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Abstract— Advancement of Cyber-Physical Systems has attracted attention to Mixed-Criticality Systems (MCSs), both in 

research and in industrial designs. As multicore platforms are becoming the dominant trend in MCSs, joint energy and reliability 

management is a crucial issue. In addition, providing guaranteed service level for low-criticality tasks in critical mode is of great 

importance. To address these problems, we propose “LETR-MC” scheme that simultaneously supports certification, energy man-

agement, fault-tolerance, and guaranteed service level in mixed-criticality multicore systems. In this paper, we exploit task-repli-

cation to not only satisfy reliability requirements, but also to improve the QoS of low-criticality tasks in overrun situation. Our pro-

posed LETR-MC scheme determines the number of replicas, and reduces the execution time overlap between the primary tasks 

and replicas. Moreover, instead of ignoring low-criticality tasks or selectively executing them without any guaranteed service level in 

overrun mode, it mathematically explores the minimum achievable service guarantee for each low-criticality task in different execu-

tion modes, i.e. normal, fault-occurrence, overrun and critical operation modes. We develop novel unified demand bound functions 

(DBF), along with a DVFS method based on the proposed DBF analysis. Our experimental results show that LETR-MC provides 

up to 59% (24% on average) energy saving, and significantly improves the service levels of low-criticality tasks compared to the 

state-of-the-art schemes.  

Index Terms—Task Replication, Energy Management, Guaranteed Service Level, DBF, Multicores, Mixed-Criticality Systems. 

——————————      —————————— 

1 INTRODUCTION 

ITH the advancement of Cyber Physical Systems, 
Mixed-Criticality Systems (MCSs) have recently be-

come the subject of an important research area as the next 
generation of complex embedded and cyber physical sys-
tems [1]. MCSs integrate components with different levels 
of criticality onto a common platform to reduce cost, space, 
weight, heat generation and power consumption of the 
system [5], [6]. The advent of MCSs poses significant new 
challenges on the system design since applications can in-
terfere with each other on common resources. This point 
shows the importance of task scheduling and certification 
on the shared platform of MCSs.  
In addition to the certification issue, simultaneous energy 
and reliability management is another crucial aspect of de-
signing MCSs. As the number of cores on a single chip con-
tinues to increase [8], [15], the chip power/energy con-
sumption will increase exponentially. Dynamic Power 
Management (DPM) [35] and Dynamic Voltage and Fre-
quency Scaling (DVFS) [9] are two popular techniques for 
energy management. However, scaling the supply voltage 
in DVFS can potentially degrade the system reliability due 
to the increasing transient fault rate in the current ever-de-
creasing technology feature sizes [7], [10]. Transient faults 
are usually mitigated through exploiting re-execu-
tion [16], [27], [28] or replication [2], [11]. The former im-
poses time overhead, i.e. affects the most critical parameter 
in MCSs, and the latter imposes power consumption over-

head. Therefore, choosing a suitable fault-tolerant tech-
nique for MCSs while reducing overall energy consump-
tion is essential.  
Another growing difficulty in the scheduling of MCSs is 
the quality-of-service (QoS) of low-criticality (LC) tasks in 
overrun situations. LC tasks have one designer-specified 
Worst-Case Execution Time (WCET) [16], [17], while high-
criticality (HC) tasks have two instances of WCETs: WLO  
which is estimated by system designers, and WHI which is 
more pessimistic and estimated by certification authori-
ties [6], [17], [18]. The system starts in normal mode, and 
whenever an HC task exceeds its WLO, the system switches 
to the overrun mode. HC tasks must be schedulable in both 
the normal and overrun modes, but the schedulability of 
LC tasks in overrun mode depends on the chosen schedul-
ing scenario. Some scheduling algorithms discard all LC 
tasks [6], [16], [17], while the others guarantee a minimum 
service level for LC tasks. Overall, presenting a scheduling 
algorithm that simultaneously supports timeliness, energy 
management, fault-tolerance and guaranteed service level 
for LC tasks is becoming increasingly challenging in the 
design of MCSs as technology advances to multicores.  
In this paper, we exploit task replication to achieve the re-
liability target. The task replication approach schedules 
multiple copies (i.e., one as primary and others as replica) 
of a task on different cores to tolerate a certain number of 
faults [10], [15], [17]. Our proposed LETR-MC scheme de-
termines the proper number of replicas for each HC task to 
achieve the given reliability target. Then, it conservatively 
maps the task set into cores and schedules them to reduce 
the execution time overlap between the primary tasks and 
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their replicas in an energy-saving manner while preserv-
ing certification constraints.  In order to conquer service 
abruption problem in overrun situations, by addressing 
fault and overrun as two independent events, we consider 
different execution modes including normal, fault-occur-
rence, overrun and critical. Also, we modify the elastic 
mixed-criticality task model to let LC tasks have different 
guaranteed relaxed periods in each execution mode. In or-
der to check the schedulability of the task set in each exe-
cution mode, we develop unified demand bound function 
(DBF) analysis. Also, we propose a DBF-based DVFS tech-
nique that assigns the proper task frequency, which con-
siders timeliness and reliability constraints as well as QoS. 
By considering various execution modes and proposing 
the unified DBF schedulability test, the multicore system 
can tolerate fault occurrence, overrun and even both of 
them in distinct cores at the same time. The main contribu-
tions of this work are: 
 Proposing a novel Low Energy Task Replication mech-

anism in Mixed-Criticality systems (called LETR-MC 
scheme) to support certification (timeliness), energy 
management, fault tolerance, and guaranteed service 
level simultaneously in multicores. 

 Adapting task replication, not only as a fault tolerant 
technique but also to improve LC tasks’ QoS in the 
overrun situation.  

 Considering different execution modes including nor-
mal, fault-occurrence, overrun, and critical (distinction 
between overrun and fault occurrence) and mathemat-
ically guarantying an acceptable service level for LC 
tasks in each mode, instead of killing or selectively exe-
cuting them.  

 Developing a new unified DBF-based schedulability 
test, under deadline, energy reduction, reliability re-
quirements, and guaranteed relaxed periods consider-
ations in different execution modes. Meanwhile, we 
propose a DBF-based DVFS technique, and exploit 
DVFS along with DPM to save energy under timeliness 
and reliability constraints.  

The remainder of this paper is organized as follows. In Sec-
tion 2, we review related work. Section 3 presents models 
and assumptions. In Section 4, we present our LETR-MC 
scheme in details. The experimental results are presented 
and discussed in Section 5. Finally, we conclude the paper 
in Section 6. 

2 RELATED WORK 

Mixed-criticality systems were first introduced by 
Vestal [4]. The primitive research proposed different 
scheduling algorithms. The proposed scheduling algo-
rithms are classified according to their policy to deal with 
LC tasks in the overrun situation. Some scheduling algo-
rithms discard all LC tasks after entering the overrun 
mode, e.g. EDF-VD (Earliest Deadline First with Virtual 
Deadline) [6], [16], [17], [21], [24]. Other ones degrade the 
QoS of LC tasks to mitigate the effect of service interrup-
tion [18], [23], [25], [26]. Su et al. [18] have proposed ER-
EDF scheduling in a single-core system, which increases 
the period of LC tasks in the overrun mode to reduce their 

execution frequency and competition with HC tasks. Su et 
al. [25] have improved the ER-EDF algorithm by focusing 
on the online behavior of the single-core system. Su et. 
al. [26] have applied the ER-EDF scheduling to multicores. 
The reference [23] combines ER-EDF scheduling with 
virtual deadlines for the dual-criticality single-core system, 
and guarantees LC tasks service level in the overrun mode. 
The mentioned works do not consider fault-tolerance or 
energy management.  
Other recent work explore the scheduling problem in the 
context of fault-tolerant MCSs without considering energy 
management. Works presented in [16], [27], [28], [29] use 
re-execution as their fault-tolerance technique. The refer-
ences [16] and [26] wisely select the droppable LC tasks in 
the overrun mode. The references [28] and [29] immedi-
ately drop all LC tasks once either a transient fault or an 
overrun occurs. All of the above-mentioned references 
have considered a two-mode operation. Hence, the system 
switches to critical mode due to fault or overrun, and they 
do not guarantee an acceptable service level for LC tasks. 
The references [30] and [31] provide analysis techniques to 
bound the effects of task killing and service degradation on 
the safety and schedulability of the system. The refer-
ence [30] presents a method to convert the fault-tolerance 
problem into a standard scheduling problem in a single-
core MCS. The reference [20] addresses fault occurrence 
and overrun with separate modes in a single-core and 
multiprocessors. However, it selectively chooses LC tasks 
to continue their execution in each mode.   
Few works like [9], [32], [33], and [34] cope with the energy 
management problem in MCSs, but they do not consider 
reliability requirements. Huang et al. [9] have proposed an 
optimal solution based on DVFS with the EDF-VD sched-
uling to minimize dynamic energy consumption for single-
cores in normal mode, where tasks of the same criticality 
level share the same frequency. The reference [32] have ex-
tended the work in [9] to multicores, and HC tasks share 
the same frequency in overrun mode. Legout et al. [34] 
have developed an optimal solution for static energy re-
duction by applying DPM technique for single-core MCSs. 
Volp et al. [34] have considered an energy budget for mul-
ticore MCSs, and focus on energy utilization of HC tasks at 
the expense of sacrificing LC tasks. The reference [35] ap-
plies DVFS only on LC tasks with the cost of degrading 
their service level and only in the low-criticality mode of 
the system. Lia et. al in [36] and [37] have reduced the 
energy consumption of a single-core fault-tolerant MCS 
through resource demand analysis. However, they con-
sider two-mode model, and drop all LC tasks in overrun 
situations; also the re-execution energy is not taken into ac-
count.  All the mentioned works have considered two op-
erating modes and have discarded all LC tasks or have se-
lectively executed them in the overrun mode.  
In this paper, we address the problem of scheduling 
mixed-criticality tasks on multicores, and reduce energy 
consumption while satisfying timeliness and reliability re-
quirements, and at the same time, guarantee the acceptable 
service level for LC tasks in each mode. 
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3 MODELS AND PRELIMINARIES     

In this section, we introduce the models and preliminaries 
which are used throughout the rest of the paper. 

3.1 System and Application Model 

In this paper, we consider an MCS with two different crit-
icality levels, which are denoted as high-criticality and 
low-criticality levels. Also, we may choose any two criti-
calities out of the five criticality levels in DO-178B stand-
ard [21]. There are n mixed-criticality tasks Γ={τ1,τ2, ..., τn} 
that will be executed on a multicore platform. The cores are 
identical and DVFS enabled with a finite set of available 
frequencies, i.e. F={f1,...,fq} where f1=fmax and fq=fmin. These 
frequencies are normalized with respect to fmax, i.e. fmax=1. 
Tasks are independent, and do not share any resources 
other than the core. Also, similar to [49], [50], [51], and [52] 
we assume that the context switching overhead is negligi-
ble.  
Each task τi has hextuple of parameters {ζi, WiLO, WiHI, Ti, 
Di, Li}: 
 ζi € {LC, HC} denotes the criticality level of τi.  

 WiLO is the designer-specified WCET for τi. 

 WiHI is the CAs-specified WCET for τi. 

 Ti is the period of τi (minimum inter-arrival time).  

 Di is the deadline for the task. We assume Di < Ti. 

 Li is the task’s safety level according to DO-178B. 

It should be noted that in dual-criticality systems, if ζi=LC, 
then WiHI=WiLO, otherwise WiLO<WiHI. Each task τi gener-
ates a sequence of jobs (or task instances) with the period 
of Ti. Table 1 shows different task models. In conventional 
(basic) mixed-criticality task model, both of the LC and HC 
tasks have one desired period Ti. The Elastic Mixed-Criti-
cality (E-MC) task model [18] defines a maximum period 
Timax for LC tasks in addition to their desired period. When 
a task is executed with the desired period, it has a 
maximum level of QoS. However, maximum period repre-
sents the minimum level of QoS. The period of LC tasks 
can be extended by 2 to 5 times [35]. In the E-MC model, 
the utilization of the system is defined as follows (which 
will also be used in this paper):  

 Low-level utilization of HC tasks:  
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 High-level utilization of HC tasks: 
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 Low-level (desired) utilization of LC tasks: 
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 Minimum utilization of LC tasks: 
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The Extended E-MC (E2MC) task model [23] assumes that 
an LC task can have a pair of small and large periods TiLO 
and TiHI which represent its service guarantee in the nor-
mal and overrun execution modes, respectively. 
Our Modified E-MC (MEMC) task model: We present 
MEMC task model, where HC tasks have one period Ti, 
while LC tasks, in addition to their desired period Ti, have 
four other periods. Each of these periods reveals QoS of LC 
tasks according to a specific execution mode of HC tasks. 
Ti

NR and Ti
OV are the periods of LC tasks in the normal and 

overrun operation of HC tasks and fault-free scenario, re-
spectively. Ti

FO and Ti
CR are the periods of LC tasks with 

the normal and overrun operation of HC tasks and fault 
occurrence, respectively. These periods are bigger than or 
equal to the desired period, and show the minimum 
achievable release frequency for jobs of the LC tasks in 
each mode. Details of the binary search method to find the 
proper periods are clarified in Section 4.3. Table 2 shows 
the notation used for variables throughout this paper. 

3.2 Fault Model and Reliability Analysis   

As mixed-criticality embedded systems often control 
safety-critical applications, tolerating faults and achieving 
high reliability levels are of great importance; i.e., faults 
must be detected, and appropriate recovery tasks must be 
successfully completed before the deadlines. In MCSs, 
each criticality level has an important property, which is 
known as Probability of Failure per Hour (PFH). PFH rep-
resents the maximum probability of failure to which each 
task of that level must adapt. The avionics DO-178B 
standard defines five criticality levels from A with highest, 
to E with lowest criticality levels. Safety requirements of 
each criticality level are shown in Table 3 [2]. In this paper, 
we assume that LC tasks are chosen from D or E levels 
without any fault-tolerant provisions, and HC tasks are 

chosen from A, B, or C levels. Hence, each task τi from HC 

task set must be guaranteed to be schedulable, even in 
presence of faults, to achieve a failure rate of at most  

PFHi=PFH(ζHI). Faults can be categorized into transient 

Table 2. Adopted notations 

Notation Description 

Γ={τ1,τ2, ..., τn} A set of n E3MC tasks 

M={m1, …,mc} A set of c identical cores 

F={fmax, …, fmin} Core frequency levels 

ζ= {HC, LC} Task’s criticality levels 

Wς |ς={LO, HI} LO- and High-level WCET of task τi 

X={NR, OV, FO, CR} System operation modes 

𝛤𝑚𝑘
 

Set of tasks on the core mk including 
HC, LC and replica tasks 

𝛤𝑚𝑘
(𝜁) 

Set of tasks with criticality level ζ on 
the core mk 

𝛤𝑚𝑘
(𝐵) Set of replica tasks on the core mk 

PFH(ζ) 
probability of failure per hour 
of tasks with criticality level ζ 

 

Table 1. Timing parameters for tasks in different models 

ζi WCET Basic MC task model VD model E-MC E2MC MEMC (proposed model) 

HC WiLO, WiHI Ti Di Ti DiLO < Ti Ti Di Ti DiLO< Ti Ti DiLO< Ti 

LC WiLO Ti Di Ti Di  Ti, Timax Di Ti, TiLO, TiHI Di Ti, TiNR, TiOV, TiFO, TiCR DiX<TiX 
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and permanent faults. Transient faults are found more 
frequently than permanent faults [36], [39]. Hence, in this 
paper, we focus on transient faults. Nevertheless, we try to 
provide provisions to tolerate permanent faults as well. 
Transient faults are typically modeled using a Poisson dis-

tribution with an average arrival rate , which  depends on 
the core frequency [36], [38]. The fault rate at frequency fi 
is modeled as [39]:   

min

(1 )

1

0( ) 10

id f

f

if 




  (5) 

where λ0 = 10−4 (fault/ms) is the transient fault rate at fmax, 
exponent d is a sensitivity factor parameter with typical 
values in the range 2-6 [14], [15]. We choose d=2 similar 
to [15]. The reliability of a task is defined as the probability 
of executing the task successfully, in the absence of transi-
ent faults [38]. The reliability of task τi running at fre-
quency fi can be expressed as [39]: 
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where λ(fi) is given by Eq. 5, and Wi is the execution time of 
the task τi. In our proposed method, similar 
to [2], [11], [12], [15], and [39], the fault detection takes 
place at the end of the completion of each task instance. If 
a task instance completes earlier than its WCET, the fault 
detection mechanism takes place as soon as the completion 
of the task instance; otherwise, faults are detected at task’s 
low and high level WCETs. Therefore, at the end of execu-
tion of each task instance, an acceptance test (or, sanity 
check) [45], [46] is conducted to check for the occurrence of 
transient faults. If the acceptance test indicates a fault oc-
currence, the faulty output is discarded and the task copy 
(replica task) will be executed to determine the correct out-
put. Otherwise, task copies will be cancelled as soon as suc-
cessful completion of the corresponding primary 
tasks [38]. 
It should be noted that acceptance tests are not completely 
accurate. Sometimes a fault may remain undetected or the 
acceptance test may diagnose a correct outcome as a faulty 
one [11]. Therefore, the probability that the acceptance test 
will perform incorrectly is considered as a factor in the re-
liability computation of the task, which is known as the 
coverage factor of the acceptance test. Thus, the reliability 
of a task instance can be expressed as: 
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where α is the probability of making an incorrect decision 
during the acceptance test. The reliability of HC tasks de-
pends on their WCETs as follows: 
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Consequently, the probability of failure (PoF) of the task τi 
based on its WLO and WHI are as follows: 

( ) 1 ( )HI HI

i i i iPoF f R f   (9) 

( ) 1 ( )LO LO

i i i iPoF f R f   (10) 

In multicore platforms, task replication is likely to become 
a quite viable option for reliability management. By sched-
uling multiple copies of the same task on multiple cores, 
the likelihood of successfully completing at least one of 
them (i.e., without encountering transient faults) increases 
significantly. If the PoFHI of an HC task (when executed 
with WHI) meets the PoFtarget, it means that the mentioned 
task does not need any replicas. Otherwise, the scheduler 
should determine the proper number of replicas of task τi 
to achieve the reliability targets. Note that each replica 
task, being a periodic task itself, generates a sequence of 
instances on the core where it is assigned. Hence, we define 
two extremes for the number of replica tasks. The mini-
mum number of required replica tasks for each HC task 
(rlower_bound) is the case when all the replicas will be executed 
with WLO, and can be expressed as: 

( ). ( )
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The maximum number of required replicas (rupper_bound) is 
the case when all the replicas will be executed with WHI.  
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Therefore, we define upper and lower bounds for the num-
ber of required replicas. Hence, we define the parameter K, 

where K[rlower_bound, rupper_bound]. When K=0, all the replica 
tasks will be executed with WLO; i.e., r is the minimum 
number of required replicas. Otherwise, increasing the 
value of K, increases the number of replica tasks that will 
be executed with WHI. Therefore, by giving a certain PoFtarget, 
we can find the minimum number of replicas r for each task 
to achieve its reliability target as follows:  

( ). ( ) . ( )
HI HI K LO r K

target i i i i i iPoF PoF f PoF f PoF f 
  (13) 
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Therefore, in task replication technique, it is sufficient to 
have at least one task copy execution that passes the ac-
ceptance test. Hence, the execution will be unsuccessful 
only if all copies of a task encounter faults. Therefore, in 
task replication, if a primary task and its replica(s) have an 
overlap execution part, as soon as a primary task com-
pletes successfully, the remaining parts of its replica(s) will 
be abounded to avoid further energy consumption. Also, 
we consider that each core is capable of detecting 
faults [36], [37]. In order to detect faults, processing cores 
typically employ a low-cost hardware checker like Ar-
gus [47]. Argus provides low-cost, comprehensive, low 
power and high accuracy fault detection. It uses run-time 
checking of control flow, computation, data flow, and 
memory invariants. Meixner et al. [47] have shown that 
checking these four invariants is sufficient for detecting all 
possible single errors, and many multiple-error scenarios. 
Argus adds less than 17% to the core area (and less than 

Table 3. DO178B safety requirements [7] 

ζ A B C D E 

PFH < 10-9 < 10-7 < 10-5 > 10-5 - 
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11% to the total chip area, including caches) and increases 
runtime execution by 3.2-3.9% on average. Argus does not 
change the clock cycle time, and is applicable to many em-
bedded applications as well as multicore chips. We con-
sider the overhead of fault detection as a part of the task’s 
WCET [15], [36], [37].  

3.3 Power and Energy Consumption Model  

Power Model: System-level power model consists of static 
and dynamic components [9], [36], [37]. The static power, 
Pstatic, is consumed even when no computation is carried 
out [38]. The dynamic power Pdynamic includes a frequency-
independent (Pind), and a frequency-dependent (Pdep) 
power consumption factor. Pind is consumed by the periph-
eral modules such as I/O in the active mode. Hence, the 
total power consumption of each core can be written as:  

2

total static dynamic sub i eff i i indP P P I V C V f P      (15) 

where Ceff, Vi, and fi are the effective switched capacitance, 
supply voltage, and operating frequency of the core during 
the execution of task τi, respectively. Also, we assume that 
Pind is equal to 0.1 [36]. When DVFS is used, each task τi is 
executed at a voltage Vi, which is less than the maximum 
supply voltage Vmax. By considering a near-linear relation-
ship between voltage and frequency [13], [15], [39] when a 
taski is executed at the scaled voltage Vi=ρi.Vmax, the oper-
ational frequency is fi=ρi.fmax, where fi is the operational fre-
quency corresponding to Vi, and fmax is the maximum 
operating frequency corresponding to Vmax. Therefore, the 
total power consumption, which is consumed to execute a 
task i is given by:  

2
( )total sub i max eff i max i maxP I V C V f     (16) 

3max max

total i static i dynamicP P P    (17) 

In this equation, ρi is in the range of ρmin to ρmax=1 and 
ρmin=Vmin/Vmax. In this paper, in contrast to most of the pre-
vious works that consider Pstatic=0 [9], [12], [36], [37], we as-
sume that maximum static power is constant and is a por-
tion of the maximum dynamic power, i.e. 
𝑃𝑠𝑡𝑎𝑡𝑖𝑐
𝑚𝑎𝑥 = 𝜑. 𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑚𝑎𝑥 , [11], [35], [67] where, =0.2 
[11], [35], [38]. Hence, the total power consumption can be 
re-written as follows: 

3max max

total i dynamic i dynamicP P P     (18) 

By scaling V-f, in addition to power, the execution time of 
the task, and its energy consumption will change.  
Energy Model: Scaling down the voltage and frequency 
levels increases the execution time of the task Wi

’=Wi/ρi. 
The energy consumption of jth job (single job) of a task (i) 
is as follows: 

3( )
ijmax

ij dynamic ij ij

ij

W
E P  


    (19) 

Also, the normalized energy consumption NE of a single 
job of a task τi is: 

2
( )ij ij ijNE W     (20) 

Since the tasks are periodic and they may have multiple 
jobs in any time interval, the total normalized energy con-
sumption of a task in any time interval of a given length is 
the summation of all its jobs’ energies h

i in this duration. 

2

1

( )
i

i

h

ij ij

j

NE W


  


    (21) 

The normalized total energy consumption of each core  
is the sum of energy consumptions of tasks on that core 
(mk: Set of tasks on the core mk including HC, LC and rep-
lica tasks) as follows: 

2

1

( )
i

k

i mk

h

m ij ij

j

NE W




 
  

     (22) 

Finally, the normalized total energy consumption of the 
whole system is the sum of energy consumptions of tasks 
on all the cores as follows: 

2

1 1 1

( )
i

k

i mk

hc c

system m ij ij

k k j

NE NE W




 
    

        (23) 

3.4 System Operational Model  

The overview of the execution model for each core is 
shown in Fig. 1. Similar to [20], we distinguish between the 
execution time overrun of tasks and fault occurrence. 
Therefore, we guarantee an achievable service level for LC 
tasks in each execution mode to improve their overall QoS, 
and also save more energy. The behavior of our execution 
model in each mode is defined by the following epochs: 
Epoch 1:  The system starts with a normal mode (called 
NR). Each core stays in NR mode until either overrun or 
fault occurs.  Hence, in this mode, all tasks are executed 
once with WLO, and LC tasks are executed with Ti

NR period. 
Ti

NR represents the highest service level of LC tasks.  
Epoch 2: If any HC task exceeds its low-level WCET, its 
designated core switches to the overrun mode (called OV), 
where HC tasks (on that core) are safely executed once, and 
must meet their deadlines assuming high-level WCETs. LC 
tasks of that core will be executed with Ti

OV period to guar-
antee their service levels. If an LC task does not complete 
in its low-level WCET, it will be terminated.  
Epoch 3: If any HC task signals completion after running 
for its WLO but encounters a fault, the system switches to 
the fault-occurrence mode (called FO), where the sched-
uler guarantees the execution of the sufficient number of 
replicas of a faulty HC task to satisfy its reliability require-
ment. Hence, the scheduler executes its replicas on the 
cores. Only the cores which host the replicas of the faulty 
tasks switch to the FO mode. In this mode, HC tasks and 
replicas are still executed with WLO. Also, the execution of 
the required replicas for HC tasks must be guaranteed to 
finish before the deadline. LC tasks will be executed with 
Ti

FO period. 
Epoch 4: When a core is in OV mode, the fault can occur; 
similarly, when it is in FO mode, overrun can happen, and 
both of these conditions enter the designated core into the 

 
Fig. 1. Overview of system execution model (The execution 
model of each core). 
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critical mode (called CR). In this state, HC tasks are exe-
cuted with WHI, and replicas are executed completely to 
tolerate faults, and LC tasks are executed with their Ti

CR 

period which is the minimum guaranteed service level that 
can be maintained.  
Fig. 1 shows the various operating modes that each core 
can operate independently of the others. As it is clear in 
Fig. 1, in all epochs, the scheduler exploits the released dy-
namic slacks to improve the periods of LC tasks at runtime 
(Ti

runtime), which is between their desired periods and the 
guaranteed ones. Also, we consider a local switching [31], 
i.e. any core switches from one mode to another one, inde-
pendent of other cores. Therefore, it is not necessary to re-
duce the QoS of LC tasks on all cores at once. Also, in our 
proposed operational model, the system switches back 
from each of the OV, FO, or CR modes to the normal mode 
at the end of each hyper period. 

4 PROPOSED METHOD  

In this section, we explain each part of our proposed 
scheme in details. 

4.1 System Overview  

Fig. 2 illustrates the overall design flow of the proposed 
LETR-MC scheme. The scheduler receives different inputs 
from hardware and software levels, and schedules tasks in 
the offline and online phases. In the offline phase, the 
scheduler initially creates Information Table (IT), which 
will be used during system operation in different modes to 
find the best V-f level for each task to satisfy its reliability 
and timing constraints. IT consists of the task set, criticality 
and required PFH levels for tasks, V-f (voltage-frequency) 
levels, the WLO and WHI of tasks, reliability, and the number 
of required replicas in each V-f levels. After mapping all 
tasks, the scheduler calls the service guarantee exploration 
function for computing scaling factors to apply to LC tasks’ 
periods. We adapt the ER-POED scheduling for our pro-
posed method. The offline scheduler applies partitioned 
scheduling to all tasks on each core. After scheduling all 
tasks, the service guarantee exploration is called again to 
update scaling factors, while checking for DBF-based 
schedulability. The last section of the offline phase is to 
apply DVFS by using static slack reclamation. Eventually, 
the final offline schedule is sent to the online manager for 
applying DVFS and DPM, or improving the service guar-
antees of LC tasks by using dynamic slacks.  

4.2 Task Mapping   

Algorithm 1 shows the pseudo-code of our proposed task 
mapping method. In line 1, IT is constructed and sent to 
the task mapping mechanism, where HC tasks Γ(HC) and 
their corresponding replicas Γ(B) are initially mapped to 

cores, and then LC tasks Γ(LC) are allocated. HC and rep-
lica tasks are sorted in decreasing order of utilization at the 
maximum V-f level, respectively (in lines 2-3). In each iter-
ation, the first task in the queue is selected for mapping 
onto the cores (line 5). Since task replication has the poten-
tial to tolerate permanent faults in addition to transient 
faults, the scheduler tries to avoid assigning replicas of the 
same task on the same core. Therefore, in line 6, set of cores 
containing the primary or replica versions of the selected 
task is removed from the core set M, and the remaining 
cores are put into the temporary core set TC. However, if 
after removing the mentioned cores, the TC becomes 
empty, all cores are returned to the TC. Selection of cores 

Algorithm 1: The task mapping mechasim of LETR-MC scheme 

Inputs: Γ, PFH, M, V-f levels. 
Output: The task mappimg on each core. 

BEGIN: 
1.  IT=Construct(Γ,PFH, V-f levels); 
2.  Γ(HB)= Γ(HC)+Γ(B);                                       //# of replicas at fmax 
3.  Γ(HB).sort();              //Sort HC and replica tasks w.r.t utilization  
4.  for all tasks in Γ(HB) do 
5.       τi = Γ(HB).select();      //Select the task with largest utilizaton 

6.       TC=M-{ mk:τimk};  
7.       TTC=TC.sort();                 //Sort cores based on WFD or FFD 
8.       sc=TTC.select();                 //Select the core sc  
9.       if sc is empty then  
10.          TC=M; 
11.          goto line 7; 
12.     end if 

13.     if sc.schedulability_test() then                      //Based on Eq. 24  
14.          sc.map(τi); 
15.     else 

16.          TC.remove(sc);             //Remove sc from TC for the task τi 
17.          if TC is empty then 

18.               TC={ mk:τimk}; 
19.               TTC=TC.sort();      //Sort cores based on WFD or FFD 
20.               sc=TTC.select();        //Select the core sc  
21.               if sc is empty then 
22.                      return infeasible; 
23.               else if sc.schedulability_test() then            //w.r.t Eq. 24  
24.                      sc.map(τi); 
25.                else 
26.                      TC.remove(sc); 
27.                      goto line 19; 
28.                end if 
29.           end if 
30.           goto line 7; 
31.     end if 
32. end for                                   //Have all HC & B tasks mapped 
33. Γ(LC).sort();                                 // Sort LC tasks w.r.t utilization       
34. for all tasks in Γ(LC) do 
35.      τi = Γ(LC).select();     //Select the task with largest utilizaton 
36.      TC=M; 
37.      TTC=TC.sort();               //Sort cores based on WFD or FFD 
38.      sc=TC.select();                 // Select core sc  
39.      if sc.schedulability_test() then                      //Based on Eq. 25  
40.           sc.map(τi); 
41.      else 
42.          TC.remove(sc);             //Remove sc from TC for the task τi 
43.          if TC is empty then 

44.               return infeasible; 
45.          end if 
46.          goto line 37; 
47.      end if 
48. end for 
END 

 

 

 
Fig. 2. System design flow. 
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for mapping is based on Worst-Fit Decreasing (WFD) and 
First-Fit Decreasing (FFD) bin packing. In the Worst-Fit 
Decreasing bin packing cores are sorted in decreasing or-
der by utilization (line 7), then the core with the lowest uti-
lization among others is selected for mapping (line 8), i.e., 
WFD allocates the selected task into the core with the 
greatest capacity available, in which it can be feasibly allo-
cated. In the First-Fit-Decreasing bin packing, cores are 
sorted in decreasing order by utilization (line 7), then the 
selected task is allocated into the core with the lowest ca-
pacity available (largest utilization), in which it can be fea-
sibly allocated in line 8. WFD is the best from the energy-
awareness perspective, due to its load-balancing behav-
ior [48]. If there is a core for mapping, the schedulability 
condition is checked in line 13 as follows: 

( ) ( )
( , ) ( , ) 1

i m i mk k
HC B

U HC H U B L  
   (24) 

If the selected core sc passes the schedulability test, the se-
lected task is mapped to the core sc in line 14 and the next 
task is chosen for mapping. However, if the selected core 
cannot satisfy the schedulability constraint, it is removed 
from the core set and the algorithm goes to line 7. Remov-
ing the cores which contain the primary or replica versions 
of the selected task, and also removing the cores which 
cannot satisfy the schedulability constraint may make TC 
empty. In this case, the cores containing the primary or 
replica versions of the selected task are added to the TC, 
and selection of a core is performed based on this set in 
lines 17-29. After mapping all HC and replica tasks, the 
scheduler sorts LC tasks in a queue, based on their utiliza-
tion in decreasing order in line 33, and selects the first task 
in the queue for mapping as shown in line 35. The core se-
lection (sc) is also based on WFD and FFD lines 37-38. In 
each iteration of LC task mapping the scheduler checks the 
total utilization of each core in lines 39-40 as follows: 

( ) ( ) ( )
( , ) ( , ) ( , ) _

i m i m i mk k k
HC B LC

U HC H U B L U LC L U bound    
    (25) 

where U_bound<1.5. If the schedulability test is passed, the 
selected task is mapped to the chosen core. Otherwise, the 
core sc is removed from TC, and the algorithm iterates in 
lines 42-47.  
After mapping all tasks, due to the challenges associated 
with task migration including increased sensitivity to im-
plementation complexity, tight power budgets, require-
ments on execution predictability, the lack of virtual 
memory support in many low-end MPSoCs, and high 
runtime overhead [56], [58], migration of task instances 
from a core to another one is not permitted; i.e., at runtime 
each task is permitted to execute only on its designated 
core. After mapping all tasks, the service guarantee explo-
ration function is called for finding the proper scaling fac-
tors for periods of LC tasks in each core to extend their pe-
riods and reduce their utilization.   

4.3 Service Guarantee and Period Assignment  

As it is mentioned in Section 2, most mixed-criticality 
scheduling algorithms discard all LC tasks after entering 
the overrun mode, or selectively execute them [6], [9], [15-
16], [19-20], [23], [26-28], [31-36]. In order to guarantee an 
acceptable service level for LC tasks, we consider different 
execution modes (NR, FO, OV, CR), and define four uni-

form scaling factors {α, β, θ, γ} for each LC task in each ex-
ecution mode. These scaling factors indicate the period of 
LC tasks in each execution mode, and also represent how 
frequently LC tasks release their instances to guarantee the 
timeliness and QoS level. Similar scaling factors of LC 
tasks that run on the same core are equal to each other. 
Also, the relationships between these scaling factors and 
the desired periods Ti of LC tasks in each operation mode 
are as follows: 

. , . , . , .NR OV FO CR

i i i i i i i iT T T T T T T T        (26) 

The total utilization of a core after mapping LC tasks may 
be bigger than one. Therefore, Ti

NR, Ti
OV, Ti

FO, and Ti
CR may 

have a bigger value than Ti. Differences between Ti and the 
other periods of LC tasks are illustrated in the example in 
Appendix. 
Based on the schedulability conditions, we first derive 
lower and upper bounds of these uniform scaling factors 
in each operation mode. The feasible periods, which satisfy 
scheduling constraints, will be found between the lower 
and upper bounds.  
Epoch 1: Each core’s utilization in NR mode is defined as 
follows:   

( ) ( )
( , ) ( , ) 1

m m mk k k

NR

HC LC
U U HC L U LC L

  
    (27) 

By replacing the desired period of LC tasks with  
TiNR=α.Ti in their utilization formula, we have: 

( )

( ) ( )

1
( , )

.mk

i m i mk k

LO LO

i i

LC

LC LCi i

W W
U LC L

T T  


   

    (28) 

It should be noted that Ti is the original period of LC tasks 

that determines when the tasks are generated. TiNR is the 

period of LC tasks in the normal operation mode of the 

system. Difference between Ti and Ti
NR for LC tasks is illus-

trated in Appendix. 
To ensure the schedulability of tasks in NR mode, by 
replacing Eq. 28 in Eq. 27, we need to have: 

( ) ( )

1
( , ) ( , ) 1

m m mk k k

NR

HC LCU U HC L U LC MC


      (29) 

Hence, the lower bound for α can be found as: 

( )

( )

( , )

1 ( , )

mk

mk

LC

LB

HC

U LC MC

U HC L









 (30) 

Here, the utilization which arises from execution overlap 
of HC tasks and corresponding replicas is ignored. The 
point is that utilization-based approach does not consider 
scheduling of tasks (the start time and end time of tasks). 
Therefore, considering the utilization of all replicas in nor-
mal mode is pessimistic because in the actual case in the 
normal mode, replicas do not need to completely proceed, 
and only their overlap time with primary tasks will be ex-
ecuted. Therefore, at first, the service guarantee unit com-
putes the scaling factors based on the utilization of tasks. 
Then, after scheduling the tasks, if it is necessary, the com-
puted scaling factors will be updated through demand 
bound function analysis, as explained in Section 4.4. 
Epoch 2:  The utilization bound at OV mode is as follows: 

( ) ( )
( , ) ( , ) 1

m m mk k k

OV

HC LC
U U HC L U LC L

  
    (31) 

In the OV mode, LC tasks are executed with Ti
OV=β.Ti. By 

replacing the desired period of LC tasks with Ti
OV, in their 

utilization formula (similar to computation of α) the lower 
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bound for β can be found as: 

( )

( )

( , )

1 ( , )

mk

mk

LC

LB

HC

U LC MC

U HC H









 (32) 

Epoch 3:  In the FO mode, replicas are executed completely 
due to fault occurrence in primary HC tasks. The utiliza-
tion bound at this point is as follows: 

( ) ( ) ( )
( , ) ( , ) ( , ) 1

m m m mk k k k

FO

HC B LC
U U HC L U B L U LC L

   
     (33) 

In the fault-occurrence mode, the execution period of all 
the LC tasks on core mk is TiFO where TiFO=θ.Ti. Hence, the 
lower bound for θ can be found as: 

( )

( ) ( )

( , )

1 ( ( , ) ( , ))

mk

m mk k

LC

LB

HC B

U LC MC

U HC L U B L




 


 

 (34) 

Epoch 4:   In the CR mode, the utilization bound of each 
core is as follows: 

( ) ( ) ( )
( , ) ( , ) ( , ) 1

m m m mk k k k

FO

HC B LC
U U HC H U B L U LC L

   
     (35) 

In the FO mode, LC tasks execute with Ti
CR=γ.Ti. Hence, the 

lower bound for γ can be found as: 

( )
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1 ( ( , ) ( , ))
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U LC MC

U HC H U B L




 


 

 (36) 

We now define the upper bounds of these scaling factors. 
γLB is the factor that makes the task set schedulable in a 
worst-case scenario [18], [23]. Suppose that, Ti<Ti

FO<Ti
CR 

and Ti<Ti
OV<Ti

CR. Therefore, the upper bound for  β and θ 
are set as follows: 

UB UB LB     (37) 

Also, assume that Ti
NR < Ti

FO and Ti
NR < Ti

OV. However, Ti
FO 

and Ti
OV are not equal, hence we choose the maximum of 

the two, as the upper bound for α: 

max{ , }UB LB LB    (38) 

Hence, the lower and upper bounds are guaranteed in the 
offline phase by considering task utilization. The pseudo 
code for finding proper scaling factors is described in 
Algorithm 2. The scaling factors are defined iteratively 
through binary search, according to [23], and e shows the 
tolerable error. The code iterates for each core to find 
proper scaling factors for all LC tasks on that core. In line 
9 of the algorithm, the scheduler checks whether the 
computed α, β, and θ are feasible based on the proposed 
scheduling (the effect of scheduling algorithm on scaling 
factors are described in Section 4.5). It should be noted that 
if the lower-bounds of these factors become less than 1, the 
algorithm sets them to 1. After finding the proper scaling 
factors, the scheduler updates Eq. 23 to set proper periods 
for LC tasks, and tune job’s release distances as follows:  

, , ,

. . . .

NR OV FO CR

i i i i

i i i i

l l l l
T T T T

l l l l

T T T T   

   
       
       
       

 
(39) 

4.4 Unified Demand Bound Functions Analysis 

Demand Bound Functions (DBF) present an approach to 
analyze the schedulability of real-time workloads [22]. A 
mixed-criticality task set is schedulable if the maximum ex-
ecution demand of all tasks is less than the resource supply 
in any time interval of a given length in each operation 
mode. The demand bound of a task in a given interval is 
defined as the sum of execution times of all jobs of tasks, 
which have both arrival times and deadlines in this 

interval. DBF based test is effective but has high computa-
tion complexity, and can be applied to general mixed-crit-
icality task sets. In the following, we develop a new DBF 
computation in each operation mode by considering tim-
ing, reliability, QoS, and energy reduction. We compute 
DBF locally for each core, but we should also have a global 
glance at all cores because of replicas existence since exe-
cution or cancelation of replicas may have an effect on DBF 
computations of other cores. Also, in order to improve the 
accuracy of demand bound analysis, we use the unified 
DBF approach similar to [22], [40], which considers time 
intervals crossing the mode switch point (transition from 
one mode to another one) to link the system behaviors in 
different execution modes. We now derive task’s resource 
demands in all operation modes (epochs) to determine 
whether a given task set is schedulable under our pro-
posed method.  
Epoch 1: In the NR mode, the DVFS technique is applied 
to HC and LC tasks. Although replicas are canceled at the 
end of the successful completion of their corresponding 
primary tasks, their execution time overlaps with corre-
sponding primary tasks should be considered in DBF com-
putations. The overlap time of each replica job (over-
lap_timej) is the difference between the completion time of 
the primary HC job and the start time of its corresponding 
replica job. The resource demands of tasks which are exe-
cuted on core mk are computed as follows: 

( ) ( , ) max{ ,0}. .
i mk

NR LOi i max

HC i i

i i

l T D f
DBF l W

T f
 

  
  

 

 (40) 
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(41) 

 

( ) ( , ) max{ ,0}. .
i mk

NR LOi i max

LC i iNR

ii

l T D f
DBF l W

fT
 

  
  

 

 
(42) 

A task set is schedulable in NR mode on core mk if and only 
if for l> 0: 

Algorithm 2: Find feasible scaling factors SF={ α, β, θ, γ } 

Inputs: Γ, tasks to cores mapping, M, αLB, αUB, βLB, βUB, θLB, θUB, γLB, 
and e=0.001. Execution modes X. 
Output: Finding the best scaling factors. 

BEGIN 
1. for i = 1 to M do                                            // loop over all cores 
2.  while (βUB – βLB > e) do 
3.     β = (βUB + βLB)/2; 
4.     while (θUB – θLB > e) do 
5.         θ = (θUB + θLB)/2;                      
6.         αUB_new = max{β, θ}; 
7.         while (αUB_new – αLB > e) do 
8.             α = (αUB_new + αLB)/2;                      
9.             If (Γ is schedulable in all execution modes X) then 
10.               βUB = β, θUB = θ, αUB = α; 
11.           else 
12.               βLB = β, θLB = θ, αLB = α; 
13.          end if 
14.       end while 
15.    end while 
16.  end while 
17. end for 
END 
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Epoch 2: When an overrun occurs, three types of jobs may 
exist, i.e. normal, overrun, and crossover [22], [23]. Normal 
jobs have both release time and deadline before the mode 
switch point; these jobs execute with WLO. Overrun jobs are 
released after the mode switch point. Jobs which are 
released before the mode switch point but have later 
deadlines are candidates for crossover jobs and their finish 
time (when they signal their completions) indicates their 
role. Assume that the switch point to the overrun mode is 
to (ts<to< te) where the length of time interval [ts, te] is l=te-ts 
and the time that the core spends in overrun mode is q=te-
to. In this case, we define x to show which tasks have 
crossover candidate jobs as follows: 

0, mod 0
_

1, mod 0

o

i

o

i

x if t T
crossover candidate

x if t T

  
 

 

 (44) 

Now, if there is a task that has a crossover candidate job, 
i.e. x=1, we initially specify its job number j that has release 
time before the mode switch point and the deadline after 
this point, and then check whether it is a crossover. Here, 
if a crossover candidate job j signals completion before the 
mode switch point to, it is counted as a normal job (alt-
hough its deadline is after to); if the released job starts after 
to it is an overrun job. Otherwise, it is a crossover job: 
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(45) 

If x.y=1, task τi has a crossover job and the scheduler saves 
its executed time before mode switch point in Exci. Note 
that, 𝑛𝑖(𝑙) = ⌊(𝑙 + 𝑇𝑖 −𝐷𝑖)/𝑇𝑖⌋ is the number of jobs of the 
taski in interval l. Also, ni(w) and ni(q) are the number of 
jobs of each task in normal and overrun modes, respec-
tively. Therefore, ni(w)+ni(q)=ni(l). We can find the number 
of overrun jobs for each task in duration q as follows: 
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(46) 

Here, crossover job is considered as an overrun job. The 
crossover job has different execution time and frequency in 
the NR and OV modes. Hence, If x.y=1 the DBF require-
ment for crossover job (called nOV) is computed as follows: 

( . ) ( )
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OV i i i

i

f
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f
  

 
(47) 

The DBF of HC and replica tasks in OV mode are as fol-
lows: 
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Jobs of LC tasks are initially released based on Ti
NR period, 

and their frequency for applying DVFS is fNR. After over-
run, jobs of LC tasks on core mk are released according to 
Ti

OV, and the frequency scaling factor changes to fOV, which 
may be different from their normal frequencies due to var-
ious slack reclamation in these two modes.  
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The DBF of each core in Epoch 2 is computed as follows: 
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Epoch 3: When a job of an HC task τi encounters a fault at 
time tf (where ts<tf< te), the replica(s) of the faulty job will 
be executed completely. Hence, the cores which contain its 
replicas are activated for updating their DBF computation. 
In this condition, all previous jobs of a faulty task are exe-
cuted correctly and their replicas are dropped, and only 
their execution time overlap is calculated in DBF (Eq. 48).  
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A task set is schedulable in the FO mode on core mk if and 
only if for l> 0: 
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In DBF based approach, according to the online conditions, 
the scheduler can provide better service levels for LC tasks, 
and execute them more frequently than Ti

OV or Ti
FO. Similar 

to [35], the scheduler introduces a set of early release points 
between the desired period and Ti

OV or Ti
FO and chooses 

one of the early release points that passes DBF test as a new 
release point of LC tasks (Ti

runtime in Fig. 1).  
Epoch 4:  As soon as a core experiences both the fault and 
overrun situations at time tc, all LC tasks on the core should 
be executed with Ti

CR. The scheduler considers two consec-
utive mode changes, i.e. from the NR to the OV and then 
to the CR (Fig. 3 (a)), and from the NR to the FO and then 
to the CR (Fig. 3 (b)). For example, in Fig. 3 (a) one of the 
jobs of the HC task τy on C2 overruns at the time to and C2 
switches to OV mode. Also, one of the jobs of τx encounters 
a fault in C1 and its replica in C2 (Bτx) should be executed. 
Therefore, C2 enters the critical mode at switch point time 
tc and all remaining LC jobs on this core are executed with 

  
(a) (b) 

Fig. 3. Overview of Epoch 4. a) Mode switch from NR to FO to 
CR, b) Mode switch from NR to OV to CR. 
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Ti
CR period. Hence, DBF computations from switch point 

time tc to the end of the interval are as follows:   

( )

( )
( , ) max{ ,0}.

i mk

e c

CR e c HIi i

HC i i

i

t t T D
DBF t t W

T
 

   
   

 

 (56) 

( )

( )
( , ) max{ ,0}.

i mk

e c

CR e c LOi i

B i i

i

t t T D
DBF t t W

T
 

   
   

 

 
(57) 

( )

( )
( , ) max{ ,0}. .

i mk

e c CR

CR e c LOi i max

LC i iCR

ii

t t T D f
DBF t t W

fT
 

   
   

 

 
(58) 

A task set is schedulable in the CR mode on core mk if: 
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4.5 Scheduling Algorithm 

Our proposed LETR-MC scheme consists of an offline and 
an online phase. Algorithm 3 shows the pseudo code of the 
task scheduling mechanism of LETR-MC. Algorithm 1 is 
called for task mapping in line 1. Then, in line 2, Algorithm 
2 is called to compute the scaling factors of LC task periods. 
Afterward, tasks on each core should be scheduled based 
on our proposed algorithm. We assume that each type of 
tasks has a preference to indicate how the jobs of its tasks 
will be executed. For this purpose, we adapt the parti-
tioned ER-POED (ER-Preference-Oriented Earliest-Dead-
line) scheduling algorithm on multicore fault-tolerant 
MCSs [25]. The scheduler divides tasks into two different 
groups, i.e. as soon as possible (ASAP) and as late as pos-
sible (ALAP) tasks. The scheduler tries to execute ASAP 
tasks before the ALAP ones. In this work, we consider HC 
and LC tasks as ASAP, and replicas as ALAP, respectively. 
The algorithm iterates over all cores (line 3) and goes on 
until all the tasks on each core are scheduled. The sched-
uler checks ASAP (QASAP) and ALAP (QALAP) queues on 
each event. If the QALAP is empty while QASAP is not, the 
scheduler selects the task with the earliest deadline in 
QASAP for scheduling. The preemption scenarios, when the 
core is busy due to the execution of another job (Jmn), are 
shown in lines 6-17. If Jmn is an HC or an LC job, ER-EDF 
chooses one of them for execution. However, if Jmn is a rep-
lica task, the replica is shifted back toward its release time 
to produce free time slots for executing Jij. If there are more 
than one task with the same deadline in ASAP queue, the 
execution order of individual tasks with the same prefer-
ences (ASAP tasks) is distinguished with ER-EDF. If QASAP 
is empty while QALAP is not, a replica with the earliest dead-
line is chosen for scheduling. The scheduler defines how 
much the execution of replica task can be delayed while 
still meeting its deadlines by executing at maximum fre-
quency. Here, the scheduler finds slack times (equal to 
WCET of the replica task) from the deadline of selected 
replica task toward its release time, and schedules the rep-
lica in these free time slots (lines 21-22). If there are tasks in 
both of the QASAP and QALAP, if the deadline of an ASAP job 
(Jij

S) is smaller than ALAP one (Jxy
L), the algorithm sched-

ules Jij
S in lines 23-27. Otherwise, the Jxy

L is scheduled in 
line 29. After scheduling all tasks based on the worst-case 
scenario, the scheduler updates scaling factors of LC tasks. 

For example, in order to update α, the scheduler cancels the 
overrun part of all HC tasks, i.e. Wi

HI-Wi
LO, and drops the 

non-overlapping part of the replica tasks. Hence, LC tasks 
will be scheduled in these released slacks. During this pro-
cess, the scheduling of the HC tasks is left untouched, i.e. 
HC jobs are executed exactly based on the times that the 
scheduler determines in the worst-case scenario. For up-
dating β, only the released slacks from the cancellation of 
non-overlapping part of replicas are used to schedule LC 
tasks more frequently. For updating θ, only the released 
slacks from the cancellation of the overrun parts of all HC 
tasks (Wi

HI-Wi
LO) are used to schedule LC tasks more fre-

quently.  
By scheduling HC tasks as soon as possible and their cor-
responding replicas as late as possible, it is sufficient to 
complete only one copy of each task successfully. So, if one 
replica completes and no fault is detected, we can cancel 
other versions of that task immediately to avoid further en-
ergy consumption. Also, in this paper we exploit 
partitioned approach, i.e. each task is statically assigned to 
a single core, and migration is not allowed due to its non-
negligible overheads among cores [56]. 

Algorithm 3: The task scheduling of our LETR-MC scheme 

Inputs: Γ, PFH, Scaling factors, M, Available V-f levels ,different 
execution modes X. 
Output: The task scheduling on each core. 

BEGIN: 
1.  Call(Algorithm 1);                                               //Task mapping 
2.  Call(Algorithm 2);                                                   //Compute SF 
3.  for each core mk in M do 

4.       while (all tasks in mk
 are not scheduled) do 

--       //Event: A job of τi (Jij) is released at time t on the core mk  
5.             if (QASAP≠ Ø & QALAP=Ø) then   
6.                  if mk is busy then                                 // Jmn is executed  
7.                      if Jij is HC or LC then                           //ASAP tasks 

8.                           if Jmn is LC or HC 
9.                                if (d(Jij) > d(Jmn)) then //d: deadline of the job 

10.                                   ER-EDF(Jij);  
11.                              else   
12.                                   ER-EDF(Jmn); 
13.                             end if 

14.                         else // Jmn is replica 
15.                              ER-EDF(Jij);//shift Jmn toward its release time 
16.                         end if 
17.                    end if 
18.                else // core mk is idle 
19.                     ER-EDF(Jij); 
20.                end if 
21.             elseif (QASAP= Ø & QALAP≠ Ø) then   
22.                  Schedule Jij in free time slots from d(Jij) to r(Jij) ;  
23.             else // QASAP≠ Ø & QALAP≠Ø 
24.                  Jij

S= QASAP.select();            //Sort jobs based on their d 
25.                  Jxy

L= QALAP.select(); // Select the first J with earliest d 
26.                  if d(Jij

S)< d(Jxy
L) then  

27.                       goto line 6; 
28.                  else 
29.                     Schedule Jxy

L in free time slots from d(Jxy
L) to r(Jxy

L); 
30.                  end if 
31.             end if  
32.       end while 
33.   end for 
34.  Update.SF;                                                     // Update α, β, and θ  
35.  Check.DBF;             // for each core in each execution mode X 
36.  Apply offline DVFS;              //SUF and DBF-based heuristics 
END 
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The offline DVFS is applied to the final schedule of normal 
execution mode based on our proposed method in Section 
4-6. After applying DVFS, the scheduler updates execution 
time overlap between primary tasks and their correspond-
ing replicas, and obtains new scaling factors if necessary.  

4.6 Energy Minimization Problem  

We define the energy minimization problem for a set of pe-
riodic mixed-criticality tasks on multicore platforms that 
exploits task replication technique (task-level reliability 
targets). The number of required replicas and the fre-
quency of tasks should be properly determined, while the 
timing constraints of HC tasks and replicas are met, and 
acceptable service levels for LC tasks are simultaneously 
guaranteed. 
1) Formal Problem Modeling: The goal of reliability-aware 
energy minimization problem on mixed-criticality multi-
cores is to minimize the total energy consumption in all op-
eration modes (called X in Table 2). LC tasks are executed 
with WLO/fi in all execution modes. However, HC tasks are 
executed with Wi

LO/fi in NR and FO modes, and with Wi
HI 

in OV and CR modes. The objective can be written as: 

Minimize: 
2

1 1 max
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    (60) 

Constraints of the energy minimization problem are as fol-
lows. Task’s frequency levels in each mode are in the range 
of the minimum and maximum core frequencies: 

s.t. min max, [ , ]i if f f   (61) 

The WCET of a task τi at frequency level fi in criticality level 
X should not exceed the task timing constraint (Di). 

s.t. , , ,
X

i

i i i

i

W
X f D

f
   

 (62) 

Total DBF of each core in each execution mode should be 
less than the given interval l: 

s.t. , , 0,
mk

X
X M l DBF l


      (63) 

Each task’s reliability should meet the reliability target ac-
cording to PFH in DO-178B standard, as follows: 

s.t. ,
ii targetR R   (64) 

Frequency scaling affects the WCET of a task and conse-
quently its reliability and PoF. Therefore, the required 
number of replicas for each task (ri) to meet its reliability 
target in frequency level fi should be considered in energy 
minimization. Also, the scheduler should decide about us-
ing slacks for energy reduction or improving the QoS of LC 
tasks. In addition, the task set should be schedulable in 
each execution mode with computed scaling factors (α, β, 
θ, γ) even after applying DVFS. 

s.t. , , , : 1 ,            (65) 

Optimally solving the energy minimization of multicore 
systems without considering the reliability requirement is 
NP-hard [9], [11]. Therefore, solving this problem in fault-
tolerant mixed-criticality multicore systems is also NP-
hard; hence, we develop a heuristic to manage energy con-
sumption. 
2) Proposed Heuristics: Offline DVFS is applied to the nor-
mal execution mode of the system. In the offline phase, the 

scheduler uses static slacks to apply DVFS for energy re-
duction. At first, fmax is assigned to all the tasks as their ex-
ecution frequency. Then, selection of tasks for reducing the 
frequency and using the static slack in offline phase is done 
according to Smallest-Utilization-First (SUF), and the pro-
posed DBF-based heuristics. Although executing a task un-
der a lower frequency reduces energy consumption, the 
task takes longer time to complete, which may violate the 
timing constraints. Furthermore, lowering task’s execution 
frequency increases the system transient fault rate, which 
in turn increases the probability of executing all replicas, 
or increments the number of required replicas. The sched-
uler should consider timing constraints, reliability and 
QoS analysis simultaneous in energy management because 
a decision made in any one affects the others. Algorithm 4 
shows the pseudo-code of offline DFVS and the interplay 
of energy, reliability, and schedulablity analysis in energy 
management. 
In SUF, HC and LC tasks are sorted in a queue, based on 
their utilization in increasing order in line 2. The scheduler 
selects the first task in the queue to scale down its fre-
quency, in line 4. First, the scheduler extracts the amount 
of static slack times and finds the minimum frequency that 
the selected task can use it, in lines 5-6. If the schedulability 
constraints are met in DBF analysis of the normal mode, 
and if the reliability target is met, this frequency is assigned 
to the selected task in lines 8-9. If timing constraints in DBF 
analysis are not satisfied, the frequency is scaled one level 
up in lines 10-11. However, if the reliability target is not 
met, the scheduler checks whether more replicas can be 
properly mapped and scheduled. If it can, this frequency 
is set in lines 12-16. Otherwise, it scales frequency one level 
up in line 18. The scheduler repeats the previous steps until 
no task’s execution frequency can be scaled down, and up-
dates the static slack in each iteration. 
In the DBF-based heuristic, there might be more than one 
task that can be scaled down; the scheduler chooses the 
task which has more impact on total energy reduction. Af-
ter extracting the amount of static slack times (line 24), 
while there is a task in a Γ(HL) and there is static slack, the 
algorithm iterates among all the tasks, except replicas, on 
each core. In each iteration, it selects one of the tasks (line 
27). The scheduler receives the WCET of the task and the 
amount of static slacks, and finds task’s minimum accepta-
ble execution frequency based on the QoS, reliability and 
timing constraints in equations 60-65 (line 28).  
If the reliability of the selected task decreases after lower-
ing down the frequency level, the scheduler tries to in-
crease the number of replicas. If new replicas can be 
properly mapped and scheduled on multicores, the sched-
uler sets the execution frequency of the selected task, 
otherwise, it scales up the frequency level of the selected 
task, and algorithm goes on (lines 30-37). If lowering down 
the frequency violates the schedulability in DBF analysis, 
the scheduler scales the frequency one level up and iterates 
the above steps in lines 38-39. If the reliability and 
certification constraints are met, the scheduler assigns the 
computed frequency to the selected task, and computes the 
energy efficiency factor (EEF) for each task based on the 
minimum acceptable execution frequency (lines 41-42) as 
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follows:   
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  (66) 

After computing the EEF for all the tasks, the scheduler 
finds the task with maximum EEF, which decreases energy 
consumption the most, in line 46. Afterward, the scheduler 
sets the frequency of the selected task in line 47, updates 
static slacks in line 48, removes the selected task from the 
for loop in line 49, returns the frequency of all remaining 
tasks to the maximum value in line 50, and repeats the 
above steps for all remaining tasks. The above steps are re-
peated until the EEFs of all tasks become zero, or there are 
no more static slacks. During applying offline DVFS spe-
cial care should be taken. One point is that the released 
slack from cancellation of replicas in the normal mode can-
not be used for applying DVFS to HC tasks, because repli-
cas may require to be executed, and only LC tasks can oc-
cupy their places. Whenever a fault or an overrun occurs, 
LC tasks can be extended and replicas are executed. The 
other point is that all the available static slacks cannot be 
used for applying DVFS to HC tasks. Regarding the over-
run occurrence, only slack S (S=Available slack-(Wi

HI-
Wi

LO)) can be used for applying DVFS to HC tasks because 
by applying DVFS, each taski is executed up to Wi

LO/fi, 
and overrun is detected at the end of this time. Therefore, 
by reserving some of the available static slack time for the 
overrun occasion, if an overrun occurs after applying 
DVFS, there is enough time for executing the remaining 
parts of the job. It should be noted that after applying 
DVFS, the execution time overlap between the primary 
tasks and their corresponding replicas will be updated and 
considered in DBF analysis, i.e., applying DVFS and com-
puting the execution time overlap between primary tasks 
and replicas are performed simultaneously.  
Our offline approach can be used in conjunction with an 
online energy manager which uses dynamic slacks to ap-
ply DVFS and DPM during runtime for further energy sav-
ings. Dynamic slacks are released due to replica cancella-
tion or early completion of tasks. In runtime, initially the 
amount of released dynamic slack is determined. If the idle 

time of the core is longer than th, it is beneficial for the 
system to go into sleep mode to reduce energy consump-
tion. Otherwise, online lightweight job-level DVFS is used 
for energy saving. It exploits greedy slack assignment, i.e. 
all the released slack from the current job will be used to 
further lower down the V-f level of the next job whenever 
it is possible to do so. In order to reduce the overhead of 
DVFS computations, inserting more replicas is not permit-
ted. Therefore, the V-f level is lowered down to a level 
where no more replicas need to be inserted. Otherwise, the 
slack will be transferred to the next jobs or it may even not 
be used. DVFS transition overhead may be significant or 
negligible based on how often the DVFS is applied. In 
modern microprocessors, changing the DVFS setting is ra-
ther frequent in response to rapid changes in the applica-
tion behavior. The DVFS transition delay overhead in 
high-end Intel Core2 Duo E6850 is between 9 to 62 us, for 
embedded Samsung Exynos 4210 processor based on ARM 
Cortex-A9 core is about 11 to 18 us, and this overhead for 

the TI MSP430 microcontroller that is used for ultralow-
power embedded systems is about 10 to 145 us [66]. Also, 
by using ultra-fast voltage regulators, where Vdd switching 
is moved into the sub-micron regime like the Intel Haswell 
CPU, switching between voltage levels takes place in less 
than 1us [65]. Therefore, since the online DVFS overhead is 

Algorithm 4: Offline DVFS, interplay of energy, reliability, and 
certification 

Inputs: The task scheduling on each core, Γ, PFH, Scaling factors, 
M, Available V-f levels. 
Output: Acceptable V-f level for each task. 

BEGIN: 
-- SUF hueristic 
1.   Γ(HL)= Γ(HC)+Γ(LC);                                 // HC & LC tasks set 
2.   Γ(HL).sort();          //Sort HC and replica tasks w.r.t utilization 
3.   for all tasks in Γ(HL) do 

4.        τi = Γ(HL).select();      //Select the task with smallest utilization 
5.      SS← Extract_StaticSlack();                            
6.       𝑓𝜏𝑖← Determine_min_freq(Wi, SS); 

7.      while (freq is not assigned) do  
8.           if (𝑅𝜏𝑖(𝑓𝑖) ≥ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡) and (DBF≤l) 

9.                assign 𝑓𝜏𝑖 to τi; 

10.         elseif (DBF>l) 
11.              𝑓𝜏𝑖= UP_Scale(𝑓𝜏𝑖); 

12.         elseif (𝑅𝜏𝑖(𝑓𝑖) < 𝑅𝑡𝑎𝑟𝑔𝑒𝑡) and (DBF≤l) 

13.              increase the # of replicas; 
14.              Update_DBF; 
15.              if (DBF≤l)  
16.                   assign 𝑓𝜏𝑖 to τi; 

17.              else 
18.                   fτi= UP_Scale(fτi); 
19.              end if 
20.         end if 
21.    end while  
22.  end for 
--  DBF-based hueristic 
23.  Γ(HL)= Γ(HC)+Γ(LC);                               // HC & LC tasks set 
24.  SS← Extract_StaticSlack();                            
25.  While ((Γ(HL)≠ Ø) or (SS≠ Ø)) do 
26.       for all tasks in Γ(HL) do 
27.            τi = Γ(HL).select();       
28.            𝑓𝜏𝑖← Determine_min_freq(Wi, SS); 

29.            while (freq is not assigned) do  
30.                 if (Rτi(fτi)<Rtarget) and (DBF≤l) 
31.                      increase the # of replicas; 
32.                      Update_DBF; 
33.                      if (DBF≤l)  
34.                           assign 𝑓𝜏𝑖 to τi; 

35.                      else 
36.                            fτi= UP_Scale(fτi); 
37.                      end if 

38.                 elseif (DBF>l) 
39.                       fτi= UP_Scale(fτi); 
40.                 elseif (𝑅𝜏𝑖(𝑓𝑖) ≥ 𝑅𝑡𝑎𝑟𝑔𝑒𝑡) and (DBF≤l) 

41.                      assign 𝑓𝜏𝑖 to τi; 

42.                      Compute_EFFτi   // w.r.t Eq. 66 

43.                 end if 
44.            end while  

45.     end for 

46.     j=determine_max_EEF(Γ(HL)); 
47.     fτj=set_freq(); 
48.    SS← Update_StaticSlack(); 
49.    Γ(HL)= Γ(HL)-{τj}; 
50.    fΓ(HL)= set_freq(fmax); 
51. end While 
END 
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in the order of micro second (us), and the order of execu-
tion of tasks in the systems is millisecond (ms) [2], [15], the 
overhead of applying DVFS is negligible and can be con-
sidered as a part of the task’s WCET. Energy consumption 
of the memory unit is out of the scope of this paper. How-
ever, there are data recompuatation techniques [59-64] that 
can be used for energy reduction of the memory. Finally, 
in order to explain how our proposed method works, there 
is an illustrative example which is presented in the 
appendix. 

5 RESULTS AND DISCUSSION  

In this section, we perform extensive simulations to pre-
sent the effectiveness of our proposed LETR-MC method 

from the perspective of energy saving, reliability and QoS 
in different operation modes.  

5.1 Experimental Setup  

Due to lack of benchmark packages for MCSs, similar to 
[18], [20], [22-23], [25-28], [30-31], [33-37], [40-43], [67], we 
evaluate our proposed scheme using synthetic task sets.  
The UUnifast algorithm is used to generate utilization for 
n tasks Γ={τ1, τ2, …, τn} with total utilization equal to U [28]. 
The UUnifast algorithm is proposed by bini and 
buttazzo [44] to generate utilizations of a task set to study 
uniprocessor scheduling, which has the lowest complexity 
among all task generation algorithms. The generated utili-
zations for HC and LC tasks correspond to their high-level 
WCETs (i.e. ui(HC,H)) and low-level WCETs (i.e. ui(LC,L)), 

  
(a) Normalized energy consumption in WFD mapping with FC=100% (b) Normalized Energy Consumption in FFD mapping with FC=100% 

  

(c) Normalized energy consumption in WFD mapping with FC=99% (d) Normalized energy consumption in FFD mapping with FC=99% 

  

(e) Normalized energy consumption in WFD mapping with FC=98% (f) Normalized energy consumption in FFD mapping with FC=98% 

  

(g) Normalized energy consumption in WFD mapping with FC=95% (h) Normalized energy consumption in FFD mapping with FC=95% 

Fig. 4: Normalized energy consumption of different operation modes based on WFD and FFD mappings, with different fault coverage values. 
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respectively. We define the PHI factor which is the proba-
bility that the generated task is HC. The periods of tasks 
are randomly selected from the set T={10, 20, 40, 50, 100, 
200, 400, 500, 1000} ms [20]. Hence, the Wi

HI for an HC task 
is computed according to Wi

HI=Ti.ui(HC,H), and for LC 
tasks Wi

HI=Wi
LO. However, for HC tasks Wi

LO=μ.Wi
HI, 

where μ is a random value in the range of [0.3, 0.5]. The 
PFH level of all HC tasks is selected from levels A, B, and 
C in DO-178B standard. Hence, the target reliability and 
the number of required replicas for each HC task is com-
puted based on the selected PFH level. We consider a mul-
ticore platform, and the available frequencies for each core 
are set as F={0.6, 0.7, 0.8, 0.9, 1}. In the online phase, tasks 
are executed with actual execution time which varies be-
tween 70 to 100 percent of their WCET.  

5.2 Experimental Results and Discussions   

We evaluated the energy consumption, reliability and QoS 
of our proposed method in different operation modes in a 
quad-core platform based on WFD and FFD mapping, and 
the results are shown in Fig. 4 and Fig. 5, respectively. Uti-
lization U was varied from 0.5 to 4.5 with steps of 0.5, and 
in each utilization point, 50 task sets were synthetically 
generated. The results are reported as the averages of 100 
repetitions of the experiment at each utilization point.  The 
PHI factor is equal to 0.5. HC, and LC tasks are selected 
from levels B and D, respectively. Therefore, the average 
energy consumption and QoS are computed with preserv-

ing the target reliability in all experiments. Also, in Fig. 4 
and Fig. 5 the energy consumption and QoS of our pro-
posed method for different fault coverage values (FC) are 
reported. In these figures, the energy consumption and 
QoS of each operation mode are computed based on the 
worst-case scenario of that mode, i.e. the energy consump-
tion of OV and FO modes are reported where all the HC 
tasks overrun, or all HC tasks encounter faults and all rep-
licas are executed completely with maximum frequency, 
respectively. In addition to the worst-case scenario, the en-
ergy consumption is analyzed based on the actual case 
(Real_WF and Real_FF). In the actual-case, faults are in-
jected into the system with Poisson distribution, and HC 

tasks overrun randomly. In Fig. 4, the normalized energy 
consumption before applying offline DVFS (X_Base, where 
X represents the operation mode including NR, OV, FO, 
and CR), after applying offline DVFS technique based on 
DBF and SUF (X_OffDVFS), and after applying online 
DVFS (X_OnDVFS) are shown. By increasing the utiliza-
tion, the energy consumption is increased, and the DBF-
based DVFS lowers the energy more than the SUF one. 
Since transient faults and overrun are rare in nature, LETR-
MC achieves further energy reduction at runtime beyond 
what is achieved through the offline part of LETR-MC at 

design-time.  
Also, decreasing the fault coverage value reduces the reli-
ability of the system according to equations 6-8. Hence, the 
schedulability of the task sets will be decreased, because 
more replica tasks are needed to schedule to achieve the 
given reliability target. Therefore, the lower fault coverage 
value leads to lower schedulability. Fig 5. represents the 
QoS of our proposed LETR-MC method in different oper-
ation modes with WFD and FFD mappings and different 
fault coverage values. The QoS is computed based on the 
fraction of the number of remaining schedulable LC jobs in 
each operation mode to the total original number of jobs 
based on the desired period of LC tasks. As it is clear, by 
increasing the utilization, QoS is decreased to keep the sys-
tem schedulable. Also, due to the load balanced mapping 
in the WFD, it out performs FFD in all operation modes, 
i.e. WFD can preserve higher percentage of LC jobs in each 
operation mode in comparison with FFD mapping. Mean-
while, the normal operation mode with WFD mapping 
(NR_WF) has the highest QoS, and the critical operation 
mode with FFD mapping (CR_FF) has the lowest. The re-
sults of actual-case scenario (Real_WF and Real_FF) is 
close to the QoS of Normal mode (NR_WF and NR_FF). 
Also, lower fault coverage leads to lower schedulability 
and also lower QoS in both the WFD and FFD mapping, 
because replica tasks reserve the execution time of the 
cores to satisfy the given reliability target.   
Fig. 6 illustrates both energy consumption and QoS of the 
LETR-MC method in different operation modes with WFD 
and FFD mappings and fault coverage 100%. In this figure, 
the energy consumption is normalized to that of the 
scenario where all tasks are executed at fmax, HC tasks are 
executed with WHI and the jobs of LC tasks are released 
based on their desired period. This figure shows that in 
each utilization point, the energy consumption of the FFD 
mapping is close to WFD one. However, the QoS of FFD in 
that utilization point is less than the WFD one. Hence, FFD 
mapping consumes less energy at the expense of lowering 
down the number of executable LC jobs.  
We compared our proposed method from the QoS point of 

    
(a) Fault coverage=100% (b) Fault coverage=99% (c) Fault coverage=98% (d) Fault coverage=95% 

Fig. 5. QoS of LETR scheme in different operation modes and different fault coverage values. 
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Fig. 6. Analyzing the energy consumption and QoS of LETR scheme 
in different operation modes. 
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view with [27] in Fig. 7. The reference [27] proposes an of-
fline algorithm which improves the QoS of EDF-VD algo-
rithm by trying to save as much LC tasks as possible in 
overrun mode. Without considering any PFH level for 
tasks, it assigns one re-execution to each HC and LC task. 
Therefore, all HC and LC tasks and their re-executions 
must be schedulable in normal mode. However, in overrun 
mode, HC tasks and their re-executions must be schedula-
ble, and for LC tasks the algorithm tries to find schedulable 
set of LC tasks based on the scaling factor in EDF-VD 
scheduler. Afterward, it tries to reserve re-executions for 
LC tasks that are schedulable in overrun mode. In this set 
of experiments, the utilization of a single-core platform is 
varied from 0.05 to 1 with steps of 0.05. In each utilization 
point 50 task sets are synthetically generated and the ex-
periments are repeated 100 times. The PHI factor is equal to 
0.4. In the first scenario, we consider that all HC and LC 
tasks need one re-execution. Therefore, the proposed 
method in [27] finds the number of LC jobs that can be 
schedulable in overrun mode. As it is shown in Fig. 7, this 
method is not schedulable after utilization point 0.65. In 
the second scenario, we modified their proposed method 
considering that LC tasks do not need re-execution. Hence, 
the schedulability of their method is improved. However, 
LETR-MC is schedulable in all utilization points, also 
LETR-MC can preserve higher number of jobs than [27] in 
overrun mode. It should be noted that the reference [27] 
considers two operation modes, i.e. normal and overrun. 
However, in this set of experiments, we reported the QoS 
of LETR-MC in FO and CR mode in addition to NR and 
OV modes. By considering different operation modes and 
proposing MEMC task model, the LETR-MC method can 
provide higher guaranteed QoS.  
We compared the energy consumption of LETR-MC with 
HSFA algorithm in [36], [37] (Fig. 8). In these set of experi-
ments, each task set has 10 tasks and the experiments are 
repeated 100 times and the average of these repetitions are 
reported. In Fig. 8 (a), the high utilization of HC tasks is 

equal to 0.3 (U(HC,H)=0.3), and the utilization of LC tasks 
H(LC,L) varies from 0.3 to 0.7 with steps of 0.1 in a single 
core platform. By increasing the utilization of LC tasks, all 
methods consume more energy, since in higher utilizations 
there is less slack time to use for energy saving. In Fig 8 (a) 
and (b), the LETR-MC method consumes lower energy 
than HSFA, since it lowers down the number of LC jobs to 
make the system schedulable. Also, the DBF-based DVFS 
lowers the energy more than the SUF one. It should be 
noted that HSFA does not have an online manager, and 
dynamic slacks are not used for energy saving. However, 
the LETR-MC method can reduce the energy the most in 
the online phase. The faulty mode of HSFA algorithm has 
the highest energy consumption. However, in the FO and 
OV modes of LETR-MC method, due to the lower number 
of LC jobs, the energy consumption is less than the worst-
case scenario where all HC tasks are executed with WHI and 
all replicas are executed completely at fmax. HSFA uses 
EDF-VD algorithm and it drops all LC tasks after entering 
the overrun mode. Hence, this method consumes the least 
energy in the OV mode. However, LETR-MC executes 
guaranteed service level of LC jobs in OV mode, which 
leads in more energy consumption than HSFA. However, 
by applying the online DVFS, we can mitigate the energy 
consumption.   

6. Conclusion 

In this paper, we proposed the LETR-MC scheme that con-
currently considers certification, fault-tolerance, energy re-
duction, and QoS. We used task replication to tolerate 
fault, and improve QoS of LC tasks. The number of re-
quired replicas for each HC task is computed through the 
proposed formulas. Then, our proposed scheduling 
algorithm reduces the execution time overlap between the 
primary tasks and replicas to save more energy by drop-
ping the remaining parts of replicas at the end of correct 
execution of their primaries. Also, through the presented 
service guarantee exploration algorithm, we theoretically 
guarantee an acceptable service level for LC tasks in differ-
ent operation modes of the system, i.e. normal, overrun, 
fault-occurrence, and critical. In order to check the sched-
ulability of the proposed method, we analyzed the re-
source demands of mixed-criticality tasks with the dead-
line and reliability constraints, energy reduction and QoS 
guarantee. Finally, we showed that energy consumption 
can be reduced in the offline and online phases by exploit-
ing static and dynamic slacks, respectively, while the pre-
serving the guaranteed service level for LC tasks. 

  
(a) Comparing energy consumption under various U(LC,L) (b) Comparing energy consumption under various U(HC,H) 

Fig. 8. Comparing the energy consumption of LETR method and HSFA in [37]. 
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Fig. 7. Comparing the QoS of LETR scheme and [27]. 
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