jijl starting from the first part do 

23:           foreach free slot t=k→ j×Pi in C.S do  

24:                   if PDA[t]+ power (Jijl)  ≤ PTDP,Chip then 

25:                        if power (Jijl)  ≤ PTSP,Core then 

26:                             S_C.add(t, Jijl); 

27:                             PDA[t] = PDA[t]+ power (Jijl); 

28:                             k=t+1; 

29:                             break;  

30:                        end if; 

31:                   end if; 

32:              end for;  

33:         end for; 

34:    end while 
35:   if not all the jobs are scheduled then 
36:       return infeasible; 
37:   end if; 
END 

 

EVEN-DFS Function  

1:  Function DFS(Jij); 

2:                slack ← Extract_Slack(); 

3:                fij← max( fee, 
𝑤𝑐𝑖𝑗

𝑤𝑐𝑖𝑗+𝑠𝑙𝑎𝑐𝑘
); 

4:                Execute Jij at frequency fij; 

5:  End Function 
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cessfully, the online monitor stops the execution of the 
remaining part of the other copies, and put the system 
into a low power state where the dynamic power con-
sumption is avoided; therefore, further power is saved. 
Applying our EVEN-DFS technique: As the amount of 
dynamic slacks is determined at run-time, our method 
uses DFS to distribute these slacks among the tasks. 
Therefore, at run-time we determine static and dynamic 
slacks in each core and apply our DFS technique on them 
such that the deadlines of the tasks are not violated. To do 
this, based on the EVEN-DVS technique [34], the frequen-
cy of all the tasks is set on each core. Our EVEN-DFS 
technique distributes slacks evenly among all tasks. The 
operation of this technique is shown in EVEN-DFS Func-
tion. An advantage of the EVEN-DFS technique is its line-
ar time complexity when compared to the quadratic com-
plexity of other DVFS techniques. Also, our DFS tech-
nique is software-based while other techniques are hard-
ware-based. It should be noted that the EVEN-DFS func-
tion is done after mapping and scheduling all the tasks. 
Therefore, this function is independently executed after 
Algorithm 1. 

5 RESULTS AND DISCUSSION 

In order to evaluate the effectiveness of our proposed 
scheme, we use gem5 full-system simulator [25], McPAT 
[26], HotSpot [29], and TSP [3]. We ran our simulations 
with various task sets including real-life embedded appli-
cations of MiBench Benchmark [24] running on a target 
heterogeneous multicore platform. Since ARM processors 
are widely used in many embedded systems, we consider 
a platform with several types of ARM cores [23], e.g. 
ARM Cortex-A7, Cortex-A12, and Cortex-A15. Mean-
while, we considered that the system supports per core 
DFS and per island DVFS. The details of simulation con-
figurations for the processing cores of our system are 
summarized in Table 1. Also, Fig. 3 shows our tool flow 
for scheduling simulation, and power, thermal, and per-
formance evaluation. As shown in Fig. 3, we extract the 
peak power consumption, the worst-case execution time, 
reliability, and energy values based on simulations in 
gem5 [25] and McPAT [26] measured on ARM processors 
for applications from the MiBench benchmark suite [24]. 
Then, we employ a system-level simulator for simulating 
different execution scenarios. To determine the power 
constraints, we use the TSP simulator as the core-level 
power constraint calculator. We use the results of Fig. 1 to 
simulate our proposed system. To the best of our 
knowledge, this paper is the first attempt that addresses 
peak-power management and fault-tolerance in conjunc-
tion on heterogeneous multicore embedded systems. 
Therefore, we compare our peak-power-aware reliability 
management (PPARM) scheme with state-of-the-art pow-
er and reliability management techniques. The compari-
son schemes are:  

 [1]-EM: This technique has proposed a task repli-
cation mechanism with low power/energy over-
head for multicore systems [1]. Haque et. al. [1] 
have proposed the newest power-aware task rep-

lication mechanism for multicore systems. They 
have developed static solutions for managing 
power consumption and then have proposed dy-
namic adaptation schemes in order to reduce the 
concurrent execution of the replicas of a given 
task and to take advantage of early completions 
to further achieve the power reduction. 

 TMR: In the Triple Modular Redundancy (TMR) 
technique, each task has three copies executed on 
three different cores. Three copies of each task 
perform majority voting on the results for error 
masking. 

 DMR: In the Dual Modular Redundancy (DMR) 
technique, each task is executed in the DMR 
mode with a backup task. This technique makes 
the DMR mode for applications’ tasks according 
to the tasks’ vulnerability [35].  

We compared PPARM with three selected schemes 

([1]-EM, DMR, TMR) for: i) the worst-case execution sce-

nario when the system consumes the maximum possible 

power (Section 5.1) and ii) the actual-case execution sce-

nario when the system consumes real power (Section 5.2). 

In the worst-case scenario, all tasks and their replicas 

are executed, and therefore, the system consumes the 

maximum possible power that is very pessimistic. In 

the actual-case scenario, the system needs to find the 

first copy of each task that has finished successfully 

and cancels the execution of the remaining part of the 

other replicas on the other cores. Based on the rare na-

ture of the faults, most of the time, there is no need to 

 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 3.  Our tool flow for scheduling simulation, and power, 
thermal, and performance evaluation. 
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Table 1. The details of simulation configuration 

Processor 

4, 8, 16, and 32 cores, two islands, five different 

voltage and frequency levels between [0.85Volt, 

1GHz] and [1.1Volt, 2GHz]. 

Memory 

Main 

Memory 

4GB, 1 channel, 2 ranks, 8 banks per 
rank, Access time: 100 cycles, DRAM 

L1 
32KB, 8KB block-width, 4-way, Access 
time: 2 cycles, SRAM 

L2 
1MB, 16-way, 64B line, Write back, 
write: 20 cycles, STT-RAM 
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execute all replicas of a task completely. So, as soon as 

the first copy of a task finishes successfully, the system 

stops the execution of the remaining part of the other 

replicas, and put the system into a low power state 

where the dynamic power consumption is avoided; 

therefore, further power is saved. In this scenario, the 

system consumes real power (actual power consump-

tion). 

5.1 Worst-Case Execution Scenario 

The worst-case execution scenario shows the maximum 
power consumption by the system because all copies of 
each task are executed in this scenario. Therefore, it can 
be considered a suitable condition for comparing PPARM 
and other techniques. Fig. 4 shows the power consump-
tion profile of PPARM and the three mentioned tech-
niques. This figure shows that PPARM consumes less 
peak power than other schemes. In this figure, the relia-
bility target is equal to 0.99999 and the dashed line is the 
TDP constraint. As Fig. 4 shows, other techniques miss 

this TDP constraint while PPARM always meets it. In Fig. 
4, we have used only one random task set for each system 
configuration. It should be noted that PPARM meets the 
core-level power constraints (obtained from TSP simula-
tor) while other techniques violate TSP. To provide a 
more detailed analysis, for each system configuration, we 
used more task sets and then the average results are 
shown in Fig. 5. Each case of this figure was simulated for 
1000 times with different parameters of the applications 
and the average results are reported. Also, for each con-
figuration of this figure the reliability target for each task 
is equal to 1-10-5. This figure shows the normalized peak 
power consumption of the schemes with respect to TDP 
and the normalized average power consumption of the 
schemes with respect to our scheme. From Fig. 5 it can be 
concluded that our scheme completely outperforms the 
three schemes from the peak and average power con-
sumption viewpoints. Our PPARM scheme provides on 
average 25.7% (up to 53.9%) and 19.7% (up to 26.5%) peak 
power and average power reduction as compared to three 

 

 

 

 

 

 

 

            (a) 

 

 

 

 

 

 

 

             (b) 
Fig. 5. a) Normalized peak power consumption to TDP, and b) Normalized average power consumption to our scheme in the worst-case 
scenario with different system configurations. 
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(a) Uprimary_tasks=0.8 , # of cores= 4 

 

 

 

 

 

 

 

(b) Uprimary_tasks=1.6, # of cores= 8 

 

 

 

 

 

 

 

(c) Uprimary_tasks=3.2, # of cores= 16 

Fig. 4. Power consumption profile in the worst-case scenario on different systems. 
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mentioned schemes, respectively. When the number of 
task increases (increasing the system utilization), the peak 
and average consumption of the system increase. This is 
because the amount of slack times decreases. 

5.2 Actual-Case Execution Scenario 

In this case, we evaluate the actual-case execution scenar-
ios. In order to generate fault rate and pattern in our ex-
periments, transient faults were generated using a Pois-
son process where the fault rate λ corresponding to dif-
ferent voltage levels was modeled using Eq. 6. Therefore, 
in order to inject faults, we generated a fault vector that 
determines at which times faults occur.  Then, based on 
the fault vector, we decide which task becomes faulty 
during the execution of a task set. Since transient faults 
are rare in nature, PPARM achieves further power reduc-
tion at runtime beyond what is achieved through its task 
dropping mechanism. In the task dropping mechanism, 
when a copy of task Ti is executed successfully at runtime, 

we cancel the execution of the remaining parts of the oth-
er copies on the other cores. In this condition, the dynam-
ic slack time is released that can be exploited by DFS to 
reduce the power consumption of the system. Fig. 6 illus-
trates the power consumption profile of executing task 
sets that were deployed in Fig. 4 where some tasks are 
faulty. Like the worst-case execution scenario, in this case, 
our scheme consumes less power than other schemes due 
to its different policies and better peak power manage-
ment scheme. 
Fig. 7 shows the peak and average power consumption of 
PPARM, [1]-EM, DMR, and TMR schemes where the peak 
and average power consumption have been normalized 
with respect to TDP and the average power consumption 
of PPARM, respectively. The experiments show that our 
PPARM scheme completely outperforms the three men-
tioned schemes from the peak and average power con-
sumption viewpoints. This is because other schemes ei-
ther consider power reduction without considering relia-

 

 

 

 

 

 

 
(a) Uprimary_tasks=0.8, # of cores= 4 

 

 

 

 

 

 

 

(b) Uprimary_tasks=1.6, # of cores= 8 

 

 

 

 

 

 

 

(c) Uprimary_tasks=3.2, # of cores= 16 

Fig. 6. Power consumption profile in the actual-case execution scenario on different systems. 
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Fig. 7. a) Normalized peak power consumption to TDP, and b) Normalized average power consumption to our scheme in the actual-case 
execution scenario with different system configurations. 
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bility or consider reliability improvement without consid-
ering peak/average power consumption. PPARM pro-
vides on average 27.3% (up to 54.3%) and 21.8% (up to 
32.03%) peak power and average power reduction as 
compared to three mentioned schemes, respectively.  

6 CONCLUSION 

In this paper, we have proposed a method to manage the 
power consumption on the heterogeneous multicore em-
bedded systems. As power is a critical resource for multi-
core embedded systems, the usage of this resource should 
be optimized. That is because high power consumption 
can lead to increasing the chip temperature,  which can 
aggravate the fault rate. In order to manage power con-
sumption and achieve high reliability, we have presented 
a run-time scheme as our proposed scheme. Our PPARM 
scheme proposes a peak-power-aware reliability man-
agement scheme that distributes the power consumption 
on the whole chip and determines the number of replicas 
for each task to satisfy the system reliability target. Also, 
the proposed method assigns applications to different 
islands and maps them to the cores of them based on bal-
ancing the utilization among all cores. In order to further 
reduce power consumption, we apply the DFS technique 
on all the cores of our system. We also illustrated the ben-
efits of PPARM by comparing it with state-of-the-art 
schemes, resulting in average in 26.5% less peak power 
consumption (up to 54.3%). 
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