
1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID 1

On the Scheduling of Energy-Aware Fault-Tolerant
Mixed-Criticality Multicore Systems with Service

Guarantee Exploration
Sepideh Safari, Mohsen Ansari, Ghazal Ershadi, and Shaahin Hessabi, member, IEEE

Abstract— Advancement of Cyber-Physical Systems has attracted attention to Mixed-Criticality Systems (MCSs), both in

research and in industrial designs. As multicore platforms are becoming the dominant trend in MCSs, joint energy and reliability

management is a crucial issue. In addition, providing guaranteed service level for low-criticality tasks in critical mode is of great

importance. To address these problems, we propose “LETR-MC” scheme that simultaneously supports certification, energy man-

agement, fault-tolerance, and guaranteed service level in mixed-criticality multicore systems. In this paper, we exploit task-repli-

cation to not only satisfy reliability requirements, but also to improve the QoS of low-criticality tasks in overrun situation. Our pro-

posed LETR-MC scheme determines the number of replicas, and reduces the execution time overlap between the primary tasks

and replicas. Moreover, instead of ignoring low-criticality tasks or selectively executing them without any guaranteed service level in

overrun mode, it mathematically explores the minimum achievable service guarantee for each low-criticality task in different execu-

tion modes, i.e. normal, fault-occurrence, overrun and critical operation modes. We develop novel unified demand bound functions

(DBF), along with a DVFS method based on the proposed DBF analysis. Our experimental results show that LETR-MC provides

up to 59% (24% on average) energy saving, and significantly improves the service levels of low-criticality tasks compared to the

state-of-the-art schemes.

Index Terms—Task Replication, Energy Management, Guaranteed Service Level, DBF, Multicores, Mixed-Criticality Systems.

—————————— ——————————

1 INTRODUCTION

ITH the advancement of Cyber Physical Systems,
Mixed-Criticality Systems (MCSs) have recently be-

come the subject of an important research area as the next
generation of complex embedded and cyber physical sys-
tems [1]. MCSs integrate components with different levels
of criticality onto a common platform to reduce cost, space,
weight, heat generation and power consumption of the
system [5], [6]. The advent of MCSs poses significant new
challenges on the system design since applications can in-
terfere with each other on common resources. This point
shows the importance of task scheduling and certification
on the shared platform of MCSs.
In addition to the certification issue, simultaneous energy
and reliability management is another crucial aspect of de-
signing MCSs. As the number of cores on a single chip con-
tinues to increase [8], [15], the chip power/energy con-
sumption will increase exponentially. Dynamic Power
Management (DPM) [35] and Dynamic Voltage and Fre-
quency Scaling (DVFS) [9] are two popular techniques for
energy management. However, scaling the supply voltage
in DVFS can potentially degrade the system reliability due
to the increasing transient fault rate in the current ever-de-
creasing technology feature sizes [7], [10]. Transient faults
are usually mitigated through exploiting re-execu-
tion [16], [27], [28] or replication [2], [11]. The former im-
poses time overhead, i.e. affects the most critical parameter
in MCSs, and the latter imposes power consumption over-

head. Therefore, choosing a suitable fault-tolerant tech-
nique for MCSs while reducing overall energy consump-
tion is essential.
Another growing difficulty in the scheduling of MCSs is
the quality-of-service (QoS) of low-criticality (LC) tasks in
overrun situations. LC tasks have one designer-specified
Worst-Case Execution Time (WCET) [16], [17], while high-
criticality (HC) tasks have two instances of WCETs: WLO
which is estimated by system designers, and WHI which is
more pessimistic and estimated by certification authori-
ties [6], [17], [18]. The system starts in normal mode, and
whenever an HC task exceeds its WLO, the system switches
to the overrun mode. HC tasks must be schedulable in both
the normal and overrun modes, but the schedulability of
LC tasks in overrun mode depends on the chosen schedul-
ing scenario. Some scheduling algorithms discard all LC
tasks [6], [16], [17], while the others guarantee a minimum
service level for LC tasks. Overall, presenting a scheduling
algorithm that simultaneously supports timeliness, energy
management, fault-tolerance and guaranteed service level
for LC tasks is becoming increasingly challenging in the
design of MCSs as technology advances to multicores.
In this paper, we exploit task replication to achieve the re-
liability target. The task replication approach schedules
multiple copies (i.e., one as primary and others as replica)
of a task on different cores to tolerate a certain number of
faults [10], [15], [17]. Our proposed LETR-MC scheme de-
termines the proper number of replicas for each HC task to
achieve the given reliability target. Then, it conservatively
maps the task set into cores and schedules them to reduce
the execution time overlap between the primary tasks and

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

W

————————————————
 The authors are with the Department of Computer Engineering, Sharif

University of Technology, Tehran 14588, Iran (e-mail: ssafari@ce.sha-
rif.edu; mansari@ce.sharif.edu; ershadi@ce.sharif.edu; hessabi@sha-
rif.edu).

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

their replicas in an energy-saving manner while preserv-
ing certification constraints. In order to conquer service
abruption problem in overrun situations, by addressing
fault and overrun as two independent events, we consider
different execution modes including normal, fault-occur-
rence, overrun and critical. Also, we modify the elastic
mixed-criticality task model to let LC tasks have different
guaranteed relaxed periods in each execution mode. In or-
der to check the schedulability of the task set in each exe-
cution mode, we develop unified demand bound function
(DBF) analysis. Also, we propose a DBF-based DVFS tech-
nique that assigns the proper task frequency, which con-
siders timeliness and reliability constraints as well as QoS.
By considering various execution modes and proposing
the unified DBF schedulability test, the multicore system
can tolerate fault occurrence, overrun and even both of
them in distinct cores at the same time. The main contribu-
tions of this work are:
 Proposing a novel Low Energy Task Replication mech-

anism in Mixed-Criticality systems (called LETR-MC
scheme) to support certification (timeliness), energy
management, fault tolerance, and guaranteed service
level simultaneously in multicores.

 Adapting task replication, not only as a fault tolerant
technique but also to improve LC tasks’ QoS in the
overrun situation.

 Considering different execution modes including nor-
mal, fault-occurrence, overrun, and critical (distinction
between overrun and fault occurrence) and mathemat-
ically guarantying an acceptable service level for LC
tasks in each mode, instead of killing or selectively exe-
cuting them.

 Developing a new unified DBF-based schedulability
test, under deadline, energy reduction, reliability re-
quirements, and guaranteed relaxed periods consider-
ations in different execution modes. Meanwhile, we
propose a DBF-based DVFS technique, and exploit
DVFS along with DPM to save energy under timeliness
and reliability constraints.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review related work. Section 3 presents models
and assumptions. In Section 4, we present our LETR-MC
scheme in details. The experimental results are presented
and discussed in Section 5. Finally, we conclude the paper
in Section 6.

2 RELATED WORK

Mixed-criticality systems were first introduced by
Vestal [4]. The primitive research proposed different
scheduling algorithms. The proposed scheduling algo-
rithms are classified according to their policy to deal with
LC tasks in the overrun situation. Some scheduling algo-
rithms discard all LC tasks after entering the overrun
mode, e.g. EDF-VD (Earliest Deadline First with Virtual
Deadline) [6], [16], [17], [21], [24]. Other ones degrade the
QoS of LC tasks to mitigate the effect of service interrup-
tion [18], [23], [25], [26]. Su et al. [18] have proposed ER-
EDF scheduling in a single-core system, which increases
the period of LC tasks in the overrun mode to reduce their

execution frequency and competition with HC tasks. Su et
al. [25] have improved the ER-EDF algorithm by focusing
on the online behavior of the single-core system. Su et.
al. [26] have applied the ER-EDF scheduling to multicores.
The reference [23] combines ER-EDF scheduling with
virtual deadlines for the dual-criticality single-core system,
and guarantees LC tasks service level in the overrun mode.
The mentioned works do not consider fault-tolerance or
energy management.
Other recent work explore the scheduling problem in the
context of fault-tolerant MCSs without considering energy
management. Works presented in [16], [27], [28], [29] use
re-execution as their fault-tolerance technique. The refer-
ences [16] and [26] wisely select the droppable LC tasks in
the overrun mode. The references [28] and [29] immedi-
ately drop all LC tasks once either a transient fault or an
overrun occurs. All of the above-mentioned references
have considered a two-mode operation. Hence, the system
switches to critical mode due to fault or overrun, and they
do not guarantee an acceptable service level for LC tasks.
The references [30] and [31] provide analysis techniques to
bound the effects of task killing and service degradation on
the safety and schedulability of the system. The refer-
ence [30] presents a method to convert the fault-tolerance
problem into a standard scheduling problem in a single-
core MCS. The reference [20] addresses fault occurrence
and overrun with separate modes in a single-core and
multiprocessors. However, it selectively chooses LC tasks
to continue their execution in each mode.
Few works like [9], [32], [33], and [34] cope with the energy
management problem in MCSs, but they do not consider
reliability requirements. Huang et al. [9] have proposed an
optimal solution based on DVFS with the EDF-VD sched-
uling to minimize dynamic energy consumption for single-
cores in normal mode, where tasks of the same criticality
level share the same frequency. The reference [32] have ex-
tended the work in [9] to multicores, and HC tasks share
the same frequency in overrun mode. Legout et al. [34]
have developed an optimal solution for static energy re-
duction by applying DPM technique for single-core MCSs.
Volp et al. [34] have considered an energy budget for mul-
ticore MCSs, and focus on energy utilization of HC tasks at
the expense of sacrificing LC tasks. The reference [35] ap-
plies DVFS only on LC tasks with the cost of degrading
their service level and only in the low-criticality mode of
the system. Lia et. al in [36] and [37] have reduced the
energy consumption of a single-core fault-tolerant MCS
through resource demand analysis. However, they con-
sider two-mode model, and drop all LC tasks in overrun
situations; also the re-execution energy is not taken into ac-
count. All the mentioned works have considered two op-
erating modes and have discarded all LC tasks or have se-
lectively executed them in the overrun mode.
In this paper, we address the problem of scheduling
mixed-criticality tasks on multicores, and reduce energy
consumption while satisfying timeliness and reliability re-
quirements, and at the same time, guarantee the acceptable
service level for LC tasks in each mode.

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 3

3 MODELS AND PRELIMINARIES

In this section, we introduce the models and preliminaries
which are used throughout the rest of the paper.

3.1 System and Application Model

In this paper, we consider an MCS with two different crit-
icality levels, which are denoted as high-criticality and
low-criticality levels. Also, we may choose any two criti-
calities out of the five criticality levels in DO-178B stand-
ard [21]. There are n mixed-criticality tasks Γ={τ1,τ2, ..., τn}
that will be executed on a multicore platform. The cores are
identical and DVFS enabled with a finite set of available
frequencies, i.e. F={f1,...,fq} where f1=fmax and fq=fmin. These
frequencies are normalized with respect to fmax, i.e. fmax=1.
Tasks are independent, and do not share any resources
other than the core. Also, similar to [49], [50], [51], and [52]
we assume that the context switching overhead is negligi-
ble.
Each task τi has hextuple of parameters {ζi, WiLO, WiHI, Ti,
Di, Li}:
 ζi € {LC, HC} denotes the criticality level of τi.

 WiLO is the designer-specified WCET for τi.

 WiHI is the CAs-specified WCET for τi.

 Ti is the period of τi (minimum inter-arrival time).

 Di is the deadline for the task. We assume Di < Ti.

 Li is the task’s safety level according to DO-178B.

It should be noted that in dual-criticality systems, if ζi=LC,
then WiHI=WiLO, otherwise WiLO<WiHI. Each task τi gener-
ates a sequence of jobs (or task instances) with the period
of Ti. Table 1 shows different task models. In conventional
(basic) mixed-criticality task model, both of the LC and HC
tasks have one desired period Ti. The Elastic Mixed-Criti-
cality (E-MC) task model [18] defines a maximum period
Timax for LC tasks in addition to their desired period. When
a task is executed with the desired period, it has a
maximum level of QoS. However, maximum period repre-
sents the minimum level of QoS. The period of LC tasks
can be extended by 2 to 5 times [35]. In the E-MC model,
the utilization of the system is defined as follows (which
will also be used in this paper):

 Low-level utilization of HC tasks:

(,) ,
HC

i i

i

i

LO

LO LO i

i i

W
U HC L u u

T

 (1)

 High-level utilization of HC tasks:

(,) ,
HC

i i

i

i

HI

HI HI i

i i

W
U HC H u u

T

 (2)

 Low-level (desired) utilization of LC tasks:

(,) ,
LC

i i

i

i

LO

LO LO i

i i

W
U LC L u u

T

 (3)

 Minimum utilization of LC tasks:

(,) ,
LC

i i

i

LO

min min i

i i max

i

W
U LC min u u

T

 (4)

The Extended E-MC (E2MC) task model [23] assumes that
an LC task can have a pair of small and large periods TiLO
and TiHI which represent its service guarantee in the nor-
mal and overrun execution modes, respectively.
Our Modified E-MC (MEMC) task model: We present
MEMC task model, where HC tasks have one period Ti,
while LC tasks, in addition to their desired period Ti, have
four other periods. Each of these periods reveals QoS of LC
tasks according to a specific execution mode of HC tasks.
Ti

NR and Ti
OV are the periods of LC tasks in the normal and

overrun operation of HC tasks and fault-free scenario, re-
spectively. Ti

FO and Ti
CR are the periods of LC tasks with

the normal and overrun operation of HC tasks and fault
occurrence, respectively. These periods are bigger than or
equal to the desired period, and show the minimum
achievable release frequency for jobs of the LC tasks in
each mode. Details of the binary search method to find the
proper periods are clarified in Section 4.3. Table 2 shows
the notation used for variables throughout this paper.

3.2 Fault Model and Reliability Analysis

As mixed-criticality embedded systems often control
safety-critical applications, tolerating faults and achieving
high reliability levels are of great importance; i.e., faults
must be detected, and appropriate recovery tasks must be
successfully completed before the deadlines. In MCSs,
each criticality level has an important property, which is
known as Probability of Failure per Hour (PFH). PFH rep-
resents the maximum probability of failure to which each
task of that level must adapt. The avionics DO-178B
standard defines five criticality levels from A with highest,
to E with lowest criticality levels. Safety requirements of
each criticality level are shown in Table 3 [2]. In this paper,
we assume that LC tasks are chosen from D or E levels
without any fault-tolerant provisions, and HC tasks are

chosen from A, B, or C levels. Hence, each task τi from HC

task set must be guaranteed to be schedulable, even in
presence of faults, to achieve a failure rate of at most

PFHi=PFH(ζHI). Faults can be categorized into transient

Table 2. Adopted notations

Notation Description

Γ={τ1,τ2, ..., τn} A set of n E3MC tasks

M={m1, …,mc} A set of c identical cores

F={fmax, …, fmin} Core frequency levels

ζ= {HC, LC} Task’s criticality levels

Wς |ς={LO, HI} LO- and High-level WCET of task τi

X={NR, OV, FO, CR} System operation modes

𝛤𝑚𝑘

Set of tasks on the core mk including
HC, LC and replica tasks

𝛤𝑚𝑘
(𝜁)

Set of tasks with criticality level ζ on
the core mk

𝛤𝑚𝑘
(𝐵) Set of replica tasks on the core mk

PFH(ζ)
probability of failure per hour
of tasks with criticality level ζ

Table 1. Timing parameters for tasks in different models

ζi WCET Basic MC task model VD model E-MC E2MC MEMC (proposed model)

HC WiLO, WiHI Ti Di Ti DiLO < Ti Ti Di Ti DiLO< Ti Ti DiLO< Ti

LC WiLO Ti Di Ti Di Ti, Timax Di Ti, TiLO, TiHI Di Ti, TiNR, TiOV, TiFO, TiCR DiX<TiX

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

and permanent faults. Transient faults are found more
frequently than permanent faults [36], [39]. Hence, in this
paper, we focus on transient faults. Nevertheless, we try to
provide provisions to tolerate permanent faults as well.
Transient faults are typically modeled using a Poisson dis-

tribution with an average arrival rate , which depends on
the core frequency [36], [38]. The fault rate at frequency fi
is modeled as [39]:

min

(1)

1

0() 10

id f

f

if

 (5)

where λ0 = 10−4 (fault/ms) is the transient fault rate at fmax,
exponent d is a sensitivity factor parameter with typical
values in the range 2-6 [14], [15]. We choose d=2 similar
to [15]. The reliability of a task is defined as the probability
of executing the task successfully, in the absence of transi-
ent faults [38]. The reliability of task τi running at fre-
quency fi can be expressed as [39]:

)(

() i

ii

i
i

W

f
f

R ef

 (6)

where λ(fi) is given by Eq. 5, and Wi is the execution time of
the task τi. In our proposed method, similar
to [2], [11], [12], [15], and [39], the fault detection takes
place at the end of the completion of each task instance. If
a task instance completes earlier than its WCET, the fault
detection mechanism takes place as soon as the completion
of the task instance; otherwise, faults are detected at task’s
low and high level WCETs. Therefore, at the end of execu-
tion of each task instance, an acceptance test (or, sanity
check) [45], [46] is conducted to check for the occurrence of
transient faults. If the acceptance test indicates a fault oc-
currence, the faulty output is discarded and the task copy
(replica task) will be executed to determine the correct out-
put. Otherwise, task copies will be cancelled as soon as suc-
cessful completion of the corresponding primary
tasks [38].
It should be noted that acceptance tests are not completely
accurate. Sometimes a fault may remain undetected or the
acceptance test may diagnose a correct outcome as a faulty
one [11]. Therefore, the probability that the acceptance test
will perform incorrectly is considered as a factor in the re-
liability computation of the task, which is known as the
coverage factor of the acceptance test. Thus, the reliability
of a task instance can be expressed as:

()

(1()) i

i i

i
i

W

f
f

R ef

 (7)

where α is the probability of making an incorrect decision
during the acceptance test. The reliability of HC tasks de-
pends on their WCETs as follows:

)(

(1())

LO
i

i

i

LO

i

if
W

f
R ef

 ,

)(

(1())

HI
i

i

i

HI

i

if
W

f
R ef

(8)

Consequently, the probability of failure (PoF) of the task τi
based on its WLO and WHI are as follows:

() 1 ()HI HI

i i i iPoF f R f (9)

() 1 ()LO LO

i i i iPoF f R f (10)

In multicore platforms, task replication is likely to become
a quite viable option for reliability management. By sched-
uling multiple copies of the same task on multiple cores,
the likelihood of successfully completing at least one of
them (i.e., without encountering transient faults) increases
significantly. If the PoFHI of an HC task (when executed
with WHI) meets the PoFtarget, it means that the mentioned
task does not need any replicas. Otherwise, the scheduler
should determine the proper number of replicas of task τi
to achieve the reliability targets. Note that each replica
task, being a periodic task itself, generates a sequence of
instances on the core where it is assigned. Hence, we define
two extremes for the number of replica tasks. The mini-
mum number of required replica tasks for each HC task
(rlower_bound) is the case when all the replicas will be executed
with WLO, and can be expressed as:

(). ()
HI LO r

target i i i iPoF PoF f PoF f

_

log(/ ())

log(())lower bound

HI

target i i

i LO

i i

PoF PoF f
r

PoF f

 (11)

The maximum number of required replicas (rupper_bound) is
the case when all the replicas will be executed with WHI.

(). ()
HI HI r

target i i i iPoF PoF f PoF f

_

log(/ ())

log(())upper bound

HI

target i i

i HI

i i

PoF PoF f
r

PoF f

 (12)

Therefore, we define upper and lower bounds for the num-
ber of required replicas. Hence, we define the parameter K,

where K[rlower_bound, rupper_bound]. When K=0, all the replica
tasks will be executed with WLO; i.e., r is the minimum
number of required replicas. Otherwise, increasing the
value of K, increases the number of replica tasks that will
be executed with WHI. Therefore, by giving a certain PoFtarget,
we can find the minimum number of replicas r for each task
to achieve its reliability target as follows:

(). () . ()
HI HI K LO r K

target i i i i i iPoF PoF f PoF f PoF f
 (13)

1log((/ ()). ())

log(())

HI K LO K

target i i i i

i LO

i i

PoF PoF f PoF f
r

PoF f

 (14)

Therefore, in task replication technique, it is sufficient to
have at least one task copy execution that passes the ac-
ceptance test. Hence, the execution will be unsuccessful
only if all copies of a task encounter faults. Therefore, in
task replication, if a primary task and its replica(s) have an
overlap execution part, as soon as a primary task com-
pletes successfully, the remaining parts of its replica(s) will
be abounded to avoid further energy consumption. Also,
we consider that each core is capable of detecting
faults [36], [37]. In order to detect faults, processing cores
typically employ a low-cost hardware checker like Ar-
gus [47]. Argus provides low-cost, comprehensive, low
power and high accuracy fault detection. It uses run-time
checking of control flow, computation, data flow, and
memory invariants. Meixner et al. [47] have shown that
checking these four invariants is sufficient for detecting all
possible single errors, and many multiple-error scenarios.
Argus adds less than 17% to the core area (and less than

Table 3. DO178B safety requirements [7]

ζ A B C D E

PFH < 10-9 < 10-7 < 10-5 > 10-5 -

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 5

11% to the total chip area, including caches) and increases
runtime execution by 3.2-3.9% on average. Argus does not
change the clock cycle time, and is applicable to many em-
bedded applications as well as multicore chips. We con-
sider the overhead of fault detection as a part of the task’s
WCET [15], [36], [37].

3.3 Power and Energy Consumption Model

Power Model: System-level power model consists of static
and dynamic components [9], [36], [37]. The static power,
Pstatic, is consumed even when no computation is carried
out [38]. The dynamic power Pdynamic includes a frequency-
independent (Pind), and a frequency-dependent (Pdep)
power consumption factor. Pind is consumed by the periph-
eral modules such as I/O in the active mode. Hence, the
total power consumption of each core can be written as:

2

total static dynamic sub i eff i i indP P P I V C V f P (15)

where Ceff, Vi, and fi are the effective switched capacitance,
supply voltage, and operating frequency of the core during
the execution of task τi, respectively. Also, we assume that
Pind is equal to 0.1 [36]. When DVFS is used, each task τi is
executed at a voltage Vi, which is less than the maximum
supply voltage Vmax. By considering a near-linear relation-
ship between voltage and frequency [13], [15], [39] when a
taski is executed at the scaled voltage Vi=ρi.Vmax, the oper-
ational frequency is fi=ρi.fmax, where fi is the operational fre-
quency corresponding to Vi, and fmax is the maximum
operating frequency corresponding to Vmax. Therefore, the
total power consumption, which is consumed to execute a
task i is given by:

2
()total sub i max eff i max i maxP I V C V f (16)

3max max

total i static i dynamicP P P (17)

In this equation, ρi is in the range of ρmin to ρmax=1 and
ρmin=Vmin/Vmax. In this paper, in contrast to most of the pre-
vious works that consider Pstatic=0 [9], [12], [36], [37], we as-
sume that maximum static power is constant and is a por-
tion of the maximum dynamic power, i.e.
𝑃𝑠𝑡𝑎𝑡𝑖𝑐
𝑚𝑎𝑥 = 𝜑. 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑚𝑎𝑥 , [11], [35], [67] where, =0.2
[11], [35], [38]. Hence, the total power consumption can be
re-written as follows:

3max max

total i dynamic i dynamicP P P (18)

By scaling V-f, in addition to power, the execution time of
the task, and its energy consumption will change.
Energy Model: Scaling down the voltage and frequency
levels increases the execution time of the task Wi

’=Wi/ρi.
The energy consumption of jth job (single job) of a task (i)
is as follows:

3()
ijmax

ij dynamic ij ij

ij

W
E P

 (19)

Also, the normalized energy consumption NE of a single
job of a task τi is:

2
()ij ij ijNE W (20)

Since the tasks are periodic and they may have multiple
jobs in any time interval, the total normalized energy con-
sumption of a task in any time interval of a given length is
the summation of all its jobs’ energies h

i in this duration.

2

1

()
i

i

h

ij ij

j

NE W

 (21)

The normalized total energy consumption of each core
is the sum of energy consumptions of tasks on that core
(mk: Set of tasks on the core mk including HC, LC and rep-
lica tasks) as follows:

2

1

()
i

k

i mk

h

m ij ij

j

NE W

 (22)

Finally, the normalized total energy consumption of the
whole system is the sum of energy consumptions of tasks
on all the cores as follows:

2

1 1 1

()
i

k

i mk

hc c

system m ij ij

k k j

NE NE W

 (23)

3.4 System Operational Model

The overview of the execution model for each core is
shown in Fig. 1. Similar to [20], we distinguish between the
execution time overrun of tasks and fault occurrence.
Therefore, we guarantee an achievable service level for LC
tasks in each execution mode to improve their overall QoS,
and also save more energy. The behavior of our execution
model in each mode is defined by the following epochs:
Epoch 1: The system starts with a normal mode (called
NR). Each core stays in NR mode until either overrun or
fault occurs. Hence, in this mode, all tasks are executed
once with WLO, and LC tasks are executed with Ti

NR period.
Ti

NR represents the highest service level of LC tasks.
Epoch 2: If any HC task exceeds its low-level WCET, its
designated core switches to the overrun mode (called OV),
where HC tasks (on that core) are safely executed once, and
must meet their deadlines assuming high-level WCETs. LC
tasks of that core will be executed with Ti

OV period to guar-
antee their service levels. If an LC task does not complete
in its low-level WCET, it will be terminated.
Epoch 3: If any HC task signals completion after running
for its WLO but encounters a fault, the system switches to
the fault-occurrence mode (called FO), where the sched-
uler guarantees the execution of the sufficient number of
replicas of a faulty HC task to satisfy its reliability require-
ment. Hence, the scheduler executes its replicas on the
cores. Only the cores which host the replicas of the faulty
tasks switch to the FO mode. In this mode, HC tasks and
replicas are still executed with WLO. Also, the execution of
the required replicas for HC tasks must be guaranteed to
finish before the deadline. LC tasks will be executed with
Ti

FO period.
Epoch 4: When a core is in OV mode, the fault can occur;
similarly, when it is in FO mode, overrun can happen, and
both of these conditions enter the designated core into the

Fig. 1. Overview of system execution model (The execution
model of each core).

HC: WCET(HI)
LC: Ti

CR

HC: WCET(HI)
LC: Ti < Ti

runtime <Ti
CR

4) Critical Mode

HC: WCET(HI)
LC: Ti

OV
HC: WCET(HI)

LC: Ti < Ti
Runtime<Ti

OV

Slack usage DVFS & DPM

2) OV Mode

HC WCET(LO)
LC Ti

FO
HC: WCET (LO)

LC: Ti < Ti
runtime<Ti

FO

Slack usage DVFS & DPM

3) FO Mode

HC: WCET(LO)
LC: Ti

NR

HC: WCET(LO)
LC: Ti <Ti

runtime<Ti
NR

1) Normal Mode

O
v

er
ru

n
F

a
u
lt

F
a
u
lt

O
v

er
ru

n

Slack usage DVFS
& DPM

Slack usage DVFS
 & DPM

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

critical mode (called CR). In this state, HC tasks are exe-
cuted with WHI, and replicas are executed completely to
tolerate faults, and LC tasks are executed with their Ti

CR

period which is the minimum guaranteed service level that
can be maintained.
Fig. 1 shows the various operating modes that each core
can operate independently of the others. As it is clear in
Fig. 1, in all epochs, the scheduler exploits the released dy-
namic slacks to improve the periods of LC tasks at runtime
(Ti

runtime), which is between their desired periods and the
guaranteed ones. Also, we consider a local switching [31],
i.e. any core switches from one mode to another one, inde-
pendent of other cores. Therefore, it is not necessary to re-
duce the QoS of LC tasks on all cores at once. Also, in our
proposed operational model, the system switches back
from each of the OV, FO, or CR modes to the normal mode
at the end of each hyper period.

4 PROPOSED METHOD

In this section, we explain each part of our proposed
scheme in details.

4.1 System Overview

Fig. 2 illustrates the overall design flow of the proposed
LETR-MC scheme. The scheduler receives different inputs
from hardware and software levels, and schedules tasks in
the offline and online phases. In the offline phase, the
scheduler initially creates Information Table (IT), which
will be used during system operation in different modes to
find the best V-f level for each task to satisfy its reliability
and timing constraints. IT consists of the task set, criticality
and required PFH levels for tasks, V-f (voltage-frequency)
levels, the WLO and WHI of tasks, reliability, and the number
of required replicas in each V-f levels. After mapping all
tasks, the scheduler calls the service guarantee exploration
function for computing scaling factors to apply to LC tasks’
periods. We adapt the ER-POED scheduling for our pro-
posed method. The offline scheduler applies partitioned
scheduling to all tasks on each core. After scheduling all
tasks, the service guarantee exploration is called again to
update scaling factors, while checking for DBF-based
schedulability. The last section of the offline phase is to
apply DVFS by using static slack reclamation. Eventually,
the final offline schedule is sent to the online manager for
applying DVFS and DPM, or improving the service guar-
antees of LC tasks by using dynamic slacks.

4.2 Task Mapping

Algorithm 1 shows the pseudo-code of our proposed task
mapping method. In line 1, IT is constructed and sent to
the task mapping mechanism, where HC tasks Γ(HC) and
their corresponding replicas Γ(B) are initially mapped to

cores, and then LC tasks Γ(LC) are allocated. HC and rep-
lica tasks are sorted in decreasing order of utilization at the
maximum V-f level, respectively (in lines 2-3). In each iter-
ation, the first task in the queue is selected for mapping
onto the cores (line 5). Since task replication has the poten-
tial to tolerate permanent faults in addition to transient
faults, the scheduler tries to avoid assigning replicas of the
same task on the same core. Therefore, in line 6, set of cores
containing the primary or replica versions of the selected
task is removed from the core set M, and the remaining
cores are put into the temporary core set TC. However, if
after removing the mentioned cores, the TC becomes
empty, all cores are returned to the TC. Selection of cores

Algorithm 1: The task mapping mechasim of LETR-MC scheme

Inputs: Γ, PFH, M, V-f levels.
Output: The task mappimg on each core.

BEGIN:
1. IT=Construct(Γ,PFH, V-f levels);
2. Γ(HB)= Γ(HC)+Γ(B); //# of replicas at fmax
3. Γ(HB).sort(); //Sort HC and replica tasks w.r.t utilization
4. for all tasks in Γ(HB) do
5. τi = Γ(HB).select(); //Select the task with largest utilizaton

6. TC=M-{ mk:τimk};
7. TTC=TC.sort(); //Sort cores based on WFD or FFD
8. sc=TTC.select(); //Select the core sc
9. if sc is empty then
10. TC=M;
11. goto line 7;
12. end if

13. if sc.schedulability_test() then //Based on Eq. 24
14. sc.map(τi);
15. else

16. TC.remove(sc); //Remove sc from TC for the task τi
17. if TC is empty then

18. TC={ mk:τimk};
19. TTC=TC.sort(); //Sort cores based on WFD or FFD
20. sc=TTC.select(); //Select the core sc
21. if sc is empty then
22. return infeasible;
23. else if sc.schedulability_test() then //w.r.t Eq. 24
24. sc.map(τi);
25. else
26. TC.remove(sc);
27. goto line 19;
28. end if
29. end if
30. goto line 7;
31. end if
32. end for //Have all HC & B tasks mapped
33. Γ(LC).sort(); // Sort LC tasks w.r.t utilization
34. for all tasks in Γ(LC) do
35. τi = Γ(LC).select(); //Select the task with largest utilizaton
36. TC=M;
37. TTC=TC.sort(); //Sort cores based on WFD or FFD
38. sc=TC.select(); // Select core sc
39. if sc.schedulability_test() then //Based on Eq. 25
40. sc.map(τi);
41. else
42. TC.remove(sc); //Remove sc from TC for the task τi
43. if TC is empty then

44. return infeasible;
45. end if
46. goto line 37;
47. end if
48. end for
END

Fig. 2. System design flow.

Tasks Mapping

Design Flow

Software-Level
Parameters

Construct Information Table Service Guarantee Exploration

Partitioned ER-POED scheduling

Hardware-Level
Parameters

DBF-Based schedulability test

Online Manager

Offline DVFS

 DBF-based
 SUF

 Tasks set

 Selected criticality levels (A to E)

 Required PFH

 Cores V-f levels

 Low- & high-WCET in each V-f level

 Tasks reliability in each V-f level

 # of required replicas in each V-f level

 Improve

guaranteed service

 Apply online

DVFS & DPM

Updating Service Guarantees

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 7

for mapping is based on Worst-Fit Decreasing (WFD) and
First-Fit Decreasing (FFD) bin packing. In the Worst-Fit
Decreasing bin packing cores are sorted in decreasing or-
der by utilization (line 7), then the core with the lowest uti-
lization among others is selected for mapping (line 8), i.e.,
WFD allocates the selected task into the core with the
greatest capacity available, in which it can be feasibly allo-
cated. In the First-Fit-Decreasing bin packing, cores are
sorted in decreasing order by utilization (line 7), then the
selected task is allocated into the core with the lowest ca-
pacity available (largest utilization), in which it can be fea-
sibly allocated in line 8. WFD is the best from the energy-
awareness perspective, due to its load-balancing behav-
ior [48]. If there is a core for mapping, the schedulability
condition is checked in line 13 as follows:

() ()
(,) (,) 1

i m i mk k
HC B

U HC H U B L
 (24)

If the selected core sc passes the schedulability test, the se-
lected task is mapped to the core sc in line 14 and the next
task is chosen for mapping. However, if the selected core
cannot satisfy the schedulability constraint, it is removed
from the core set and the algorithm goes to line 7. Remov-
ing the cores which contain the primary or replica versions
of the selected task, and also removing the cores which
cannot satisfy the schedulability constraint may make TC
empty. In this case, the cores containing the primary or
replica versions of the selected task are added to the TC,
and selection of a core is performed based on this set in
lines 17-29. After mapping all HC and replica tasks, the
scheduler sorts LC tasks in a queue, based on their utiliza-
tion in decreasing order in line 33, and selects the first task
in the queue for mapping as shown in line 35. The core se-
lection (sc) is also based on WFD and FFD lines 37-38. In
each iteration of LC task mapping the scheduler checks the
total utilization of each core in lines 39-40 as follows:

() () ()
(,) (,) (,) _

i m i m i mk k k
HC B LC

U HC H U B L U LC L U bound
 (25)

where U_bound<1.5. If the schedulability test is passed, the
selected task is mapped to the chosen core. Otherwise, the
core sc is removed from TC, and the algorithm iterates in
lines 42-47.
After mapping all tasks, due to the challenges associated
with task migration including increased sensitivity to im-
plementation complexity, tight power budgets, require-
ments on execution predictability, the lack of virtual
memory support in many low-end MPSoCs, and high
runtime overhead [56], [58], migration of task instances
from a core to another one is not permitted; i.e., at runtime
each task is permitted to execute only on its designated
core. After mapping all tasks, the service guarantee explo-
ration function is called for finding the proper scaling fac-
tors for periods of LC tasks in each core to extend their pe-
riods and reduce their utilization.

4.3 Service Guarantee and Period Assignment

As it is mentioned in Section 2, most mixed-criticality
scheduling algorithms discard all LC tasks after entering
the overrun mode, or selectively execute them [6], [9], [15-
16], [19-20], [23], [26-28], [31-36]. In order to guarantee an
acceptable service level for LC tasks, we consider different
execution modes (NR, FO, OV, CR), and define four uni-

form scaling factors {α, β, θ, γ} for each LC task in each ex-
ecution mode. These scaling factors indicate the period of
LC tasks in each execution mode, and also represent how
frequently LC tasks release their instances to guarantee the
timeliness and QoS level. Similar scaling factors of LC
tasks that run on the same core are equal to each other.
Also, the relationships between these scaling factors and
the desired periods Ti of LC tasks in each operation mode
are as follows:

. , . , . , .NR OV FO CR

i i i i i i i iT T T T T T T T (26)

The total utilization of a core after mapping LC tasks may
be bigger than one. Therefore, Ti

NR, Ti
OV, Ti

FO, and Ti
CR may

have a bigger value than Ti. Differences between Ti and the
other periods of LC tasks are illustrated in the example in
Appendix.
Based on the schedulability conditions, we first derive
lower and upper bounds of these uniform scaling factors
in each operation mode. The feasible periods, which satisfy
scheduling constraints, will be found between the lower
and upper bounds.
Epoch 1: Each core’s utilization in NR mode is defined as
follows:

() ()
(,) (,) 1

m m mk k k

NR

HC LC
U U HC L U LC L

 (27)

By replacing the desired period of LC tasks with
TiNR=α.Ti in their utilization formula, we have:

()

() ()

1
(,)

.mk

i m i mk k

LO LO

i i

LC

LC LCi i

W W
U LC L

T T

 (28)

It should be noted that Ti is the original period of LC tasks

that determines when the tasks are generated. TiNR is the

period of LC tasks in the normal operation mode of the

system. Difference between Ti and Ti
NR for LC tasks is illus-

trated in Appendix.
To ensure the schedulability of tasks in NR mode, by
replacing Eq. 28 in Eq. 27, we need to have:

() ()

1
(,) (,) 1

m m mk k k

NR

HC LCU U HC L U LC MC

 (29)

Hence, the lower bound for α can be found as:

()

()

(,)

1 (,)

mk

mk

LC

LB

HC

U LC MC

U HC L

 (30)

Here, the utilization which arises from execution overlap
of HC tasks and corresponding replicas is ignored. The
point is that utilization-based approach does not consider
scheduling of tasks (the start time and end time of tasks).
Therefore, considering the utilization of all replicas in nor-
mal mode is pessimistic because in the actual case in the
normal mode, replicas do not need to completely proceed,
and only their overlap time with primary tasks will be ex-
ecuted. Therefore, at first, the service guarantee unit com-
putes the scaling factors based on the utilization of tasks.
Then, after scheduling the tasks, if it is necessary, the com-
puted scaling factors will be updated through demand
bound function analysis, as explained in Section 4.4.
Epoch 2: The utilization bound at OV mode is as follows:

() ()
(,) (,) 1

m m mk k k

OV

HC LC
U U HC L U LC L

 (31)

In the OV mode, LC tasks are executed with Ti
OV=β.Ti. By

replacing the desired period of LC tasks with Ti
OV, in their

utilization formula (similar to computation of α) the lower

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

bound for β can be found as:

()

()

(,)

1 (,)

mk

mk

LC

LB

HC

U LC MC

U HC H

 (32)

Epoch 3: In the FO mode, replicas are executed completely
due to fault occurrence in primary HC tasks. The utiliza-
tion bound at this point is as follows:

() () ()
(,) (,) (,) 1

m m m mk k k k

FO

HC B LC
U U HC L U B L U LC L

 (33)

In the fault-occurrence mode, the execution period of all
the LC tasks on core mk is TiFO where TiFO=θ.Ti. Hence, the
lower bound for θ can be found as:

()

() ()

(,)

1 ((,) (,))

mk

m mk k

LC

LB

HC B

U LC MC

U HC L U B L

 (34)

Epoch 4: In the CR mode, the utilization bound of each
core is as follows:

() () ()
(,) (,) (,) 1

m m m mk k k k

FO

HC B LC
U U HC H U B L U LC L

 (35)

In the FO mode, LC tasks execute with Ti
CR=γ.Ti. Hence, the

lower bound for γ can be found as:

()

() ()

(,)

1 ((,) (,))

mk

m mk k

LC

LB

HC B

U LC MC

U HC H U B L

 (36)

We now define the upper bounds of these scaling factors.
γLB is the factor that makes the task set schedulable in a
worst-case scenario [18], [23]. Suppose that, Ti<Ti

FO<Ti
CR

and Ti<Ti
OV<Ti

CR. Therefore, the upper bound for β and θ
are set as follows:

UB UB LB (37)

Also, assume that Ti
NR < Ti

FO and Ti
NR < Ti

OV. However, Ti
FO

and Ti
OV are not equal, hence we choose the maximum of

the two, as the upper bound for α:

max{ , }UB LB LB (38)

Hence, the lower and upper bounds are guaranteed in the
offline phase by considering task utilization. The pseudo
code for finding proper scaling factors is described in
Algorithm 2. The scaling factors are defined iteratively
through binary search, according to [23], and e shows the
tolerable error. The code iterates for each core to find
proper scaling factors for all LC tasks on that core. In line
9 of the algorithm, the scheduler checks whether the
computed α, β, and θ are feasible based on the proposed
scheduling (the effect of scheduling algorithm on scaling
factors are described in Section 4.5). It should be noted that
if the lower-bounds of these factors become less than 1, the
algorithm sets them to 1. After finding the proper scaling
factors, the scheduler updates Eq. 23 to set proper periods
for LC tasks, and tune job’s release distances as follows:

, , ,

. . . .

NR OV FO CR

i i i i

i i i i

l l l l
T T T T

l l l l

T T T T

(39)

4.4 Unified Demand Bound Functions Analysis

Demand Bound Functions (DBF) present an approach to
analyze the schedulability of real-time workloads [22]. A
mixed-criticality task set is schedulable if the maximum ex-
ecution demand of all tasks is less than the resource supply
in any time interval of a given length in each operation
mode. The demand bound of a task in a given interval is
defined as the sum of execution times of all jobs of tasks,
which have both arrival times and deadlines in this

interval. DBF based test is effective but has high computa-
tion complexity, and can be applied to general mixed-crit-
icality task sets. In the following, we develop a new DBF
computation in each operation mode by considering tim-
ing, reliability, QoS, and energy reduction. We compute
DBF locally for each core, but we should also have a global
glance at all cores because of replicas existence since exe-
cution or cancelation of replicas may have an effect on DBF
computations of other cores. Also, in order to improve the
accuracy of demand bound analysis, we use the unified
DBF approach similar to [22], [40], which considers time
intervals crossing the mode switch point (transition from
one mode to another one) to link the system behaviors in
different execution modes. We now derive task’s resource
demands in all operation modes (epochs) to determine
whether a given task set is schedulable under our pro-
posed method.
Epoch 1: In the NR mode, the DVFS technique is applied
to HC and LC tasks. Although replicas are canceled at the
end of the successful completion of their corresponding
primary tasks, their execution time overlaps with corre-
sponding primary tasks should be considered in DBF com-
putations. The overlap time of each replica job (over-
lap_timej) is the difference between the completion time of
the primary HC job and the start time of its corresponding
replica job. The resource demands of tasks which are exe-
cuted on core mk are computed as follows:

() (,) max{ ,0}. .
i mk

NR LOi i max

HC i i

i i

l T D f
DBF l W

T f

 (40)

()

1

(,) _

i i

i

i mk

l T D

T

NR

B i j

j

DBF l overlap time

(41)

() (,) max{ ,0}. .
i mk

NR LOi i max

LC i iNR

ii

l T D f
DBF l W

fT

(42)

A task set is schedulable in NR mode on core mk if and only
if for l> 0:

Algorithm 2: Find feasible scaling factors SF={ α, β, θ, γ }

Inputs: Γ, tasks to cores mapping, M, αLB, αUB, βLB, βUB, θLB, θUB, γLB,
and e=0.001. Execution modes X.
Output: Finding the best scaling factors.

BEGIN
1. for i = 1 to M do // loop over all cores
2. while (βUB – βLB > e) do
3. β = (βUB + βLB)/2;
4. while (θUB – θLB > e) do
5. θ = (θUB + θLB)/2;
6. αUB_new = max{β, θ};
7. while (αUB_new – αLB > e) do
8. α = (αUB_new + αLB)/2;
9. If (Γ is schedulable in all execution modes X) then
10. βUB = β, θUB = θ, αUB = α;
11. else
12. βLB = β, θLB = θ, αLB = α;
13. end if
14. end while
15. end while
16. end while
17. end for
END

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 9

()

()

() ()

() ()

(,) (,)

(,) (,)

i m mk k

i mk

m mk k

i m i mk k

NR NR

i HC i

HC

NR NR

B i LC i

B LC

DBF l DBF l

DBF l DBF l l

 (43)

Epoch 2: When an overrun occurs, three types of jobs may
exist, i.e. normal, overrun, and crossover [22], [23]. Normal
jobs have both release time and deadline before the mode
switch point; these jobs execute with WLO. Overrun jobs are
released after the mode switch point. Jobs which are
released before the mode switch point but have later
deadlines are candidates for crossover jobs and their finish
time (when they signal their completions) indicates their
role. Assume that the switch point to the overrun mode is
to (ts<to< te) where the length of time interval [ts, te] is l=te-ts
and the time that the core spends in overrun mode is q=te-
to. In this case, we define x to show which tasks have
crossover candidate jobs as follows:

0, mod 0
_

1, mod 0

o

i

o

i

x if t T
crossover candidate

x if t T

 (44)

Now, if there is a task that has a crossover candidate job,
i.e. x=1, we initially specify its job number j that has release
time before the mode switch point and the deadline after
this point, and then check whether it is a crossover. Here,
if a crossover candidate job j signals completion before the
mode switch point to, it is counted as a normal job (alt-
hough its deadline is after to); if the released job starts after
to it is an overrun job. Otherwise, it is a crossover job:

0, _

1, _ _

0, _

o

j

o

j j

o

j

y if finish time t

crossover y if start time t finish time

y if t start time

(45)

If x.y=1, task τi has a crossover job and the scheduler saves
its executed time before mode switch point in Exci. Note
that, 𝑛𝑖(𝑙) = ⌊(𝑙 + 𝑇𝑖 −𝐷𝑖)/𝑇𝑖⌋ is the number of jobs of the
taski in interval l. Also, ni(w) and ni(q) are the number of
jobs of each task in normal and overrun modes, respec-
tively. Therefore, ni(w)+ni(q)=ni(l). We can find the number
of overrun jobs for each task in duration q as follows:

()
1, . 1

()
()

, . 0

e o

i i

i

i e o

i i

i

t t T D
if x y

T
n q

t t T D
if x y

T

(46)

Here, crossover job is considered as an overrun job. The
crossover job has different execution time and frequency in
the NR and OV modes. Hence, If x.y=1 the DBF require-
ment for crossover job (called nOV) is computed as follows:

(.) ()
HImax

OV i i i

i

f
n Exc W Exc

f

(47)

The DBF of HC and replica tasks in OV mode are as fol-
lows:

()

(). . (). , . 0

(,)

(). . (() 1). , . 1

NR

i mk

NR

LO HImax

i i i i

iOV

HC i

LO HImax

i i OV i i

i

f
n w W n q W if x y

f
DBF l

f
n w W n n q W if x y

f

(48)

()

1

(,) (_)

i i

i

i mk

l T D
j

T

OV

B i j

j

DBF l overlap time

 (49)

Jobs of LC tasks are initially released based on Ti
NR period,

and their frequency for applying DVFS is fNR. After over-
run, jobs of LC tasks on core mk are released according to
Ti

OV, and the frequency scaling factor changes to fOV, which
may be different from their normal frequencies due to var-
ious slack reclamation in these two modes.

()

() ()
(,) (. .).

i mk

NR OV

o s NR e o OV

OV LOi i max i i max

LC i iNR OV

i ii i

t t T D f t t T D f
DBF l W

f fT T

 (50)

The DBF of each core in Epoch 2 is computed as follows:

()

()

() ()

() ()

(,) (,)

(,) (,)

i m mk k

i mk

m mk k

i m i mk k

OV OV

i HC i

HC

OV OV

B i LC i

B LC

DBF l DBF l

DBF l DBF l l

(51)

Epoch 3: When a job of an HC task τi encounters a fault at
time tf (where ts<tf< te), the replica(s) of the faulty job will
be executed completely. Hence, the cores which contain its
replicas are activated for updating their DBF computation.
In this condition, all previous jobs of a faulty task are exe-
cuted correctly and their replicas are dropped, and only
their execution time overlap is calculated in DBF (Eq. 48).

() (,) max{ ,0}. .
i mk

FO LOi i max

HC i i

i i

l T D f
DBF l W

T f

 (52)

() ()

()

1 1

(,) _

f s e f
i i i i

i i

i mk

t t T D t t T D

T T

FO LO

B i j j

j j

DBF l overlap time W

(53)

()

() ()
(,) (. .).

i mk

NR FO

f s NR f e FO

FO LOi i max i i max

LC i iNR FO

i ii i

t t T D f t t T D f
DBF l W

f fT T

 (54)

A task set is schedulable in the FO mode on core mk if and
only if for l> 0:

()

()

() ()

() ()

(,) (,)

(,) (,)

i m mk k

i mk

m mk k

i m i mk k

FO FO

i HC i

HC

FO FO

B i LC i

B LC

DBF l DBF l

DBF l DBF l l

(55)

In DBF based approach, according to the online conditions,
the scheduler can provide better service levels for LC tasks,
and execute them more frequently than Ti

OV or Ti
FO. Similar

to [35], the scheduler introduces a set of early release points
between the desired period and Ti

OV or Ti
FO and chooses

one of the early release points that passes DBF test as a new
release point of LC tasks (Ti

runtime in Fig. 1).
Epoch 4: As soon as a core experiences both the fault and
overrun situations at time tc, all LC tasks on the core should
be executed with Ti

CR. The scheduler considers two consec-
utive mode changes, i.e. from the NR to the OV and then
to the CR (Fig. 3 (a)), and from the NR to the FO and then
to the CR (Fig. 3 (b)). For example, in Fig. 3 (a) one of the
jobs of the HC task τy on C2 overruns at the time to and C2
switches to OV mode. Also, one of the jobs of τx encounters
a fault in C1 and its replica in C2 (Bτx) should be executed.
Therefore, C2 enters the critical mode at switch point time
tc and all remaining LC jobs on this core are executed with

(a) (b)

Fig. 3. Overview of Epoch 4. a) Mode switch from NR to FO to
CR, b) Mode switch from NR to OV to CR.

τy

Overrun

Bτx

epoch 1 epoch 2 epoch 4

// // //

τx

Fault

// //
t

t

WLO WHI-WLO

C1

C2

to tc

LC T NR
LC T OV LC T CR

τy

Overrun

Bτx

epoch 1 epoch 3 epoch 4

// //

τx

Fault

//
t

t

WLO WHI-WLO

C1

C2 //

tctf

LC T NR LC T FO
LC T CR

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

Ti
CR period. Hence, DBF computations from switch point

time tc to the end of the interval are as follows:

()

()
(,) max{ ,0}.

i mk

e c

CR e c HIi i

HC i i

i

t t T D
DBF t t W

T

 (56)

()

()
(,) max{ ,0}.

i mk

e c

CR e c LOi i

B i i

i

t t T D
DBF t t W

T

(57)

()

()
(,) max{ ,0}. .

i mk

e c CR

CR e c LOi i max

LC i iCR

ii

t t T D f
DBF t t W

fT

(58)

A task set is schedulable in the CR mode on core mk if:

()

()

() ()

() ()

(,) (,)

(,) (,) ()

i m mk k

i mk

m mk k

i m i mk k

CR CR

i HC i

HC

CR CR e c

B i LC i

B LC

DBF l DBF l

DBF l DBF l t t

(59)

4.5 Scheduling Algorithm

Our proposed LETR-MC scheme consists of an offline and
an online phase. Algorithm 3 shows the pseudo code of the
task scheduling mechanism of LETR-MC. Algorithm 1 is
called for task mapping in line 1. Then, in line 2, Algorithm
2 is called to compute the scaling factors of LC task periods.
Afterward, tasks on each core should be scheduled based
on our proposed algorithm. We assume that each type of
tasks has a preference to indicate how the jobs of its tasks
will be executed. For this purpose, we adapt the parti-
tioned ER-POED (ER-Preference-Oriented Earliest-Dead-
line) scheduling algorithm on multicore fault-tolerant
MCSs [25]. The scheduler divides tasks into two different
groups, i.e. as soon as possible (ASAP) and as late as pos-
sible (ALAP) tasks. The scheduler tries to execute ASAP
tasks before the ALAP ones. In this work, we consider HC
and LC tasks as ASAP, and replicas as ALAP, respectively.
The algorithm iterates over all cores (line 3) and goes on
until all the tasks on each core are scheduled. The sched-
uler checks ASAP (QASAP) and ALAP (QALAP) queues on
each event. If the QALAP is empty while QASAP is not, the
scheduler selects the task with the earliest deadline in
QASAP for scheduling. The preemption scenarios, when the
core is busy due to the execution of another job (Jmn), are
shown in lines 6-17. If Jmn is an HC or an LC job, ER-EDF
chooses one of them for execution. However, if Jmn is a rep-
lica task, the replica is shifted back toward its release time
to produce free time slots for executing Jij. If there are more
than one task with the same deadline in ASAP queue, the
execution order of individual tasks with the same prefer-
ences (ASAP tasks) is distinguished with ER-EDF. If QASAP
is empty while QALAP is not, a replica with the earliest dead-
line is chosen for scheduling. The scheduler defines how
much the execution of replica task can be delayed while
still meeting its deadlines by executing at maximum fre-
quency. Here, the scheduler finds slack times (equal to
WCET of the replica task) from the deadline of selected
replica task toward its release time, and schedules the rep-
lica in these free time slots (lines 21-22). If there are tasks in
both of the QASAP and QALAP, if the deadline of an ASAP job
(Jij

S) is smaller than ALAP one (Jxy
L), the algorithm sched-

ules Jij
S in lines 23-27. Otherwise, the Jxy

L is scheduled in
line 29. After scheduling all tasks based on the worst-case
scenario, the scheduler updates scaling factors of LC tasks.

For example, in order to update α, the scheduler cancels the
overrun part of all HC tasks, i.e. Wi

HI-Wi
LO, and drops the

non-overlapping part of the replica tasks. Hence, LC tasks
will be scheduled in these released slacks. During this pro-
cess, the scheduling of the HC tasks is left untouched, i.e.
HC jobs are executed exactly based on the times that the
scheduler determines in the worst-case scenario. For up-
dating β, only the released slacks from the cancellation of
non-overlapping part of replicas are used to schedule LC
tasks more frequently. For updating θ, only the released
slacks from the cancellation of the overrun parts of all HC
tasks (Wi

HI-Wi
LO) are used to schedule LC tasks more fre-

quently.
By scheduling HC tasks as soon as possible and their cor-
responding replicas as late as possible, it is sufficient to
complete only one copy of each task successfully. So, if one
replica completes and no fault is detected, we can cancel
other versions of that task immediately to avoid further en-
ergy consumption. Also, in this paper we exploit
partitioned approach, i.e. each task is statically assigned to
a single core, and migration is not allowed due to its non-
negligible overheads among cores [56].

Algorithm 3: The task scheduling of our LETR-MC scheme

Inputs: Γ, PFH, Scaling factors, M, Available V-f levels ,different
execution modes X.
Output: The task scheduling on each core.

BEGIN:
1. Call(Algorithm 1); //Task mapping
2. Call(Algorithm 2); //Compute SF
3. for each core mk in M do

4. while (all tasks in mk
 are not scheduled) do

-- //Event: A job of τi (Jij) is released at time t on the core mk
5. if (QASAP≠ Ø & QALAP=Ø) then
6. if mk is busy then // Jmn is executed
7. if Jij is HC or LC then //ASAP tasks

8. if Jmn is LC or HC
9. if (d(Jij) > d(Jmn)) then //d: deadline of the job

10. ER-EDF(Jij);
11. else
12. ER-EDF(Jmn);
13. end if

14. else // Jmn is replica
15. ER-EDF(Jij);//shift Jmn toward its release time
16. end if
17. end if
18. else // core mk is idle
19. ER-EDF(Jij);
20. end if
21. elseif (QASAP= Ø & QALAP≠ Ø) then
22. Schedule Jij in free time slots from d(Jij) to r(Jij) ;
23. else // QASAP≠ Ø & QALAP≠Ø
24. Jij

S= QASAP.select(); //Sort jobs based on their d
25. Jxy

L= QALAP.select(); // Select the first J with earliest d
26. if d(Jij

S)< d(Jxy
L) then

27. goto line 6;
28. else
29. Schedule Jxy

L in free time slots from d(Jxy
L) to r(Jxy

L);
30. end if
31. end if
32. end while
33. end for
34. Update.SF; // Update α, β, and θ
35. Check.DBF; // for each core in each execution mode X
36. Apply offline DVFS; //SUF and DBF-based heuristics
END

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 11

The offline DVFS is applied to the final schedule of normal
execution mode based on our proposed method in Section
4-6. After applying DVFS, the scheduler updates execution
time overlap between primary tasks and their correspond-
ing replicas, and obtains new scaling factors if necessary.

4.6 Energy Minimization Problem

We define the energy minimization problem for a set of pe-
riodic mixed-criticality tasks on multicore platforms that
exploits task replication technique (task-level reliability
targets). The number of required replicas and the fre-
quency of tasks should be properly determined, while the
timing constraints of HC tasks and replicas are met, and
acceptable service levels for LC tasks are simultaneously
guaranteed.
1) Formal Problem Modeling: The goal of reliability-aware
energy minimization problem on mixed-criticality multi-
cores is to minimize the total energy consumption in all op-
eration modes (called X in Table 2). LC tasks are executed
with WLO/fi in all execution modes. However, HC tasks are
executed with Wi

LO/fi in NR and FO modes, and with Wi
HI

in OV and CR modes. The objective can be written as:

Minimize:
2

1 1 max

(())

{ , , , }

i

i mk

hc
ij X

ij

k j

f
W

f

X NR OV FO CR

 (60)

Constraints of the energy minimization problem are as fol-
lows. Task’s frequency levels in each mode are in the range
of the minimum and maximum core frequencies:

s.t. min max, [,]i if f f (61)

The WCET of a task τi at frequency level fi in criticality level
X should not exceed the task timing constraint (Di).

s.t. , , ,
X

i

i i i

i

W
X f D

f

 (62)

Total DBF of each core in each execution mode should be
less than the given interval l:

s.t. , , 0,
mk

X
X M l DBF l

 (63)

Each task’s reliability should meet the reliability target ac-
cording to PFH in DO-178B standard, as follows:

s.t. ,
ii targetR R (64)

Frequency scaling affects the WCET of a task and conse-
quently its reliability and PoF. Therefore, the required
number of replicas for each task (ri) to meet its reliability
target in frequency level fi should be considered in energy
minimization. Also, the scheduler should decide about us-
ing slacks for energy reduction or improving the QoS of LC
tasks. In addition, the task set should be schedulable in
each execution mode with computed scaling factors (α, β,
θ, γ) even after applying DVFS.

s.t. , , , : 1 , (65)

Optimally solving the energy minimization of multicore
systems without considering the reliability requirement is
NP-hard [9], [11]. Therefore, solving this problem in fault-
tolerant mixed-criticality multicore systems is also NP-
hard; hence, we develop a heuristic to manage energy con-
sumption.
2) Proposed Heuristics: Offline DVFS is applied to the nor-
mal execution mode of the system. In the offline phase, the

scheduler uses static slacks to apply DVFS for energy re-
duction. At first, fmax is assigned to all the tasks as their ex-
ecution frequency. Then, selection of tasks for reducing the
frequency and using the static slack in offline phase is done
according to Smallest-Utilization-First (SUF), and the pro-
posed DBF-based heuristics. Although executing a task un-
der a lower frequency reduces energy consumption, the
task takes longer time to complete, which may violate the
timing constraints. Furthermore, lowering task’s execution
frequency increases the system transient fault rate, which
in turn increases the probability of executing all replicas,
or increments the number of required replicas. The sched-
uler should consider timing constraints, reliability and
QoS analysis simultaneous in energy management because
a decision made in any one affects the others. Algorithm 4
shows the pseudo-code of offline DFVS and the interplay
of energy, reliability, and schedulablity analysis in energy
management.
In SUF, HC and LC tasks are sorted in a queue, based on
their utilization in increasing order in line 2. The scheduler
selects the first task in the queue to scale down its fre-
quency, in line 4. First, the scheduler extracts the amount
of static slack times and finds the minimum frequency that
the selected task can use it, in lines 5-6. If the schedulability
constraints are met in DBF analysis of the normal mode,
and if the reliability target is met, this frequency is assigned
to the selected task in lines 8-9. If timing constraints in DBF
analysis are not satisfied, the frequency is scaled one level
up in lines 10-11. However, if the reliability target is not
met, the scheduler checks whether more replicas can be
properly mapped and scheduled. If it can, this frequency
is set in lines 12-16. Otherwise, it scales frequency one level
up in line 18. The scheduler repeats the previous steps until
no task’s execution frequency can be scaled down, and up-
dates the static slack in each iteration.
In the DBF-based heuristic, there might be more than one
task that can be scaled down; the scheduler chooses the
task which has more impact on total energy reduction. Af-
ter extracting the amount of static slack times (line 24),
while there is a task in a Γ(HL) and there is static slack, the
algorithm iterates among all the tasks, except replicas, on
each core. In each iteration, it selects one of the tasks (line
27). The scheduler receives the WCET of the task and the
amount of static slacks, and finds task’s minimum accepta-
ble execution frequency based on the QoS, reliability and
timing constraints in equations 60-65 (line 28).
If the reliability of the selected task decreases after lower-
ing down the frequency level, the scheduler tries to in-
crease the number of replicas. If new replicas can be
properly mapped and scheduled on multicores, the sched-
uler sets the execution frequency of the selected task,
otherwise, it scales up the frequency level of the selected
task, and algorithm goes on (lines 30-37). If lowering down
the frequency violates the schedulability in DBF analysis,
the scheduler scales the frequency one level up and iterates
the above steps in lines 38-39. If the reliability and
certification constraints are met, the scheduler assigns the
computed frequency to the selected task, and computes the
energy efficiency factor (EEF) for each task based on the
minimum acceptable execution frequency (lines 41-42) as

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

follows:
(_) (_)

(_)

i i

i

i

NE before DVFS NE after DVFS
EEF

NE before DVFS

 (66)

After computing the EEF for all the tasks, the scheduler
finds the task with maximum EEF, which decreases energy
consumption the most, in line 46. Afterward, the scheduler
sets the frequency of the selected task in line 47, updates
static slacks in line 48, removes the selected task from the
for loop in line 49, returns the frequency of all remaining
tasks to the maximum value in line 50, and repeats the
above steps for all remaining tasks. The above steps are re-
peated until the EEFs of all tasks become zero, or there are
no more static slacks. During applying offline DVFS spe-
cial care should be taken. One point is that the released
slack from cancellation of replicas in the normal mode can-
not be used for applying DVFS to HC tasks, because repli-
cas may require to be executed, and only LC tasks can oc-
cupy their places. Whenever a fault or an overrun occurs,
LC tasks can be extended and replicas are executed. The
other point is that all the available static slacks cannot be
used for applying DVFS to HC tasks. Regarding the over-
run occurrence, only slack S (S=Available slack-(Wi

HI-
Wi

LO)) can be used for applying DVFS to HC tasks because
by applying DVFS, each taski is executed up to Wi

LO/fi,
and overrun is detected at the end of this time. Therefore,
by reserving some of the available static slack time for the
overrun occasion, if an overrun occurs after applying
DVFS, there is enough time for executing the remaining
parts of the job. It should be noted that after applying
DVFS, the execution time overlap between the primary
tasks and their corresponding replicas will be updated and
considered in DBF analysis, i.e., applying DVFS and com-
puting the execution time overlap between primary tasks
and replicas are performed simultaneously.
Our offline approach can be used in conjunction with an
online energy manager which uses dynamic slacks to ap-
ply DVFS and DPM during runtime for further energy sav-
ings. Dynamic slacks are released due to replica cancella-
tion or early completion of tasks. In runtime, initially the
amount of released dynamic slack is determined. If the idle

time of the core is longer than th, it is beneficial for the
system to go into sleep mode to reduce energy consump-
tion. Otherwise, online lightweight job-level DVFS is used
for energy saving. It exploits greedy slack assignment, i.e.
all the released slack from the current job will be used to
further lower down the V-f level of the next job whenever
it is possible to do so. In order to reduce the overhead of
DVFS computations, inserting more replicas is not permit-
ted. Therefore, the V-f level is lowered down to a level
where no more replicas need to be inserted. Otherwise, the
slack will be transferred to the next jobs or it may even not
be used. DVFS transition overhead may be significant or
negligible based on how often the DVFS is applied. In
modern microprocessors, changing the DVFS setting is ra-
ther frequent in response to rapid changes in the applica-
tion behavior. The DVFS transition delay overhead in
high-end Intel Core2 Duo E6850 is between 9 to 62 us, for
embedded Samsung Exynos 4210 processor based on ARM
Cortex-A9 core is about 11 to 18 us, and this overhead for

the TI MSP430 microcontroller that is used for ultralow-
power embedded systems is about 10 to 145 us [66]. Also,
by using ultra-fast voltage regulators, where Vdd switching
is moved into the sub-micron regime like the Intel Haswell
CPU, switching between voltage levels takes place in less
than 1us [65]. Therefore, since the online DVFS overhead is

Algorithm 4: Offline DVFS, interplay of energy, reliability, and
certification

Inputs: The task scheduling on each core, Γ, PFH, Scaling factors,
M, Available V-f levels.
Output: Acceptable V-f level for each task.

BEGIN:
-- SUF hueristic
1. Γ(HL)= Γ(HC)+Γ(LC); // HC & LC tasks set
2. Γ(HL).sort(); //Sort HC and replica tasks w.r.t utilization
3. for all tasks in Γ(HL) do

4. τi = Γ(HL).select(); //Select the task with smallest utilization
5. SS← Extract_StaticSlack();
6. 𝑓𝜏𝑖← Determine_min_freq(Wi, SS);

7. while (freq is not assigned) do
8. if (𝑅𝜏𝑖(𝑓𝑖) ≥ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡) and (DBF≤l)

9. assign 𝑓𝜏𝑖 to τi;

10. elseif (DBF>l)
11. 𝑓𝜏𝑖= UP_Scale(𝑓𝜏𝑖);

12. elseif (𝑅𝜏𝑖(𝑓𝑖) < 𝑅𝑡𝑎𝑟𝑔𝑒𝑡) and (DBF≤l)

13. increase the # of replicas;
14. Update_DBF;
15. if (DBF≤l)
16. assign 𝑓𝜏𝑖 to τi;

17. else
18. fτi= UP_Scale(fτi);
19. end if
20. end if
21. end while
22. end for
-- DBF-based hueristic
23. Γ(HL)= Γ(HC)+Γ(LC); // HC & LC tasks set
24. SS← Extract_StaticSlack();
25. While ((Γ(HL)≠ Ø) or (SS≠ Ø)) do
26. for all tasks in Γ(HL) do
27. τi = Γ(HL).select();
28. 𝑓𝜏𝑖← Determine_min_freq(Wi, SS);

29. while (freq is not assigned) do
30. if (Rτi(fτi)<Rtarget) and (DBF≤l)
31. increase the # of replicas;
32. Update_DBF;
33. if (DBF≤l)
34. assign 𝑓𝜏𝑖 to τi;

35. else
36. fτi= UP_Scale(fτi);
37. end if

38. elseif (DBF>l)
39. fτi= UP_Scale(fτi);
40. elseif (𝑅𝜏𝑖(𝑓𝑖) ≥ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡) and (DBF≤l)

41. assign 𝑓𝜏𝑖 to τi;

42. Compute_EFFτi // w.r.t Eq. 66

43. end if
44. end while

45. end for

46. j=determine_max_EEF(Γ(HL));
47. fτj=set_freq();
48. SS← Update_StaticSlack();
49. Γ(HL)= Γ(HL)-{τj};
50. fΓ(HL)= set_freq(fmax);
51. end While
END

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 13

in the order of micro second (us), and the order of execu-
tion of tasks in the systems is millisecond (ms) [2], [15], the
overhead of applying DVFS is negligible and can be con-
sidered as a part of the task’s WCET. Energy consumption
of the memory unit is out of the scope of this paper. How-
ever, there are data recompuatation techniques [59-64] that
can be used for energy reduction of the memory. Finally,
in order to explain how our proposed method works, there
is an illustrative example which is presented in the
appendix.

5 RESULTS AND DISCUSSION

In this section, we perform extensive simulations to pre-
sent the effectiveness of our proposed LETR-MC method

from the perspective of energy saving, reliability and QoS
in different operation modes.

5.1 Experimental Setup

Due to lack of benchmark packages for MCSs, similar to
[18], [20], [22-23], [25-28], [30-31], [33-37], [40-43], [67], we
evaluate our proposed scheme using synthetic task sets.
The UUnifast algorithm is used to generate utilization for
n tasks Γ={τ1, τ2, …, τn} with total utilization equal to U [28].
The UUnifast algorithm is proposed by bini and
buttazzo [44] to generate utilizations of a task set to study
uniprocessor scheduling, which has the lowest complexity
among all task generation algorithms. The generated utili-
zations for HC and LC tasks correspond to their high-level
WCETs (i.e. ui(HC,H)) and low-level WCETs (i.e. ui(LC,L)),

(a) Normalized energy consumption in WFD mapping with FC=100% (b) Normalized Energy Consumption in FFD mapping with FC=100%

(c) Normalized energy consumption in WFD mapping with FC=99% (d) Normalized energy consumption in FFD mapping with FC=99%

(e) Normalized energy consumption in WFD mapping with FC=98% (f) Normalized energy consumption in FFD mapping with FC=98%

(g) Normalized energy consumption in WFD mapping with FC=95% (h) Normalized energy consumption in FFD mapping with FC=95%

Fig. 4: Normalized energy consumption of different operation modes based on WFD and FFD mappings, with different fault coverage values.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5N
o
rm

a
liz

e
d
 E

n
e
rg

y
to

 C
R

_
B

a
s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_offDVFS_SUF

NR_onDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS Real_Base

Real_online

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5N
o

rm
a

liz
e

d
 E

n
e

rg
y
 t

o
 C

R
_

B
a

s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_oFFDVFS_SUF

NR_onDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS Real_Base

Real_onDVFS

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3N
o

rm
a

liz
e

d
 E

n
e
rg

y
to

 C
R

_
B

a
s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_offDVFS_SUF

NR_onDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS Real_Base

Real-onDVFS

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3N
o
rm

a
liz

e
d
 E

n
e
rg

y
to

 C
R

_
B

a
s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_offDVFS_SUF

NR_offDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS real_Base

real_onDVFS

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2N
o
rm

a
liz

e
d
 E

n
e
rg

y
to

 C
R

_
B

a
s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_offDVFS_SUF

NR_onDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS Real_Base

Real_onDVFS

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2N
o
rm

a
liz

e
d
 E

n
e
rg

y
 t

o
 C

R
_
B

a
s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_offDVFS_SUF

NR_onDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS Real_Base

Real_onDVFS

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2N
o
rm

a
liz

e
d
 E

n
e
rg

y
to

 C
R

_
B

a
s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_offDVFS_SUF

NR_onDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS Real_Base

Real_onDVFS

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2N
o

rm
a

liz
e

d
 E

n
e

rg
y
 t

o
 C

R
_

B
a

s
e

Utilization

NR_Base NR_offDVFS_DBF NR_onDVFS_DBF NR_offDVFS_SUF

NR_onDVFS_SUF OV_Base OV_onDVFS FO_Base

FO_onDVFS CR_Base CR_onDVFS Real_Base

Real_onDVFS

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

respectively. We define the PHI factor which is the proba-
bility that the generated task is HC. The periods of tasks
are randomly selected from the set T={10, 20, 40, 50, 100,
200, 400, 500, 1000} ms [20]. Hence, the Wi

HI for an HC task
is computed according to Wi

HI=Ti.ui(HC,H), and for LC
tasks Wi

HI=Wi
LO. However, for HC tasks Wi

LO=μ.Wi
HI,

where μ is a random value in the range of [0.3, 0.5]. The
PFH level of all HC tasks is selected from levels A, B, and
C in DO-178B standard. Hence, the target reliability and
the number of required replicas for each HC task is com-
puted based on the selected PFH level. We consider a mul-
ticore platform, and the available frequencies for each core
are set as F={0.6, 0.7, 0.8, 0.9, 1}. In the online phase, tasks
are executed with actual execution time which varies be-
tween 70 to 100 percent of their WCET.

5.2 Experimental Results and Discussions

We evaluated the energy consumption, reliability and QoS
of our proposed method in different operation modes in a
quad-core platform based on WFD and FFD mapping, and
the results are shown in Fig. 4 and Fig. 5, respectively. Uti-
lization U was varied from 0.5 to 4.5 with steps of 0.5, and
in each utilization point, 50 task sets were synthetically
generated. The results are reported as the averages of 100
repetitions of the experiment at each utilization point. The
PHI factor is equal to 0.5. HC, and LC tasks are selected
from levels B and D, respectively. Therefore, the average
energy consumption and QoS are computed with preserv-

ing the target reliability in all experiments. Also, in Fig. 4
and Fig. 5 the energy consumption and QoS of our pro-
posed method for different fault coverage values (FC) are
reported. In these figures, the energy consumption and
QoS of each operation mode are computed based on the
worst-case scenario of that mode, i.e. the energy consump-
tion of OV and FO modes are reported where all the HC
tasks overrun, or all HC tasks encounter faults and all rep-
licas are executed completely with maximum frequency,
respectively. In addition to the worst-case scenario, the en-
ergy consumption is analyzed based on the actual case
(Real_WF and Real_FF). In the actual-case, faults are in-
jected into the system with Poisson distribution, and HC

tasks overrun randomly. In Fig. 4, the normalized energy
consumption before applying offline DVFS (X_Base, where
X represents the operation mode including NR, OV, FO,
and CR), after applying offline DVFS technique based on
DBF and SUF (X_OffDVFS), and after applying online
DVFS (X_OnDVFS) are shown. By increasing the utiliza-
tion, the energy consumption is increased, and the DBF-
based DVFS lowers the energy more than the SUF one.
Since transient faults and overrun are rare in nature, LETR-
MC achieves further energy reduction at runtime beyond
what is achieved through the offline part of LETR-MC at

design-time.
Also, decreasing the fault coverage value reduces the reli-
ability of the system according to equations 6-8. Hence, the
schedulability of the task sets will be decreased, because
more replica tasks are needed to schedule to achieve the
given reliability target. Therefore, the lower fault coverage
value leads to lower schedulability. Fig 5. represents the
QoS of our proposed LETR-MC method in different oper-
ation modes with WFD and FFD mappings and different
fault coverage values. The QoS is computed based on the
fraction of the number of remaining schedulable LC jobs in
each operation mode to the total original number of jobs
based on the desired period of LC tasks. As it is clear, by
increasing the utilization, QoS is decreased to keep the sys-
tem schedulable. Also, due to the load balanced mapping
in the WFD, it out performs FFD in all operation modes,
i.e. WFD can preserve higher percentage of LC jobs in each
operation mode in comparison with FFD mapping. Mean-
while, the normal operation mode with WFD mapping
(NR_WF) has the highest QoS, and the critical operation
mode with FFD mapping (CR_FF) has the lowest. The re-
sults of actual-case scenario (Real_WF and Real_FF) is
close to the QoS of Normal mode (NR_WF and NR_FF).
Also, lower fault coverage leads to lower schedulability
and also lower QoS in both the WFD and FFD mapping,
because replica tasks reserve the execution time of the
cores to satisfy the given reliability target.
Fig. 6 illustrates both energy consumption and QoS of the
LETR-MC method in different operation modes with WFD
and FFD mappings and fault coverage 100%. In this figure,
the energy consumption is normalized to that of the
scenario where all tasks are executed at fmax, HC tasks are
executed with WHI and the jobs of LC tasks are released
based on their desired period. This figure shows that in
each utilization point, the energy consumption of the FFD
mapping is close to WFD one. However, the QoS of FFD in
that utilization point is less than the WFD one. Hence, FFD
mapping consumes less energy at the expense of lowering
down the number of executable LC jobs.
We compared our proposed method from the QoS point of

(a) Fault coverage=100% (b) Fault coverage=99% (c) Fault coverage=98% (d) Fault coverage=95%

Fig. 5. QoS of LETR scheme in different operation modes and different fault coverage values.

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Q
o

S

Utilization

NR_WF NR_FF OV_WF OV_FF
FO_WF FO_FF CR_WF CR_FF
Real_WF Real_FF

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

Q
o

S

Utilization

NR_WF NR_FF OV_WF
OV_FF FO_WF FO_FF
CR_WF CR_FF Real_WF
Real_FF

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

Q
o

S

Utilization

NR_WF NR_FF OV_WF
OV_FF FO_WF FO_FF
CR_WF CR_FF Real_WF
Real_FF

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2

Q
o
S

Utilization

NR_WF NR_FF OV_WF
OV_FF FO_WF FO_FF
CR_WF CR_FF Real_WF
Real_FF

Fig. 6. Analyzing the energy consumption and QoS of LETR scheme
in different operation modes.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
o

S

Utilization

N
o
rm

a
liz

e
d

 E
n

e
rg

y

NR_WF NR_FF OV_WF OV_FF FO_WF

FO_FF CR_WF CR_FF Real_WF Real_FF

Real_WF_QoS NR_FF_QoS OV_WF_QoS OV_FF_QoS FO_WF_QoS

FO_FF_QoS CR_WF_QoS CR_FF_QoS Real_FF_QoS NR_WF_QoS

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 15

view with [27] in Fig. 7. The reference [27] proposes an of-
fline algorithm which improves the QoS of EDF-VD algo-
rithm by trying to save as much LC tasks as possible in
overrun mode. Without considering any PFH level for
tasks, it assigns one re-execution to each HC and LC task.
Therefore, all HC and LC tasks and their re-executions
must be schedulable in normal mode. However, in overrun
mode, HC tasks and their re-executions must be schedula-
ble, and for LC tasks the algorithm tries to find schedulable
set of LC tasks based on the scaling factor in EDF-VD
scheduler. Afterward, it tries to reserve re-executions for
LC tasks that are schedulable in overrun mode. In this set
of experiments, the utilization of a single-core platform is
varied from 0.05 to 1 with steps of 0.05. In each utilization
point 50 task sets are synthetically generated and the ex-
periments are repeated 100 times. The PHI factor is equal to
0.4. In the first scenario, we consider that all HC and LC
tasks need one re-execution. Therefore, the proposed
method in [27] finds the number of LC jobs that can be
schedulable in overrun mode. As it is shown in Fig. 7, this
method is not schedulable after utilization point 0.65. In
the second scenario, we modified their proposed method
considering that LC tasks do not need re-execution. Hence,
the schedulability of their method is improved. However,
LETR-MC is schedulable in all utilization points, also
LETR-MC can preserve higher number of jobs than [27] in
overrun mode. It should be noted that the reference [27]
considers two operation modes, i.e. normal and overrun.
However, in this set of experiments, we reported the QoS
of LETR-MC in FO and CR mode in addition to NR and
OV modes. By considering different operation modes and
proposing MEMC task model, the LETR-MC method can
provide higher guaranteed QoS.
We compared the energy consumption of LETR-MC with
HSFA algorithm in [36], [37] (Fig. 8). In these set of experi-
ments, each task set has 10 tasks and the experiments are
repeated 100 times and the average of these repetitions are
reported. In Fig. 8 (a), the high utilization of HC tasks is

equal to 0.3 (U(HC,H)=0.3), and the utilization of LC tasks
H(LC,L) varies from 0.3 to 0.7 with steps of 0.1 in a single
core platform. By increasing the utilization of LC tasks, all
methods consume more energy, since in higher utilizations
there is less slack time to use for energy saving. In Fig 8 (a)
and (b), the LETR-MC method consumes lower energy
than HSFA, since it lowers down the number of LC jobs to
make the system schedulable. Also, the DBF-based DVFS
lowers the energy more than the SUF one. It should be
noted that HSFA does not have an online manager, and
dynamic slacks are not used for energy saving. However,
the LETR-MC method can reduce the energy the most in
the online phase. The faulty mode of HSFA algorithm has
the highest energy consumption. However, in the FO and
OV modes of LETR-MC method, due to the lower number
of LC jobs, the energy consumption is less than the worst-
case scenario where all HC tasks are executed with WHI and
all replicas are executed completely at fmax. HSFA uses
EDF-VD algorithm and it drops all LC tasks after entering
the overrun mode. Hence, this method consumes the least
energy in the OV mode. However, LETR-MC executes
guaranteed service level of LC jobs in OV mode, which
leads in more energy consumption than HSFA. However,
by applying the online DVFS, we can mitigate the energy
consumption.

6. Conclusion

In this paper, we proposed the LETR-MC scheme that con-
currently considers certification, fault-tolerance, energy re-
duction, and QoS. We used task replication to tolerate
fault, and improve QoS of LC tasks. The number of re-
quired replicas for each HC task is computed through the
proposed formulas. Then, our proposed scheduling
algorithm reduces the execution time overlap between the
primary tasks and replicas to save more energy by drop-
ping the remaining parts of replicas at the end of correct
execution of their primaries. Also, through the presented
service guarantee exploration algorithm, we theoretically
guarantee an acceptable service level for LC tasks in differ-
ent operation modes of the system, i.e. normal, overrun,
fault-occurrence, and critical. In order to check the sched-
ulability of the proposed method, we analyzed the re-
source demands of mixed-criticality tasks with the dead-
line and reliability constraints, energy reduction and QoS
guarantee. Finally, we showed that energy consumption
can be reduced in the offline and online phases by exploit-
ing static and dynamic slacks, respectively, while the pre-
serving the guaranteed service level for LC tasks.

(a) Comparing energy consumption under various U(LC,L) (b) Comparing energy consumption under various U(HC,H)

Fig. 8. Comparing the energy consumption of LETR method and HSFA in [37].

0

0.3

0.6

0.9

1.2

1.5

1.8

0.3 0.4 0.5 0.6 0.7 0.8N
o
rm

a
liz

e
d
 E

n
rg

y
 t

o
 W

o
rs

t-
C

a
s
e

S
c
e
n
a
ri
o

U(LC,L)

HSFA_NR HSFA_NR_dbfDVFS HSFA_NR_SUFDVFS HSFA_OV

HSFA_FO NR_Base NR_OffDVFS_DBF NR_OnDVFS_DBF

NR_OffDVFS_SUF NR_OnDVFS_SUF OV_Base OV_OnDVFS

FO_Base FO_OnDVFS

0

0.3

0.6

0.9

1.2

1.5

1.8

0.3 0.4 0.5 0.6N
o

rm
a

liz
e

d
 E

n
rg

y
 t

o
 W

o
rs

t-
C

a
s
e

S

c
e

n
a

ri
o

U(HC,H)

HSFA_NR HSFA_NR_dbfDVFS HSFA_NR_SUFDVFS HSFA_OV

HSFA_FO NR_Base NR_OffDVFS_DBF NR_OnDVFS_DBF

NR_OffDVFS_SUF NR_OnDVFS_SUF OV_Base OV_OnDVFS

FO_Base FO_OnDVFS

Fig. 7. Comparing the QoS of LETR scheme and [27].

0

0.2

0.4

0.6

0.8

1

Q
o

S

Utilization

[Lin14] re-exe for all tasks

CR_mode

OV_mode

FO_mode

NR_mode

[Lin14] re-exe only for HC tasks

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, MANUSCRIPT ID

REFERENCES
[1] P. Marwedel, “Embedded system design: Embedded systems

foundations of cyber-physical systems,” Springer Science &

Business Media, 2nd ed., 2010.

[2] M. Ansari, S. Safari, A. Y. Khaksar, M. Salehi, and A. Ejlali, “Peak

Power Management to Meet Thermal Design Power in Fault-

Tolerant Embedded Systems,” IEEE TPDS, 2018.

[3] “RTCA/DO-178B, Software Considerations in Airborne Systems

and Equipment Certification,” 1992.

[4] S. Vestal, “Preemptive scheduling of multi-criticality systems

with varying degree of execution time assurance,” RTSS, 2007.

[5] B. Hu, K. Huang, P. Huang, L. Thiele and A. Knoll, “On-the-fly

fast overrun budgeting for mixed-criticality systems,” Int’l Conf.

Embedded Software (EMSOFT), 2016.

[6] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-

Spaccamela, N. Megow, and L. Stougi, “Scheduling real-time

mixed-criticality jobs,” IEEE TC, vol. 61, no. 8, pp. 1140-1152,

2012.

[7] J. Henkel, V. Narayanan, S. Parameswaran, and J. Teich, “Run-

time adaption for highly-complex multi-core systems,” Int’l

Conf. Hardware/Software Codesign and Syst. Synthesis,

(CODES+ISSS), 2013.

[8] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on

Multi/Many-Core Systems,” DAC, 2013.

[9] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy

efficient DVFS scheduling for mixed-criticality systems,” Int’l

Conf. Embedded Software (EMSOFT), 2014.

[10] R. Melhem, D. Mosse. and E. Elnozahy, “The interplay of power

management and fault recovery in real-Time systems,” IEEE TC,

vol. 53, no. 2, pp. 217-231, 2004.

[11] M. A. Haque, H. Aydin, and D. Zhu, “On reliability management

of energy-aware real-time systems through task replication,”

IEEE TPDS, vol. 28, no. 3, pp. 813-825, 2017.

[12] M. A. Haque, H. Aydin, and D. Zhu, “Energy-aware task repli-

cation to manage reliability for periodic real-time applications on

multicore platforms,” International Green Computing Confer-

ence, 2013.

[13] F. R. Poursafaei, S. Safari, M. Ansari, M. Salehi, and A. Ejlali,

“Offline replication and online energy management for hard

real-time multicore systems,” IEEE CSI Symposium on Real-Time

and Embedded Syst. and Technologies (RTEST), 2015.

[14] R. Sridharan, and R. Mahapatra, Reliability aware power

managemnt for dual-processor real-time embedded systems,” in

Proc. Of the IEEE Design Automation Confrence, 2010.

[15] M. Salehi, A. Ejlali, and B. M. Al-Hashimi, “Two-phase low-

energy N-modular redundancy for hard real-time multi-core

systems,” IEEE TPDS, vol. 27, no. 5, pp. 1497-1510, 2015.

[16] S. Baruah, H. Li, and L. Stougie, “Towards the design of

certifiable mixed-criticality systems,” RTAS, 2010.

[17] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. M. Spaccamela, S.

van der Ster, and L. Stougie, “The preemptive uniprocessor

scheduling of mixed-criticality implicit-deadline sporadic task

systems,” ECRTS, 2012.

[18] H. Su, and D. Zhu, “An elastic mixed-criticality task model and

its scheduling algorithm,” DATE, 2013.

[19] D. de Niz, K. Lakshmanan, and R. Rajkumar, “On the scheduling

of mixed-criticality real-time task sets,” RTSS, 2009.

[20] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng, “A four-mode

model for efficient fault-tolerant mixed-criticality systems,”

DATE, 2016.

[21] S. Baruah, and S. Vestal, “Schedulability analysis of sporadic

tasks with multiple criticality specifications,” ECRTS, 2008.

[22] P. Ekberg, and W. Yi., “Bounding and shaping the demand of

mixed-criticality sporadic tasks,” ECRTS, 2012.

[23] H. Su, N. Guan, and D. Zhu, “Service guarantee exploration for

mixed-criticality systems,” RTCSA, 2014.

[24] S. Baruah, V. Bonifaci, G. D'Angelo, H. Li, A. Marchetti-Spac-

camela, S. Van Der Ster, and L. Stougie, “Preemptive

uniprocessor scheduling of mixed-criticality sporadic task

systems,” Journal of the ACM, vol. 62, no. 2, pp. 1-33, 2015.

[25] H. Su, D. Zhu, and S. Brandt, “An Elastic Mixed-Criticality Task

Model and Early-Release EDF Scheduling Algorithms,” ACM

TODAES, vol. 22, no. 2, pp. 1-28, 2016.

[26] H. Su, D. Zhu, and D. Mosse, “Scheduling algorithms for elastic

mixed-criticality tasks in multicore systems,” RTCSA, 2013.

[27] J. Lin, A. M. K. Cheng, D. Steel, and M. Yu-Chi Wu “Scheduling

mixed-criticality real-time tasks in a fault-tolerant system,”

RTSS, 2014.

[28] R. M. Pathan, “Fault-tolerant and real-time scheduling for

mixed-criticality systems,” Real-Time Syst., vol. 50, no. 4, pp. 509-

547, 2014 .

[29] A. Thekkilakattil, R. Dobrin, and S. Punnekkat, “Mixed criticality

scheduling in fault-tolerant distributed real-time systems, ” Int’l

Conf. on Embedded Syst. (ICES), 2014.

[30] P. Huang, H. Yang, and L. Thiele, “On the scheduling of fault-

tolerant mixed-criticality systems,” Technical report, Computer

Engineering and Networks Laboratory, ETH Zurich, 2014.

[31] L. Zeng, P. Huang, and L. Thiele, “Towards the design of fault-

tolerant mixed-criticality systems on multicores,” Int’l Conf.

Compilers, Architectures, and Synthesis of Embedded Syst. (CASES),

2016.

[32] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele and R. V.

Prasad, “Exploring energy saving for mixed-criticality systems

on multi-cores,” RTAS, 2016.

[33] V. Legout, M. Jan and L. Pautet, “Mixed-criticality

multiprocessor real-time systems: Energy consumption vs

deadline misses,” Workshop on Real-Time Mixed Criticality Syst.

(ReTiMiCS), 2013.

[34] M. Völp, M. Hähnel, and A. Lackorzynski, “Has energy

surpassed timeliness? Scheduling energy-constrained mixed-

criticality systems,” RTAS, 2014.

[35] A. Taherin, M. Salehi, and A. Ejlali, “Stretch: Exploiting service

level degradation for energy management in mixed-criticality

systems,” IEEE CSI Symposium on Real-Time and Embedded

Systems and Technologies (RTEST), 2015.

[36] Z. Lia, C. Guo, X. Hua, and S. Ren, “Reliability guaranteed

energy minimization on mixed-criticality systems,” Journal of

Syst. and Software, vol. 112, pp. 1-10, 2016.

[37] Z. Lia, X. Hua, C. Guo, and S. Ren “Empirical study of energy

minimization issues for mixed-criticality systems with reliability

constraints,” Workshop on Low-Power Dependable Computing

(LPDC), Int’l Green Computing Conf. (IGCC), 2014.

[38] D. Zhu, “Reliability-aware dynamic energy management in

dependable embedded real-time systems,” ACM TECS, vol. 10,

no. 2, pp. 1-27, 2011.

[39] A. Ejlali, B.M. Al-Hashimi, and P. Eles, “A standby-sparing

technique with low energy-overhead for fault-tolerant hard real-

Time systems,” Int’l Conf. Hardware-Software Codesign and Syst.

Synthesis (CODES+ISSS), pp. 193-202, 2009.

[40] A. Easwaran, “Demand-based scheduling of mixed-criticality

sporadic tasks on one processor,” RTSS, 2017.

[41] T. Zhang, N. Guan, Q. Deng, and W. Yi, “On the analysis of edf-

vd scheduled mixed-criticality real-time systems,” Int’l

Symposium on Industrial Embedded syst., 2014.
[42] N. Guan, P. Ekberg, M. Stigge, and W. Yi, “Effective and Efficient

Scheduling of Certifiable Mixedcriticality Sporadic Task
Systems,” RTSS, 2011.

[43] H. Li and S. Baruah, “Global Mixed-Criticality Scheduling on
Multiprocessors,” ECRTS, 2012.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6257104

1045-9219 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more
information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPDS.2019.2907846, IEEE Transactions on Parallel and Distributed Systems

SAFARI ET AL.: ON THE SCHEDULING OF ENERGY-AWARE FAULT-TOLERANT MIXED-CRITICALITY MULTICORE SYSTEMS WITH SERVICE

GUARANTEE EXPLORATION 17

[44] E. Bini, and G. Buttazzo, “Measuring the Performance of

Schedulability Tests,” Real-Time Syst., vol 30, pp 129-154, 2005.
[45] I. Koren and C. M. Krishna, Fault-tolerant systems. Morgan

Kaufmann, 2010.
[46] D. Pradhan, Fault Tolerant Computer System Design. Prentice

Hall, 1996.
[47] A. Meixner, M. E. Bauer and D. Sorin, “Argus: Low-Cost,

Comprehensive Error Detection in Simple Cores,” IEEE/ACM
Int’l Symp. on Microarchitecture (MICRO), 2007.

[48] A. Elewi, M. Shalan, M. Awadalla, and E. M. Saad, “Energy-
Efficient Task Allocation Techniques for Asymmetric
Multiprocessor Embedded Systems,” ACM Trans. on Embedded
Computing Syst., vol. 13, no. 2s, 2014.

[49] M. Holenderski, “Real-time system overheads: a literature
overview,” Computer Science Report 08/26, Eindhoven
University of Technology, 2008.

[50] J. Anderson, V. Bud, and U. C. Devi, “An EDF-Based Scheduling
Algorithm for Multiprocessor Soft Real-Time Systems,” ECRTS,
2005.

[51] U. C. Devi, and J. Anderson, “Tardiness Bounds for Global EDF
Scheduling on a Multiprocessor,” RTSS, 2005.

[52] H. Cho, B. Rabindran, and E. D. Jensen, “An Optimal Real-Time
Scheduling Algorithm for Multiprocessors,” RTSS, 2006.

[53] A. Burns, “Preemptive priority based scheduling: An
appropriate engineering approach,” In S. Son, ed., Advances in
Real-Time Systems, pp. 225–248. Prentice-Hall, 1994.

[54] F. M. David, J. C. Carlyle, and R. H. Campbell, “Context Switch
Overheads for Linux on ARM Platforms,” ACM workshop on
Experimental computer science, 2007.

[55] D. Tsafrif, “The Context-Switch Overhead Inflicted by Hardware
Interrupts (and the Enigma of Do-Nothing Loops),” ACM
Workshop on Experimental Computer Science, 2007.

[56] A. Bastoni, B. B. Brandenburg, and J. H. Anderson, “An
Emperical Comparison of Global, Partitioned and Clustered
Multiprocessor EDF Schedulers,” RTSS, 2010.

[57] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. H. Anderson,
and S. K. Baruah, “A Categorization of Real-time Multiprocessor
Scheduling Problems and Algorithms”. In the Hadnbook of
Scheduling: Algorithms, Models and Performance Analysis, 2014.

[58] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali,
“Supporting Task Migration in Multi-Processor Systems-on-
Chip: A Feasible Study,” DATE, 2006.

[59] H. Koc, S. Tosun, O. Ozturk, and M. Kandemir, “Reducing
Memory Requirements through Task Recomputation in
Embedded Multi-CPU Systems,” IEEE Comp. Society Annual
Symp. on Emerging VLSI Technologies and Architectures (ISVLSI),
2006.

[60] H. Koc, O. Ozturk, M. Kandemir, S.H.K. Narayanan, and E.
Ercanli, “Minimizing Energy Consumption of Banked Memories
Using Data Recomputation,” Int’l Symp. on Low Power Electronics
and Design (ISLPED), 2006.

[61] S. Tosun, M. Kandemir, and H. Koc, “Using Task Recomputation
during Application Mapping in Parallel Embedded
Architectures Using Task Recomputation during Application
Mapping in Parallel Embedded Architectures,” Int’l Conf. on
Comp. Design & Conf. on Computing in Nanotechnology (CDES),
2006.

[62] H. Koc, M. Kandemir, E. Ercanli and, O. Ozturk, “Reducing Off-
Chip Memory Access Costs Using Data Recomputation in
Embedded Chip Multi-processors,” ACM/IEEE Design
Automation Conf., 2007.

[63] H. Koc, M. Kandemir, and E. Ercanli, “Exploiting Large On-Chip
Memory Space through Data Recomputation,” IEEE Int’l SOC
Conf., 2010.

[64] B. Nimer, and H. Koc, “Improving Reliability through Task
Recomputation in Heterogeneous Multi-Core Embedded
Systems,” Int’l Conf. on Technological Advances in Electrical,
Electronics and Computer Engineering (TAEECE), 2013.

[65] V. M. van Santen, H. Amrouch, N. Parihar, S. Mahapatra, and J.
Henkel, “Aging-aware voltage scaling,” DATE, 2016.

[66] S. Park, J. Park, D. Shin, Y. Wang, Q. Xie, M. Pedram, and N.
Chang “Accurate Modeling of the Delay and Energy Overhead
of Dynamic Voltage and Frequency Scaling in Modern
Microprocessors,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32 , no. 5, pp. 695-708, 2013.

[67] A. Taherin, M. Salehi, and A. Ejlali, “Reliability-Aware Energy
Management in Mixed-Criticality Systems,” IEEE Trans. on
Sustainable Computing (TSC), vol. 3, no. 3 pp. 195-208, 2018.

Sepideh Safari received the M.Sc. degree in

computer engineering from Sharif University of

Technology, Tehran, Iran, in 2016. She is cur-

rently working toward the PhD degree in com-

puter engineering at Sharif University of Tech-

nology. Her research interests include, energy

management in fault-tolerant mixed-criticality

systems, and multicore systems with emphasis on reliability.

Mohsen Ansari received the M.Sc. degree in

computer engineering from Sharif University of

Technology, Tehran, Iran, in 2016. He is currently

working toward the PhD degree in computer en-

gineering at Sharif University. His research inter-

ests include low-power design of embedded sys-

tems, peak power management in embedded

systems, and multi-/many-core systems with a fo-

cus on dependability/reliability.

Ghazal Ershadi is currently working toward

the B.Sc. degree in computer engineering at Sha-

rif University of Technology. Her research inter-

ests include low-power design of cyber physi-

cal systems, energy management in fault-tolerant

multicore embedded systems.

Shaahin Hessabi received the BS and MS de-

grees in electrical engineering from Sharif Uni-

versity of Technology, Tehran, Iran, in 1986 and

1990, respectively, and the PhD degree in elec-

trical and computer engineering from the Univer-

sity of Waterloo, Ontario, Canada. He joined

Sharif University of Technology, in 1996. Since

2007, he has been an associate professor in the

Department of Computer Engineering, Sharif University of Technol-

ogy, Tehran, Iran. He has published more than 100 refereed papers in

the related areas. His research interests include cyber-physical sys-

tems, reconfigurable and heterogeneous architectures, network-on-

chip, and system-on-chip. He has served as the program chair, gen-

eral chair, and program committee member of various conferences,

like DATE, NOCS, NoCArch, and CADS.

https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6504524

