
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID 1

Simultaneous Management of Peak-Power
and Reliability in Heterogeneous Multicore

Embedded Systems
Mohsen Ansari, Javad Saber-Latibari, Mostafa Pasandideh, and Alireza Ejlali

Abstract— Analysis of reliability, power, and performance at hardware and software levels due to heterogeneity is a crucial

requirement for heterogeneous multicore embedded systems. Escalating power densities have led to thermal issues for

heterogeneous multicore embedded systems. This paper proposes a peak-power-aware reliability management scheme to

meet power constraints through distributing power density on the whole chip such that reliability targets are satisfied. In this

paper, we consider peak power consumption as a system-level power constraint to prevent system failure. To balance the

power consumption, we also employ a Dynamic Frequency Scaling (DFS) method to further reduce peak power consumption

and satisfy thermal constraints on the chip. We illustrate the benefits of our scheme by comparing it with state-of-the-art

schemes, resulting in average in 26.5% less peak power consumption (up to 54.3%).

Index Terms— Power Consumption, Reliability, Embedded Systems, Dynamic Frequency Scaling, Thermal Safe Power,

Thermal Design Power.

—————————— ——————————

1 INTRODUCTION

ITH the advance of technology scaling, the integra-
tion of multiple cores into a chip naturally makes

the system suitable for implementation of fault-tolerance
mechanisms [1][2][3][4][5][8]. Since power efficiency is
one of the desired properties of embedded systems and
the use of fault-tolerance techniques can increase power
density on a chip, an efficient solution must be used for
power reduction in these systems [1][5][9][15][16][17].
Power-aware task scheduling, Dynamic Voltage and Fre-
quency Scaling (DVFS), and Dynamic Power Manage-
ment (DPM) are widely exploited for average and peak
power reduction in embedded systems [1][5][9][40]. Re-
cently, heterogeneous multicore systems provide an effec-
tive solution wherein every core can have an individual
voltage but it is costly for implementation [4][6]. Due to
the heterogeneity, the worst-case execution time and the
power consumption of tasks change according to the task-
to-core mapping, presenting a new challenge for aver-
age/peak power reduction. There is a tradeoff between a
global supply voltage for all cores and an individual volt-
age per core because a global supply voltage is energy
inefficient and an individual voltage is very expensive
[6][7]. Therefore, it is better to use platforms with multi-
ple voltage islands in embedded systems. In such
platforms, processing cores in an island share the same

voltage while different islands can have a different sup-
ply voltage. Meanwhile, multicore platforms provide a
large opportunity for implementation of fault-tolerance
techniques to tolerate transient and permanent faults, but
it incurs significant power overheads. Due to the Thermal
Design Power (TDP) constraint, it is impossible to simul-
taneously power on all cores on a chip [3]. TDP is the
maximum sustainable power that a chip can dissipate
safely. Violating TDP makes some cores automatically
restart or significantly reduce their performance to pre-
vent a permanent failure [3]. This may affect the
timeliness of the system, and hence, designers face a criti-
cal problem with system design in deciding how to use
multicore platforms in embedded systems. Recently, a
new power budget concept called Thermal Safe Power
(TSP) provides safe and efficient power constraint [3].
Therefore, it is necessary to keep the power consumption
of the cores below TSP in order to avoid excessive tem-
perature increase [3]. TSP is computed in the offline phase
for the worst-case scenarios, or unlike TDP in the online
phase for a specific mapping of cores. When core hetero-
geneity or timing guarantees are involved, TSP can also
guide task partitioning and mapping decisions. It should
be noted that TDP is the chip-level power constraint and
TSP is the core-level power constraint. In order to meet
the TDP/TSP constraints, some solutions like heat-sink
and chip’s cooling are proposed while due to their nega-
tive effects on the system reliability these solutions are
not used in reliable embedded systems [3]. In this paper,
we consider TSP as the core-level power constraint.
Consequently, heterogeneous multicore systems are an
appropriate solution for power efficiency and reliability
improvement since they have a great potential for reduc-
ing the power consumption due to per-island DVFS [4]

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

————————————————

 M. Ansari, J. S. Latibari, M. Pasandideh, and A. Ejlali are with the Department
of Computer Engineering, Sharif University of Technology, Tehran 14588, Iran
(e-mails: mansari@ce.sharif.edu; jsaber@ce.sharif.edu; smpasan-
dideh@ce.sharif.edu; ejlali@sharif.edu).

Manuscript received 23 Dec. 2018; revised 13 July 2019; accepted 6 Sep-
tember 2019. Date of publication X Y Z; date of current version X Y Z.
(Corresponding author: Alireza Ejlali.)
Recommended for acceptance by X. X.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below. Digital
Object Identifier no. X/Y

W

mailto:smpasandideh@ce.sharif.edu
mailto:smpasandideh@ce.sharif.edu

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

and improving the system reliability due to intrinsic re-
dundancy in multicore systems. High power consump-
tion can lead to increasing chip temperature, which can
aggravate the fault rate [5]. To achieve high reliability,
most of the studies had used fault-tolerance techniques
[5][9][11]. Task replication is a powerful way to meet reli-
ability targets in multicore embedded systems [1][21][27].
By scheduling multiple copies of the same task on multi-
ple cores, the likelihood of successful execution of at least
one of them increases significantly. The advantages of
task replication are achieving high reliability and having
the potential of tolerating permanent faults in addition to
improving reliability in terms of tolerance to transient
faults [1][12][14][18][19][20]. The other reason that affects
the system reliability is violating the chip TDP. Therefore,
the occurrence of peak power must be managed in fault-
tolerant embedded systems. Dynamic Power Manage-
ment (DPM) and Dynamic Voltage Scaling (DVS) are two
ways for reducing the instantaneous power consumption
and average power consumption, however, the DVS
technique brings a number of overhead penalties: increas-
ing instrumentation costs, prolonging the execution time,
charging and discharging the capacitances of the chip
[5][28], and etc.

In this paper, we minimize the instantaneous power
consumption while keeping the system reliability under a
given reliability target and meeting tasks timing con-
straints in Heterogeneous Multicore Embedded Systems.
Also, due to the disadvantages of DVS, in this paper, we
employ a Dynamic Frequency Scaling (DFS) method that
reduces peak power consumption and satisfies thermal
constraints. Also, in our proposed method, each island
has a separate supply voltage, but each core of the island
can operate at a different frequency. Due to the power
and performance heterogeneity of the islands, effective
management of the islands is an objective for reducing
the power consumption and improving the system relia-
bility. This is because the power profile and worst-case
execution time of the tasks change according to the task
mapping policy. For example, Fig. 1 shows power con-
sumption profile, energy consumption, worst-case execu-
tion time and system-level reliability for applications
from the MiBench benchmark suite [24], where it can be
observed that due to the heterogeneity an application has
different characteristics when running on the different
types of cores.
Objective: The goal of the paper is to minimize the in-
stantaneous power consumption while keeping the sys-
tem reliability under a given reliability target and meet-
ing tasks timing constraints in heterogeneous multicore

embedded systems. To achieve the mentioned goal, we
rely on mapping, scheduling and replicating tasks such
that the power constraints are met.

To address the above goal, we make the following con-
tribution:
1) Proposing a peak-power-aware reliability management
scheme that distributes the power consumption on the
whole chip and determines the number of replicas for
each task to keep the system reliability at an acceptable
level. Also, the proposed method assigns applications to
different islands and maps them to the cores of them
based on balancing the utilization among all cores.
2) Employing a dynamic frequency scaling technique to
reduce peak power consumption such that timing con-
straints are met.
Evaluation: To compare our method with state-of-the-art
methods, we have used gem5 [25], McPAT [26], HotSpot
[29], and TSP [3]. Our experiments show that our pro-
posed method provides up to 54.3% (on average by 26.5%)
peak power reduction compared to the other schemes in
the worst-case scenario.
Organization: In order to evaluate the effectiveness of the
proposed method, we compared our method with state-
of-the-art techniques. The rest of this paper is formed as
follows. Section 2 reviews related work and section 3 pre-
sents our system model. In section 4, we present the de-
tails of our solution. The experimental results are shown
in section 5 and we conclude the paper in section 6.

2 RELATED WORK

Homogenous multicore systems have been widely stud-

ied in both power and reliability aspects. An example of

the reliability-aware peak power management for ho-

mogenous multicore embedded systems is the work pre-

sented in [2]. In this paper, Ansari et al. have proposed a

method that manages peak power overlaps between con-

currently executing tasks such that the system reliability

is preserved at an acceptable level while guaranteeing to

keep the total power consumption of cores below the chip

TDP and the power consumption of each underlying core

below the core TDP constraint. It should be noted that the

application model in [2] is the task graph and hard real-

time, while the model in this paper is the periodic and

soft real-time. In the context of real-time systems, this

difference in the application model is very fundamental

[36][37]. Moreover, the system model in the mentioned

paper is the homogenous multicore system, while the

system model in this paper is based on an island architec-

Fig. 1. Peak power consumption, worst-case execution time, reliability, and energy values based on simulations in gem5 [25] and McPAT [26],
and measured on ARM Cortex-A7, Cortex-A12, and Cortex-A15, for applications from the MiBench benchmark suite [24].

0.3
0.4
0.5
0.6
0.7
0.8
0.9

b
as
ic
…

b
it
co
u
…

cr
c3

2

d
ijk

st
ra ff

t

jp
e

g

la
m

e

p
at

ri
ci

a

q
so

rt

su
sa

nP
ea

k
P

o
w

er
(W

)

A7 (1.5GHz) A12(2.5GHz) A15(3.5GHz)

1

5

25

125

625

3125

b
as
ic
…

b
it
co
u
…

cr
c3

2

d
ijk

st
ra ff

t

jp
e

g

la
m

e

p
at

ri
ci

a

q
so

rt

su
sa

nEx
ec

u
ti

o
n

 T
im

e
(m

s)

A7 (1.5GHz) A12(2.5GHz) A15(3.5GHz)

0.995

0.996

0.997

0.998

0.999

1

b
as

ic
m

at
h

b
it

co
u

n
t

cr
c3

2

d
ijk

st
ra ff

t

jp
e

g

la
m

e

p
at

ri
ci

a

q
so

rt

su
sa

n

R
el

ia
b

ili
ty

A7 (1.5GHz) A12(2.5GHz) A15(3.5GHz)

1

6

36

216

1296

b
as
ic
…

b
it
co
u
…

cr
c3

2

d
ijk

st
ra ff

t

jp
e

g

la
m

e

p
at

ri
ci

a

q
so

rt

su
sa

n

En
er

gy
 (

m
J)

A7 (1.5GHz) A12(2.5GHz) A15(3.5GHz)

ANSARI ET AL.: SIMULTANEOUS MANAGEMENT OF PEAK-POWER AND RELIABILITY IN HETEROGENEOUS MULTICORE EMBEDDED SYSTEMS 3

ture of heterogeneous multicores. Indeed, this difference

in application and system model results in the difference

in almost all the other aspects including scheduling poli-

cies, energy management, experiments, and experimental

setup, etc. As energy-aware reliability management for

homogenous multicore systems, several works have been

recently presented [9][22][27]. Salehi et al. [9] have pro-

posed an N-modular redundancy (NMR) technique with

low energy consumption for hard real-time multicore

systems. Haque et al. [22] have proposed an energy-

management technique for a standby-sparing system that

executes preemptive fixed-priority real-time tasks. The

reference [27] finds the level of task replication, voltage

and frequency assignment, and task mapping at design

time, in order to achieve a given reliability level while

reducing the energy consumption. On the other hand,

some related works have addressed the problem of power

reduction and performance improvement tradeoff on het-

erogeneous multicore systems without considering the

reliability requirements [3][4][6][7][10]. Pagani et al. [3]

have presented a new power budget concept, called

Thermal Safe Power (TSP), that provides safe power and

power density constraints. Khdr et al. [4] have focused on

improving the overall system performance under a criti-

cal power constraint for heterogeneous tiled multicore

systems. Pagani et al. [6] have presented an efficient

method to reduce the total energy consumption while

satisfying the timing constraints of real-time tasks in het-

erogeneous multicore systems. This method consists of

the conscious selection of the voltage and frequency lev-

els for each island of the chip. Also, they have proposed a

task partitioning strategy that considers the energy con-

sumption of the task executing on different islands and at

different frequencies. Pagani et al. [7] have presented a

solution both for energy minimization and peak power

reduction, called Single Voltage Approximation (SVA)

scheme, for periodic real-time tasks on heterogeneous

multicore systems with a shared supply voltage in a volt-

age island. Munawar et al. [10] have exploited the free

cycles for each active core to reduce the peak power.

However, reliability and power management for het-
erogeneous multicore embedded systems have different
issues related to the heterogeneity and hence have more
complexity. Since the power, worst-case execution time,
energy, and reliability characteristics of applications sig-
nificantly differ from a core type to another one in heter-
ogeneous multicore embedded systems, we should con-
sider the peak power and reliability management simul-
taneously. The previous works in the context of multicore
systems either consider power reduction on heterogene-
ous platforms without considering reliability or consider
reliability improvement without considering peak power
on homogenous platforms.

3 SYSTEM MODELS AND ASSUMPTIONS

3.1 Task Model

We consider a set of periodic soft real-time tasks ψ={T1,…,
Tn}, which each task Ti has a period Pi, a worst-case execu-
tion time wci. The jth job of a task Ti (Jij) arrives at time
rij=(j−1)×Pi and must complete by its deadline j×Pi. Also,
the relative deadline Di of the job Jij is equal to the period
Pi. The utilization of the task Ti is defined as wci/Pi.

3.2 System and Power Model

The proposed system model is based on an island archi-
tecture of heterogeneous multicores consisted of two het-
erogeneous islands [41][42][43][44], i.e. (1) High
Performance Island (HPI), (2) Low Power Island (LPI),
where each island has a number of homogeneous pro-
cessing cores, and the number of cores in HPI and LPI is
denoted as NHPI and NLPI, respectively. Therefore, the total
number of cores in the system is defined as N=NHPI+ NLPI.
We consider that each core has an L1 cache, that each is-
land has an L2 cache shared between their cores, and that
there is an L3 cache shared between two islands. In each
island, all cores share a voltage level. However, due to
supporting Dynamic Frequency Scaling, each core may
have different frequency level.

The total power consumption of the system consists
of static and dynamic power components [1][3][5][31].
The static power (Pstatic) is dominated by the leakage cur-
rent. Dynamic power (Pdynamic) is mainly consumed due to
system activity.

2

0
(,)

Vth

VT

total static dynamic eff ii i i i
P V f P P I e V C V f

 (1)

where Ceff is the effective switched capacitance, η is a
technology parameter, Vi and fi are supply voltage and
operational frequency, and (α) is the activity factor. Under
DVS, the voltage Vi that is used for the execution of the
tasks in an island may be less than the maximum voltage
Vmax. We denote the normalized voltage ρi as [13]:

maxV

Vi
i

(2)

Let Vmax be the maximum voltage corresponding to the
maximum frequency fmax. Considering the almost linear
relationship between voltage and frequency [5], [9], we
can write: ρi=Vi/Vmax=fi/fmax. Therefore, Eq. 1 can be rewrit-
ten as:

2

0 max max max

3(,) () ()
Vth

VT

total Li iP V f I e V C V f

 (3)

Under the Dynamic Frequency Scaling (DFS) technique,
the frequency fi that is used for the execution of the tasks
may be less than the maximum frequency fmax. We denote
the normalized frequency βi as:

max

i
i

f

f

(4)

Now, Eq. 1 can be rewritten as:

2

0 max max max
(,) ()

Vth

VT

total LiP V f I e V C V f

 (5)

The relationship between DVS and DFS are determined
by the system overheads with the different operation

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

modes to achieve the power efficient operations, i.e. the
difference between DVS and DFS is the tradeoff between
the system efficiency and the power efficiency. It should
be noted that per-core DVS, due to chip-area cost and
power consumption overhead of on-chip controllable
power supplies, may not be applicable for multicore em-
bedded systems, e.g. for a single chip with 16 and 32
cores. Moreover, due to heterogeneity, all types of cores
should have separate DVS controller, and hence, the
overheads of DVS increase. Moreover, since DVFS reduc-
es the level of voltage, the fault rate increases. But exploit-
ing DFS does not have any negative effect on the fault
rate.

3.3 Fault Model and Reliability Analysis

In this paper, we consider permanent and transient faults.
We consider peak power consumption as a system-level
power constraint to prevent system failure (permanent
faults). Meanwhile, we consider transient faults that per-
turb the underlying core without causing permanent
damage [5][2]. The average fault rate λ is dependent on
the supply voltage whereby decreasing supply voltage V,
λ increases exponentially. The average fault rate on the
supply voltage V can be expressed as [5]:

max

0
() 10

V V

dV

 (6)

where λ0 is the transient fault rate at Vmax and d deter-
mines the sensitivity of the system to voltage scaling. The
task failure rate can be expressed by λ(V) FVI, where the
Function Vulnerability Index (FVI) is the software’s sus-
ceptibility to failure due to hardware-level transient faults
at instruction-level [5][11]. Therefore, the functional relia-
bility of a task can be written as:

()
() i

i

V FVI wc
R T e

 (7)

where wci is the worst-case execution time of Ti. Due to
the core heterogeneity of the heterogeneous multicore
systems, the task reliability on each core is different from
each other. Therefore, when k identical copies of a task i
are executed on k different cores, the total reliability of the
task is defined as the probability of having at least one
successful execution and is calculated as [5]:

1

() 1 (1)
k

jtotal i
j

R T R

 (8)

Generally, the reliability of a system with n tasks running
by our proposed method can be calculated as:

1

()
n

system total i

i

R R T

 (9)

4 PROBLEM DEFINITION AND OUR

PROPOSED METHOD

In this paper we aim at distributing the power consump-
tion on heterogeneous multicores platforms such that the
system reliability is preserved at an acceptable level

[39][40]. From [4] we know that chip-level power budgets
are not suitable for heterogeneous multicore platforms,
and hence, we must adopt a new power constraint for

avoiding any thermal violation. Therefore, it is important
to propose a method that meets the constraints and con-
siders power constraints on the processing cores and the
chip. As discussed in Section 1, executing tasks at a high-
frequency level makes lower execution time and fault
rate, however, the power consumption at a high-
frequency level may exceed the power constraint of the
chip. To balance the power consumption, we propose a
scheme that performs tasks mapping, tasks scheduling,
and frequency level assignment under power constraints
on a heterogeneous multicore chip. The overview of the
design-time step and run-time of our proposed system
are shown in Fig. 2 (To explain the proposed method, see
Section 4.2). It should be noted that in Fig. 2 two flows
run simultaneously and finally result in the code versions
with high-reliability and low-power consumption (i.e.
these flows have no dependency on each other). Indeed,
we determine and highlight the mentioned code versions,
and then in the next step of design flows we exploit them.
At design time, for each task, we find a set of code ver-
sions that provide high reliability and low power con-
sumption. The high-reliability code version of a task is a
code that has the highest functional reliability among all

Fig. 2. Overview of our Simultaneous Management of Peak-
Power and Reliability flow.

Run Time: Task-to-Island(Core) Mapping, Scheduling and F. Level Selection

Design Time: Initialization Step

Hardware-Level Parameters

Free cores

V-f levels

Leakage
Power

Execution Time Power Profiles

For each code version of each task executed on each core of each island

Reliability

O3 Aloha

O3 Aloha

O3 Aloha

ARM
A15

ARM
A15

ARM A9

ARM A9

A
R

M
 A

7
A

R
M

 A
7

Simple
Alpha

Platform (Floorplan)Power Model

Task Reliability
Targets, Timing
requirements

Software-Level
Parameters

T1 T2 T3 T4 TnTn-1

Application sets

...

Thermal Profiles

Low-Power-Density Codes

Select power(Thermal)-wise best code
versions

Power-Density-Driven Code Selection

Power Density
Constraint

Select reliability-wise best code versions

Select performance-wise best code
versions

Select reliability-wise best code versions

Reliability-Driven Code Selection

Select performance-wise best code
versions

High-Reliability Codes

Select a task from the task ready
queue which has earliest deadline

Code Version Selection and Task Mapping

Map a code version of the selected
task to a island which meet the power

density constraint

Map the selected code to a core of the
designated island with lowest

utilization

Determine a level of replication for the
selected task to meet its reliability target

(with choosing from High-Reliability Codes)

Task Replication

Task Scheduling

Schedule each ready job on each core
based on EDF

Iterate and update frequency levels,
code versions, the level of replication
and task-to-island and core mapping,

until all constraint

Select power(Thermal)-wise best code
versions

Ptotal=Pstatic+Pdynamic

Before DFS:

Ptotal=Pstatic+Pdynamic

After DFS:

Ptotal=Pstatic+βiPdynamic

ANSARI ET AL.: SIMULTANEOUS MANAGEMENT OF PEAK-POWER AND RELIABILITY IN HETEROGENEOUS MULTICORE EMBEDDED SYSTEMS 5

code versions of the mentioned task (according to Eq. 7).
Meanwhile, the low-power-density code version of a task
is a code that has lowest peak power and average power
consumption among all code versions of the mentioned.
In order to calculate the resulting power density of exe-
cuting different code versions of the task, we run all the
code versions of tasks on all the types of cores and make a
table with all information (peak power consumption,
worst-case execution time, reliability, and energy) before
assigning the tasks to the cores. Then, based on the men-
tioned table, we map and schedule the applications.

4.1 Problem Definition

We use the following notation to represent the system
reliability and power consumption, frequency level, and
task-to-island mapping, and task-to-core mapping. In this
formulation, n is the number of tasks, m is the number of
islands, c is the number of free cores in an island j, and v
is the number of available frequency levels for each core:
 The task reliability is represented by the matrix

Rϵℝn×m×c×v, in which each element Rijkl denotes the reli-
ability of task i when the task is executed on the core k
of the island j under the frequency level l.

 The power consumption is represented by the matrix
Pϵℝn×m×c×v, in which each element Pijkl denotes the
power consumption for the task i when the task is ex-
ecuted on the core k of the island j under the frequen-
cy level l.

 The task-to-island mapping, task-to-core mapping,
and frequency level assignments are represented by
the matrix Xϵ{0,1}n×m×c×v. The task i is mapped to the
core k of the island j and is executed under the fre-
quency level l if and only if Xijkl = 1.

The goal of the proposed method is to minimize the in-
stantaneous power consumption while keeping the sys-
tem reliability under a given reliability target and meet-
ing tasks timing constraints (deadlines). As power-
reliability optimization knob, in our system tasks can po-
tentially execute on different islands supporting different
frequency levels, and can execute with frequency varia-
tions on each core of them, resulting in separate power
profiles, reliability and worst-case execution time. We
formulate the above problem as a convex problem.
Optimization Goal: Minimize the total average power
consumption defined by the sum of the power consump-
tion of all tasks executed on the system.

Minimize systemP (10)

Chip Power Constraint: The instantaneous power con-
sumption of the chip, i.e. the sum of the power of all un-
derlying cores should be less than the chip TDP constraint
in each time slot of the frame of the system.

, , , , , , ,

, , ,

i j k l i j k l TDP chip

i j k l

X P P

(11)

Cores Power Constraint: The instantaneous power con-
sumption of each underlying core should be less than the
core TSP constraint [3] in each time slot.

, , , , , , ,i j k l i j k l TSP kX P P

(12)

Tasks Timing Constraint: The worst-case execution time

wci/fk,l for a task i on the core k and at the frequency level l
should not exceed the task timing constraint (defined by
the Di).

, , ,

,

i
i j k l i

k l

wc
X D

f

(13)

Task Reliability Target: For each task, the reliability
mechanism should satisfy its reliability requirement Rreq.

: i reqi R R

(14)

Core Assignment Constraint: Each task can be only mapped

to a single core of a single island.

, , ,, : 1i j k l

j k

i l X

(15)

Frequency Levels Assignment Constraint: Each task can
be only executed under a single frequency level on a core
(the frequency level does not change during the task exe-
cution).

, , ,, , : 1i j k l

l

i j k X

(16)

Since Eq. 14 is an exponential equation, the mentioned
problem is convex [17][38]. The convex formulated prob-
lem can be solved by the available convex (CVX) solvers
[30], and it is categorized as an NP-Complete problem
[8][33][32]. On the other hand, the complexity of such
problems may increase exponentially with the increase of
problem size at run-time, e.g., with the number of ready
tasks, islands, cores, and frequency levels. Accordingly,
when the ready tasks and free cores are determined at
run-time and a dynamic mapping is required, CVX solv-
ers cannot be employed in online scenarios. Therefore, we
propose a heuristic-based algorithm to provide an effec-
tive solution for the presented problem.

4.2 Simultaneous Management of Peak-Power and
Reliability

In this section, we focus on the task mapping to islands
and the task scheduling on the cores. To solve these prob-
lems, we propose a heuristic method which maps the
tasks to the cores of the islands such that the power con-
straint, the task-level reliability target, and deadlines are
satisfied. Fig. 2 shows the overview of our system flow,
while its run-time pseudo-code is presented in Algorithm
1. At design time, we choose the proper code versions for
each task between different compiled codes and use them
at run-time by Algorithm 1. For this purpose, at first, for
each task, the code version with the lowest power density
is determined. Then, among the other code versions, we
select those that have more reliability than the code ver-
sion with the less execution time. The selected tasks are
defined as Low-Power-Density (LPD) codes. Since the
reliability of a single task execution may not satisfy the
task reliability target, the use of a task-level redundancy
is required. To do this, we select a code version with high
reliability to replicate it, improving the task reliability.
Then, we select power-density-wise best code versions
and, finally, from them, we choose code versions with the
lowest execution time. In the task replication step, the
selected tasks are defined as High-Reliability (HR) codes.

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

Algorithm Discussion: Algorithm 1 presents the pseu-
do-code of the run-time step of our proposed method.
Algorithm 1 gets the ready tasks with their execution time
and deadline, the set of free cores, different code versions
for each task, and available frequency levels for each core,
the core power constraint PTSP,core, and the chip power
constraint PTDP,Chip. At first, we compute hyperperiod h
which is defined as the least common multiple of all task
periods (line 1). In line 2, we use a power density array
including h slots that determines the power consumption
of the system in each time slot. Then, the algorithm initial-
izes two schedules S_HPIi and S_LPIi to Null for each core
of Φ (Φ is the set of islands which each of islands have
multiple cores). In line 5 to 17, the algorithm iterates until
all the main and replica tasks are assigned onto a core of
an island such that the power constraints are met. For this
purpose, we choose a task from its Low-Power-Density

code versions which has minimum peak and average
power consumption and assign it to an island that its
power constraint is not violated. Then, based on the low-
est utilization first policy, we map the selected task to a
core which has the lowest utilization. Also, in lines 10-16,
the algorithm iterates until the reliability of the selected
task becomes higher than its reliability target. To do this,
the algorithm inserts a replica task into the selected task
one after another to satisfy Rreq. In lines 22 to 34, the algo-
rithm iterates until all the jobs of each task are scheduled
based on the PPA-EDF (Peak-Power-Aware Earliest
Deadline First) policy [15]. In line 19, the algorithm selects
a job which has the earliest deadline and partitions the
selected job into parts with different power consumption.
In line 21, the variable k is initialized to the release time of
the selected job. The algorithm places the parts of the
tasks, beginning from the first part, on time slots that
come sooner in the schedule C.S. In lines 22-25, the algo-
rithm checks free time slots of the core C one after another
and places each part Jijl on the first free time slot t such
that the power consumption of Jijl does not exceed the
core TSP constraint and also does not increase the power
consumption of the chip beyond the chip TDP. If these
terms are met, Tij is placed in the time slot t of C.S in line
26. The power density array PDA is updated in line 27
and the variable k is updated in line 28. Finally, if not all
the copies are scheduled, the algorithm returns infeasible
in line 36.

In Algorithm 1, suppose that m is the number of all
tasks (the primary and replica tasks), N is the number of
free cores, h is the total time slots. The main computation
of Algorithm 1 is performed to map and schedule all
ready tasks and then putting them into a max-heap.
Therefore, for m ready tasks, N free cores and h time slots,
building the max-heap is performed in O(m×N). The first
while loop iterates for O(m×N) times. The main while
loop iterates for O(m×N×h) times. Therefore, the order of
the algorithm is max{ O(m×N), O(m×N×h)}.

Task Dropping Mechanism: The second part of the
problem is to exploit the opportunities created during the
actual execution of the tasks at runtime to reduce further
power consumption. This can be satisfied through the
addition of an online monitor to the system. The respon-
sibility of the online monitor is to control the execution
accuracy of different instances of each task, handle the
run-time state of the system, and apply DPM and DFS.
The online monitor needs to find the first copy of each
task that has finished successfully and cancels the execu-
tion of the remaining part of the other copies on the other
cores. Based on the rare nature of the faults, most of the
time, there is no need to execute all copies of a task com-
pletely. So, as soon as the first copy of a task finishes suc-

Algorithm 1. Simultaneous Management of Peak-Power and Reliability

INPUT: ready tasks with the execution time and the deadline, set of free
cores Φ={HPI:{C1, … , CNHPI}, LPI:{C1, …, CNLPI}}, code versions for each task,
available frequency levels for each core, core power constraint PTSP,core and
chip power constraint PTDP,Chip.
OUTPUT: task Mapping and task scheduling
BEGIN

1: h=LCM(the periods of all tasks); //Total # of time slots in the frame

2: PDA [1...h]={0}; //Initialize the total power consumption array

3: S_HPIi={Null, 1≤i≤NHPI}; //Initialize S with an empty schedule

4: S_LPIi={Null, 1≤i≤ NLPI}; //Initialize S with an empty schedule

5: while (is not empty) do

6: Ti=.remove(); /Select a task chosen from LPD Codes

7: φ= find_island(); //Find the best island

8: C= φ.minutilization; //Find a core of the island with lowest utilization

9: C.add(Ti);
10: while (RT< Rreq) do

11: Ti.insert(); //Insert a replica task chosen from HR Codes to
12: Update_reliability(RT); // update the task reliability

13: φ= find_island(); //Find the island

14: C= φ.minutilization; //Find a core of the island with lowest utilization

15: C.add(Ti); //Insert a replica task chosen from HR Codes to

16: end while

17: end while

18: while (is not empty) do

19: Jij=.remove(); //Select a job chosen which has highest priority

20: Jijl = {Jijl, 1≤l≤wci}; /Partition the selected job into parts

21: k=release_time(Jij);

22: foreach part Jijl starting from the first part do

23: foreach free slot t=k→ j×Pi in C.S do

24: if PDA[t]+ power (Jijl) ≤ PTDP,Chip then

25: if power (Jijl) ≤ PTSP,Core then

26: S_C.add(t, Jijl);

27: PDA[t] = PDA[t]+ power (Jijl);

28: k=t+1;

29: break;

30: end if;

31: end if;

32: end for;

33: end for;

34: end while
35: if not all the jobs are scheduled then
36: return infeasible;
37: end if;
END

EVEN-DFS Function

1: Function DFS(Jij);

2: slack ← Extract_Slack();

3: fij← max(fee,
𝑤𝑐𝑖𝑗

𝑤𝑐𝑖𝑗+𝑠𝑙𝑎𝑐𝑘
);

4: Execute Jij at frequency fij;

5: End Function

ANSARI ET AL.: SIMULTANEOUS MANAGEMENT OF PEAK-POWER AND RELIABILITY IN HETEROGENEOUS MULTICORE EMBEDDED SYSTEMS 7

cessfully, the online monitor stops the execution of the
remaining part of the other copies, and put the system
into a low power state where the dynamic power con-
sumption is avoided; therefore, further power is saved.
Applying our EVEN-DFS technique: As the amount of
dynamic slacks is determined at run-time, our method
uses DFS to distribute these slacks among the tasks.
Therefore, at run-time we determine static and dynamic
slacks in each core and apply our DFS technique on them
such that the deadlines of the tasks are not violated. To do
this, based on the EVEN-DVS technique [34], the frequen-
cy of all the tasks is set on each core. Our EVEN-DFS
technique distributes slacks evenly among all tasks. The
operation of this technique is shown in EVEN-DFS Func-
tion. An advantage of the EVEN-DFS technique is its line-
ar time complexity when compared to the quadratic com-
plexity of other DVFS techniques. Also, our DFS tech-
nique is software-based while other techniques are hard-
ware-based. It should be noted that the EVEN-DFS func-
tion is done after mapping and scheduling all the tasks.
Therefore, this function is independently executed after
Algorithm 1.

5 RESULTS AND DISCUSSION

In order to evaluate the effectiveness of our proposed
scheme, we use gem5 full-system simulator [25], McPAT
[26], HotSpot [29], and TSP [3]. We ran our simulations
with various task sets including real-life embedded appli-
cations of MiBench Benchmark [24] running on a target
heterogeneous multicore platform. Since ARM processors
are widely used in many embedded systems, we consider
a platform with several types of ARM cores [23], e.g.
ARM Cortex-A7, Cortex-A12, and Cortex-A15. Mean-
while, we considered that the system supports per core
DFS and per island DVFS. The details of simulation con-
figurations for the processing cores of our system are
summarized in Table 1. Also, Fig. 3 shows our tool flow
for scheduling simulation, and power, thermal, and per-
formance evaluation. As shown in Fig. 3, we extract the
peak power consumption, the worst-case execution time,
reliability, and energy values based on simulations in
gem5 [25] and McPAT [26] measured on ARM processors
for applications from the MiBench benchmark suite [24].
Then, we employ a system-level simulator for simulating
different execution scenarios. To determine the power
constraints, we use the TSP simulator as the core-level
power constraint calculator. We use the results of Fig. 1 to
simulate our proposed system. To the best of our
knowledge, this paper is the first attempt that addresses
peak-power management and fault-tolerance in conjunc-
tion on heterogeneous multicore embedded systems.
Therefore, we compare our peak-power-aware reliability
management (PPARM) scheme with state-of-the-art pow-
er and reliability management techniques. The compari-
son schemes are:

 [1]-EM: This technique has proposed a task repli-
cation mechanism with low power/energy over-
head for multicore systems [1]. Haque et. al. [1]
have proposed the newest power-aware task rep-

lication mechanism for multicore systems. They
have developed static solutions for managing
power consumption and then have proposed dy-
namic adaptation schemes in order to reduce the
concurrent execution of the replicas of a given
task and to take advantage of early completions
to further achieve the power reduction.

 TMR: In the Triple Modular Redundancy (TMR)
technique, each task has three copies executed on
three different cores. Three copies of each task
perform majority voting on the results for error
masking.

 DMR: In the Dual Modular Redundancy (DMR)
technique, each task is executed in the DMR
mode with a backup task. This technique makes
the DMR mode for applications’ tasks according
to the tasks’ vulnerability [35].

We compared PPARM with three selected schemes

([1]-EM, DMR, TMR) for: i) the worst-case execution sce-

nario when the system consumes the maximum possible

power (Section 5.1) and ii) the actual-case execution sce-

nario when the system consumes real power (Section 5.2).

In the worst-case scenario, all tasks and their replicas

are executed, and therefore, the system consumes the

maximum possible power that is very pessimistic. In

the actual-case scenario, the system needs to find the

first copy of each task that has finished successfully

and cancels the execution of the remaining part of the

other replicas on the other cores. Based on the rare na-

ture of the faults, most of the time, there is no need to

Fig. 3. Our tool flow for scheduling simulation, and power,
thermal, and performance evaluation.

HotSpotMcPATGem5 Simulator

Software-Level Parameters

Execution Time Power Trace

Thermal Safe
Power Tool

Power Density
Constraint Calculation

Our Power Density-Aware Reliability Management Simulator

Worst-Case Execution Scenario

Average-Case Execution Scenario

Power,
Thermal, and
Performance

Analysis

Fault-Free Execution Scenario

Workload,
Task sets,

Number of
Cores

Inputs

O3 Aloha

O3 Aloha

O3 Aloha

ARM A15

ARM A15

ARM A9

ARM A9

A
R

M
 A

7
A

R
M

 A
7

Simple
Alpha

Platform (Floorplan)

Fault Generator

Fault Injector

Fault Rate

Table 1. The details of simulation configuration

Processor

4, 8, 16, and 32 cores, two islands, five different

voltage and frequency levels between [0.85Volt,

1GHz] and [1.1Volt, 2GHz].

Memory

Main

Memory

4GB, 1 channel, 2 ranks, 8 banks per
rank, Access time: 100 cycles, DRAM

L1
32KB, 8KB block-width, 4-way, Access
time: 2 cycles, SRAM

L2
1MB, 16-way, 64B line, Write back,
write: 20 cycles, STT-RAM

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

execute all replicas of a task completely. So, as soon as

the first copy of a task finishes successfully, the system

stops the execution of the remaining part of the other

replicas, and put the system into a low power state

where the dynamic power consumption is avoided;

therefore, further power is saved. In this scenario, the

system consumes real power (actual power consump-

tion).

5.1 Worst-Case Execution Scenario

The worst-case execution scenario shows the maximum
power consumption by the system because all copies of
each task are executed in this scenario. Therefore, it can
be considered a suitable condition for comparing PPARM
and other techniques. Fig. 4 shows the power consump-
tion profile of PPARM and the three mentioned tech-
niques. This figure shows that PPARM consumes less
peak power than other schemes. In this figure, the relia-
bility target is equal to 0.99999 and the dashed line is the
TDP constraint. As Fig. 4 shows, other techniques miss

this TDP constraint while PPARM always meets it. In Fig.
4, we have used only one random task set for each system
configuration. It should be noted that PPARM meets the
core-level power constraints (obtained from TSP simula-
tor) while other techniques violate TSP. To provide a
more detailed analysis, for each system configuration, we
used more task sets and then the average results are
shown in Fig. 5. Each case of this figure was simulated for
1000 times with different parameters of the applications
and the average results are reported. Also, for each con-
figuration of this figure the reliability target for each task
is equal to 1-10-5. This figure shows the normalized peak
power consumption of the schemes with respect to TDP
and the normalized average power consumption of the
schemes with respect to our scheme. From Fig. 5 it can be
concluded that our scheme completely outperforms the
three schemes from the peak and average power con-
sumption viewpoints. Our PPARM scheme provides on
average 25.7% (up to 53.9%) and 19.7% (up to 26.5%) peak
power and average power reduction as compared to three

 (a)

 (b)
Fig. 5. a) Normalized peak power consumption to TDP, and b) Normalized average power consumption to our scheme in the worst-case
scenario with different system configurations.

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4

Utilization Utilization Utilization Utilization

of cores = 4 # of cores = 8 # of cores = 16 # of cores = 32

N
o

rm
al

iz
ed

 P
ea

k
 P

o
w

er
 t

o

T
D

P

PPARM [1]-EM DMR TMR

0.8

0.9

1

1.1

1.2

1.3

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4

Utilization Utilization Utilization Utilization

of cores = 4 # of cores = 8 # of cores = 16 # of cores = 32

N
o

rm
al

iz
ed

 A
v

ea
g

e
P

o
w

er

to
 P

P
A

R
M

PPARM [1]-EM DMR TMR

(a) Uprimary_tasks=0.8 , # of cores= 4

(b) Uprimary_tasks=1.6, # of cores= 8

(c) Uprimary_tasks=3.2, # of cores= 16

Fig. 4. Power consumption profile in the worst-case scenario on different systems.

ANSARI ET AL.: SIMULTANEOUS MANAGEMENT OF PEAK-POWER AND RELIABILITY IN HETEROGENEOUS MULTICORE EMBEDDED SYSTEMS 9

mentioned schemes, respectively. When the number of
task increases (increasing the system utilization), the peak
and average consumption of the system increase. This is
because the amount of slack times decreases.

5.2 Actual-Case Execution Scenario

In this case, we evaluate the actual-case execution scenar-
ios. In order to generate fault rate and pattern in our ex-
periments, transient faults were generated using a Pois-
son process where the fault rate λ corresponding to dif-
ferent voltage levels was modeled using Eq. 6. Therefore,
in order to inject faults, we generated a fault vector that
determines at which times faults occur. Then, based on
the fault vector, we decide which task becomes faulty
during the execution of a task set. Since transient faults
are rare in nature, PPARM achieves further power reduc-
tion at runtime beyond what is achieved through its task
dropping mechanism. In the task dropping mechanism,
when a copy of task Ti is executed successfully at runtime,

we cancel the execution of the remaining parts of the oth-
er copies on the other cores. In this condition, the dynam-
ic slack time is released that can be exploited by DFS to
reduce the power consumption of the system. Fig. 6 illus-
trates the power consumption profile of executing task
sets that were deployed in Fig. 4 where some tasks are
faulty. Like the worst-case execution scenario, in this case,
our scheme consumes less power than other schemes due
to its different policies and better peak power manage-
ment scheme.
Fig. 7 shows the peak and average power consumption of
PPARM, [1]-EM, DMR, and TMR schemes where the peak
and average power consumption have been normalized
with respect to TDP and the average power consumption
of PPARM, respectively. The experiments show that our
PPARM scheme completely outperforms the three men-
tioned schemes from the peak and average power con-
sumption viewpoints. This is because other schemes ei-
ther consider power reduction without considering relia-

(a) Uprimary_tasks=0.8, # of cores= 4

(b) Uprimary_tasks=1.6, # of cores= 8

(c) Uprimary_tasks=3.2, # of cores= 16

Fig. 6. Power consumption profile in the actual-case execution scenario on different systems.

 (a)

(b)

Fig. 7. a) Normalized peak power consumption to TDP, and b) Normalized average power consumption to our scheme in the actual-case
execution scenario with different system configurations.

0.4

0.6

0.8

1

1.2

1.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4

Utilization Utilization Utilization Utilization

of cores = 4 # of cores = 8 # of cores = 16 # of cores = 32

N
o

rm
al

iz
ed

 P
ea

k
 P

o
w

er

to
 T

D
P

PPARM [1]-EM DMR TMR

0.7

0.9

1.1

1.3

1.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 0.8 1.6 2.4 3.2 4 4.8 5.6 6.4

Utilization Utilization Utilization Utilization

of cores = 4 # of cores = 8 # of cores = 16 # of cores = 32

N
o

rm
al

iz
ed

 A
v

ea
g

e
P

o
w

er
 t

o

P
P

A
R

M

PPARM [1]-EM DMR TMR

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

bility or consider reliability improvement without consid-
ering peak/average power consumption. PPARM pro-
vides on average 27.3% (up to 54.3%) and 21.8% (up to
32.03%) peak power and average power reduction as
compared to three mentioned schemes, respectively.

6 CONCLUSION

In this paper, we have proposed a method to manage the
power consumption on the heterogeneous multicore em-
bedded systems. As power is a critical resource for multi-
core embedded systems, the usage of this resource should
be optimized. That is because high power consumption
can lead to increasing the chip temperature, which can
aggravate the fault rate. In order to manage power con-
sumption and achieve high reliability, we have presented
a run-time scheme as our proposed scheme. Our PPARM
scheme proposes a peak-power-aware reliability man-
agement scheme that distributes the power consumption
on the whole chip and determines the number of replicas
for each task to satisfy the system reliability target. Also,
the proposed method assigns applications to different
islands and maps them to the cores of them based on bal-
ancing the utilization among all cores. In order to further
reduce power consumption, we apply the DFS technique
on all the cores of our system. We also illustrated the ben-
efits of PPARM by comparing it with state-of-the-art
schemes, resulting in average in 26.5% less peak power
consumption (up to 54.3%).

ACKNOWLEDGMENT

The authors acknowledge Research Vice-Presidency of
Sharif University of Technology for funding this work
under grant no. G930827.

REFERENCES

[1] M. A. Haque, H. Aydin and D. Zhu, “On Reliability Manage-
ment of Energy-Aware Real-Time Systems Through Task Rep-
lication,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 3, pp. 813-825, 2017.

[2] M. Ansari, S. Safari, A. Y. Khaksar, M. Salehi, and A. Ejlali,
“Peak Power Management to Meet Thermal Design Power in
Fault-Tolerant Embedded Systems,” IEEE Transactions on Paral-
lel and Distributed Systems, vol. 30, no. 1, pp. 161-173, 2019.

[3] S. Pagani, H. Khdr, J. J. Chen, M. Shafique, M. Li and J. Henkel,
“Thermal Safe Power (TSP): Efficient Power Budgeting for Het-
erogeneous Manycore Systems in Dark Silicon,” IEEE Transac-
tions on Computers, vol. 66, no. 1, pp. 147-162, 2017.

[4] H. Khdr, S. Pagani, E. Sousa, V. Lari, A. Pathania, F.Hanning,
M. Shafique, J. Teich and J. Henkel “Power Density-Aware Re-
source Management for Heterogeneous Tiled Multicores,” IEEE
Transactions on Computers, vol. 66, no. 3, pp. 488-501, 2017.

[5] M. Salehi, A. Ejlali and M. Shafique, “Run-Time Adaptive Pow-
er-Aware Reliability Management for Many-Cores,” IEEE De-
sign & Test, no. 99, pp. 1-1, 2017.

[6] S. Pagani, A. Pathania, M. Shafique, J. J. Chen and J. Henkel,
“Energy Efficiency for Clustered Heterogeneous Multi-
cores,” IEEE Transactions on Parallel and Distributed Systems, vol.
28, no. 5, pp. 1315-1330, 2017.

[7] S. Pagani, J. J. Chen and J. Henkel, “Energy and Peak Power
Efficiency Analysis for the Single Voltage Approximation
(SVA) Scheme,” in IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 34, no. 9, pp. 1415-1428,
2015.

[8] J. Lee, B. Yun and K. G. Shin, “Reducing Peak Power
Consumption in Multi-Core Systems without Violating Real-
Time Constraints,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 4, pp. 1024-1033, April 2014.

[9] M. Salehi, A. Ejlali, and B.M. Al-Hashimi, “Two-Phase Low-
Energy N-Modular Redundancy for Hard Real-Time Multi-
Core Systems,” IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), vol. 25, no. 4, pp. 1024-1033, April 2015.

[10] W. Munawar, H. Khdr, S. Pagani, M. Shafique, J.-J. Chen, and J.
Henkel, “Peak Power Management for Scheduling Real-time
Tasks on Heterogeneous Many-Core Systems,” in 20th IEEE In-
ternational Conference on Parallel and Distributed Systems
(ICPADS), Hsinchu, Taiwan, December 2014.

[11] S. Rehman, M. Shafique, F. Kriebel and J. Henkel, “Reliable
software for unreliable hardware: Embedded code generation
aiming at reliability,” Proceedings of the Ninth IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and Sys-
tem Synthesis (CODES+ISSS), pp. 237-246, 2011.

[12] D. Pradhan, Fault-tolerant computer system design. Upper Saddle
River, N.J.: Prentice Hall PTR, 1996.

[13] P. Pillai and K. Shin, “Real-Time Dynamic Voltage Scaling for
Low-Power Embedded Operating Systems,” ACM SIGOPS Op-
erating Systems Review, vol. 35, no. 5, p. 89, 2001.

[14] D. Zhu, R. Melhem, and Mosse, “The effects of energy man-
agement on reliability in real-time embedded systems,” in Pro-
ceedings of Int’l Conf. Computer Aided Design, pp. 35–40, 2004.

[15] M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali, “Peak-
Power-Aware Energy Management for Periodic Real-Time Ap-
plications,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2019.

[16] M. Salehi, and A. Ejlali, “A Hardware Platform for Evaluating
Low-Energy Multicore Embedded Systems Based on COTS
Devices,” IEEE Trans. on Industrial Electronics, vol. 62, no. 2, pp.
1262-1269, 2015.

[17] M. Ansari, M. Pasandideh, J. Saber-Latibari and A. Ejlali,
“Meeting Thermal Safe Power in Fault-Tolerant Heterogeneous
Embedded Systems,” in IEEE Embedded Systems Letters, 2019.

[18] I. Koren, and C.M. Krishna, Fault-Tolerant Systems, Morgan
Kaufman, 2007.

[19] B. Zhao, H. Aydin, and D. Zhu, “Enhanced reliability-aware
power management through shared recovery technique,” in
Proc. int’l conf. on Computer Aided Design (ICCAD), 2009.

[20] D. Zhu, and H. Aydin, “Reliability-Aware Energy Management
for Periodic Real-Time Tasks,” IEEE Trans. on Computers, vol.
58, no. 10, pp. 1382-1397, April 2009.

[21] M.A. Haque, H. Aydin, and D. Zhu, “Energy-Aware Standby-
Sparing Technique for Periodic Real-Time Applications,” Proc.
IEEE 29th Int‘l Conf. Comput. Design (ICCD'11), pp. 190-197, Oct.
2011.

[22] M.A. Haque, H. Aydin, and D. Zhu, “Energy Management of
Standby-Sparing Systems for Fixed-Priority Real-Time
Workloads,” Green Computing Conf. (IGCC), Arlington, June
2013.

[23] P. Greenhalgh, “big.LITTLE processing with ARM Cortex-A15
& Cortex-A7,” ARM Limited, White Paper, September 2011.

[24] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T.
Mudge, and R.B. Brown, “MiBench: A Free, Commercially Rep-
resentative Embedded Benchmark Suite,” Proc. Fourth IEEE
Ann. Workshop on Workload Characterization, pp. 3-14, 2001.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,

ANSARI ET AL.: SIMULTANEOUS MANAGEMENT OF PEAK-POWER AND RELIABILITY IN HETEROGENEOUS MULTICORE EMBEDDED SYSTEMS 11

K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood,
“The gem5 simulator,” ACM SIGARCH Computer Architecture
News,vol. 39, no. 2, pp. 1–7, May 2011.

[26] S. Li, J.-H. Ahn, R. Strong, J. Brockman, D. Tullsen, and N.
Jouppi, “McPAT: An integrated power, area, and timing model-
ing framework for multicore and manycore architectures,” in
MICRO, pp. 469–480, 2009.

[27] F. R. Poursafaei, S. Safari, M. Ansari, M. Salehi, and A. Ejlali,
“Offline Replication and Online Energy Management for Hard
Real-Time Multicore Systems,” Proc. of the 1th Int'l the CSI Sym-
posium on Real-Time and Embedded Systems and Technologies
(RTEST), Tehran, Iran, 2015.

[28] M. Salehi, M. Khavari Tavana, S. Rehman, M. Shafique, A. Ejlali
and J. Henkel, “Two-State Checkpointing for Energy-Efficient
Fault Tolerance in Hard Real-Time Systems,” in IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 7,
pp. 2426-2437, July 2016.

[29] W. Huang, S. Ghosh, S. Velusamy, K. Sankaranarayanan, K.
Skadron, and M. R. Stan, “HotSpot: A compact thermal model-
ing methodology for early-stage VLSI design,” in IEEE Transac-
tions on VLSI Systems, vol. 14, no. 5, pp. 501–513, May 2006.

[30] J. Mattingley and S. Boyd, “CVXGEN: A code generator for
embedded convex optimization,” Optimization and Engineer-
ing 13.1, 1-27, 2012.

[31] M. Ansari, S. Safari, F. R. Poursafaei, M. Salehi, A. Ejlali
“AdDQ: Low-Energy Hardware Replication for Real-Time
Systems through Adaptive Dual Queue Scheduling,” The CSI
Journal on Computer Science and Engineering (JCSE), vol. 15, no. 1,
pp. 31-38, 2017.

[32] J. Mitchell. Branch-and-cut algorithms for combinatorial opti-
mization problems, in Handbook of Applied Optimization, 2002.

[33] M. Salehi et al., “dsReliM: Power-constrained reliability man-
agement in Dark-Silicon many-core chips under process varia-
tions,” in Proc. Int. Conf. Hardware/Softw. Codesign Syst. Synthe-
sis, pp. 75-82, 2015.

[34] M. T. Schmitz, B. M. Al-Hashimi, and P. Eles, “System-Level
Design Techniques for Energy-Efficient Embedded Systems,” vol. 53,
no. 9. Springer Science & Business Media, 2004.

[35] R. Vadlamani, J. Zhao, W. Burleson and R. Tessier, “Multicore
soft error rate stabilization using adaptive dual modular re-
dundancy,” Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 27-32, 2010.

[36] Buttazzo, Giorgio, Hard Real-Time Computing Systems: Predictable

Scheduling Algorithms and Applications, New York, NY: Springer,

2011.

[37] G. C. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo “Soft Real-

Time Systems: Predictability vs. Efficiency” Springer, 2005.

[38] S. Boyd and L. Vandenberghe, “Convex Optimization”, 2004.

[39] L. A. Johnson, “DO-178B: Software considerations in airborne

systems and equipment certification,” in Radio Technical

Commission for Aeronautics (RTCA), 1992.

[40] S. Safari, M. Ansari, G. Ershadi and S. Hessabi, “On the Sched-

uling of Energy-Aware Fault-Tolerant Mixed-Criticality Multi-

core Systems with Service Guarantee Exploration,” in IEEE

Transactions on Parallel and Distributed Systems, 2019.

[41] F. Kong, W. Yi, and Q. Deng, “Energy-efficient scheduling of

realtime tasks on cluster-based multicores,” in Proceedings of the

14th Design, Automation and Test in Europe (DATE), pp. 1–6,

2011.

[42] N. Nikitin and J. Cortadella, “Static task mapping for tiled chip

multiprocessors with multiple voltage islands,” in Proceedings of

the 25th International Conference on Architecture of Computing Sys-

tems (ARCS), pp. 50–62, 2012.

[43] S. Pagani, J.-J. Chen, and M. Li, “Energy efficiency on multicore

architectures with multiple voltage islands,” IEEE Transactions

on Parallel and Distributed Systems (TPDS), vol. 26, no. 6, pp.

1608–1621, June 2015.

[44] X. Wu, Y. Zeng, and J.-J. Han, “Energy-efficient task allocation

for VFI-based real-time multi-core systems,” in Proceedings of the

International Conference on Information Science and Cloud Compu-

ting Companion (ISCC-C), pp. 123–128, Dec 2013.

Mohsen Ansari received the M.Sc. degree in

computer engineering from Sharif University of

Technology, Tehran, Iran, in 2016. He is currently

working toward the PhD degree in computer engi-

neering at Sharif University, Tehran, Iran, from

2016 until now. He is now the member of Embed-

ded Systems Research Laboratory (ESR-LAB) at

the department of computer engineering, Sharif University of Tech-

nology. His research interests include low-power design of embed-

ded systems, peak power management in embedded systems, and

multi-/many-core systems with a focus on dependability/reliability.

Javad Saber-Latibari is currently a M.Sc. student

in the Department of Computer Engineering at

Sharif University of Technology, Tehran, Iran. He

received the B.Sc. degree in computer

engineering from Ferdowsi University of Mashhad.

His research interest lies in computer architecture,

especially in Low Power Design and Embedded

Systems.

Mostafa Pasandideh is currently a M.Sc. student

in the Department of Computer Engineering at

Sharif University of Technology, Tehran, Iran. He

received the B.Sc. degree in computer

engineering from Shahed University, Tehran, Iran.

His research interests include low-power design of

embedded systems and Reliability management in

multicore embedded systems.

Alireza Ejlali received the PhD degree in com-

puter engineering from Sharif University of Tech-

nology in, Tehran, Iran, in 2006. He is currently an

associate professor of computer engineering at

Sharif University of Technology. From 2005 to

2006, he was a visiting researcher in the Electron-

ic Systems Design Group, University of South-

ampton, Southampton, United Kingdom. In 2006, he joined Sharif

University of Technology as a faculty member in the department of

computer engineering and from 2011 to 2015 he was the director of

Computer Architecture Group in this department. His research inter-

ests include low power design, real-time embedded systems, and

fault-tolerant embedded systems.

