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Abstract— Advancement of Cyber-Physical Systems has attracted attention to Mixed-Criticality Systems (MCSs), both in
research and in industrial designs. As multicore platforms are becoming the dominant trend in MCSs, joint energy and reliability
management is a crucial issue. In addition, providing guaranteed service level for low-criticality tasks in critical mode is of great
importance. To address these problems, we propose “LETR-MC” scheme that simultaneously supports certification, energy man-
agement, fault-tolerance, and guaranteed service level in mixed-criticality multicore systems. In this paper, we exploit task-repli-
cation to not only satisfy reliability requirements, but also to improve the QoS of low-criticality tasks in overrun situation. Our pro-
posed LETR-MC scheme determines the number of replicas, and reduces the execution time overlap between the primary tasks
and replicas. Moreover, instead of ignoring low-criticality tasks or selectively executing them without any guaranteed service level in
overrun mode, it mathematically explores the minimum achievable service guarantee for each low-criticality task in different execu-
tion modes, i.e. normal, fault-occurrence, overrun and critical operation modes. We develop novel unified demand bound functions
(DBF), along with a DVFS method based on the proposed DBF analysis. Our experimental results show that LETR-MC provides
up to 59% (24% on average) energy saving, and significantly improves the service levels of low-criticality tasks compared to the

state-of-the-art schemes.

Index Terms—Task Replication, Energy Management, Guaranteed Service Level, DBF, Multicores, Mixed-Criticality Systems.

1 INTRODUCTION

ITH the advancement of Cyber Physical Systems,

Mixed-Criticality Systems (MCSs) have recently be-
come the subject of an important research area as the next
generation of complex embedded and cyber physical sys-
tems [1]. MCSs integrate components with different levels
of criticality onto a common platform to reduce cost, space,
weight, heat generation and power consumption of the
system [5], [6]. The advent of MCSs poses significant new
challenges on the system design since applications can in-
terfere with each other on common resources. This point
shows the importance of task scheduling and certification
on the shared platform of MCSs.
In addition to the certification issue, simultaneous energy
and reliability management is another crucial aspect of de-
signing MCSs. As the number of cores on a single chip con-
tinues to increase [8], [15], the chip power/energy con-
sumption will increase exponentially. Dynamic Power
Management (DPM) [35] and Dynamic Voltage and Fre-
quency Scaling (DVES) [9] are two popular techniques for
energy management. However, scaling the supply voltage
in DVFS can potentially degrade the system reliability due
to the increasing transient fault rate in the current ever-de-
creasing technology feature sizes [7], [10]. Transient faults
are usually mitigated through exploiting re-execu-
tion [16], [27], [28] or replication [2], [11]. The former im-
poses time overhead, i.e. affects the most critical parameter
in MCSs, and the latter imposes power consumption over-
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head. Therefore, choosing a suitable fault-tolerant tech-
nique for MCSs while reducing overall energy consump-
tion is essential.

Another growing difficulty in the scheduling of MCSs is
the quality-of-service (QoS) of low-criticality (LC) tasks in
overrun situations. LC tasks have one designer-specified
Worst-Case Execution Time (WCET) [16], [17], while high-
criticality (HC) tasks have two instances of WCETs: WLO
which is estimated by system designers, and WH! which is
more pessimistic and estimated by certification authori-
ties [6], [17], [18]. The system starts in normal mode, and
whenever an HC task exceeds its WLO, the system switches
to the overrun mode. HC tasks must be schedulable in both
the normal and overrun modes, but the schedulability of
LC tasks in overrun mode depends on the chosen schedul-
ing scenario. Some scheduling algorithms discard all LC
tasks [6], [16], [17], while the others guarantee a minimum
service level for LC tasks. Overall, presenting a scheduling
algorithm that simultaneously supports timeliness, energy
management, fault-tolerance and guaranteed service level
for LC tasks is becoming increasingly challenging in the
design of MCSs as technology advances to multicores.

In this paper, we exploit task replication to achieve the re-
liability target. The task replication approach schedules
multiple copies (i.e., one as primary and others as replica)
of a task on different cores to tolerate a certain number of
faults [10], [15], [17]. Our proposed LETR-MC scheme de-
termines the proper number of replicas for each HC task to
achieve the given reliability target. Then, it conservatively
maps the task set into cores and schedules them to reduce
the execution time overlap between the primary tasks and
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their replicas in an energy-saving manner while preserv-
ing certification constraints. In order to conquer service
abruption problem in overrun situations, by addressing
fault and overrun as two independent events, we consider
different execution modes including normal, fault-occur-
rence, overrun and critical. Also, we modify the elastic
mixed-criticality task model to let LC tasks have different
guaranteed relaxed periods in each execution mode. In or-
der to check the schedulability of the task set in each exe-
cution mode, we develop unified demand bound function

(DBF) analysis. Also, we propose a DBF-based DVEFS tech-

nique that assigns the proper task frequency, which con-

siders timeliness and reliability constraints as well as QoS.

By considering various execution modes and proposing

the unified DBF schedulability test, the multicore system

can tolerate fault occurrence, overrun and even both of
them in distinct cores at the same time. The main contribu-
tions of this work are:

e Proposing a novel Low Energy Task Replication mech-
anism in Mixed-Criticality systems (called LETR-MC
scheme) to support certification (timeliness), energy
management, fault tolerance, and guaranteed service
level simultaneously in multicores.

e Adapting task replication, not only as a fault tolerant
technique but also to improve LC tasks” QoS in the
overrun situation.

¢ Considering different execution modes including nor-
mal, fault-occurrence, overrun, and critical (distinction
between overrun and fault occurrence) and mathemat-
ically guarantying an acceptable service level for LC
tasks in each mode, instead of killing or selectively exe-
cuting them.

e Developing a new unified DBF-based schedulability
test, under deadline, energy reduction, reliability re-
quirements, and guaranteed relaxed periods consider-
ations in different execution modes. Meanwhile, we
propose a DBF-based DVFS technique, and exploit
DVFS along with DPM to save energy under timeliness
and reliability constraints.

The remainder of this paper is organized as follows. In Sec-
tion 2, we review related work. Section 3 presents models
and assumptions. In Section 4, we present our LETR-MC
scheme in details. The experimental results are presented
and discussed in Section 5. Finally, we conclude the paper
in Section 6.

2 RELATED WORK

Mixed-criticality systems were first introduced by
Vestal [4]. The primitive research proposed different
scheduling algorithms. The proposed scheduling algo-
rithms are classified according to their policy to deal with
LC tasks in the overrun situation. Some scheduling algo-
rithms discard all LC tasks after entering the overrun
mode, e.g. EDF-VD (Earliest Deadline First with Virtual
Deadline) [6], [16], [17], [21], [24]. Other ones degrade the
QoS of LC tasks to mitigate the effect of service interrup-
tion [18], [23], [25], [26]. Su et al. [18] have proposed ER-
EDF scheduling in a single-core system, which increases
the period of LC tasks in the overrun mode to reduce their

execution frequency and competition with HC tasks. Su et
al. [25] have improved the ER-EDF algorithm by focusing
on the online behavior of the single-core system. Su et.
al. [26] have applied the ER-EDF scheduling to multicores.
The reference [23] combines ER-EDF scheduling with
virtual deadlines for the dual-criticality single-core system,
and guarantees LC tasks service level in the overrun mode.
The mentioned works do not consider fault-tolerance or
energy management.

Other recent work explore the scheduling problem in the
context of fault-tolerant MCSs without considering energy
management. Works presented in [16], [27], [28], [29] use
re-execution as their fault-tolerance technique. The refer-
ences [16] and [26] wisely select the droppable LC tasks in
the overrun mode. The references [28] and [29] immedi-
ately drop all LC tasks once either a transient fault or an
overrun occurs. All of the above-mentioned references
have considered a two-mode operation. Hence, the system
switches to critical mode due to fault or overrun, and they
do not guarantee an acceptable service level for LC tasks.
The references [30] and [31] provide analysis techniques to
bound the effects of task killing and service degradation on
the safety and schedulability of the system. The refer-
ence [30] presents a method to convert the fault-tolerance
problem into a standard scheduling problem in a single-
core MCS. The reference [20] addresses fault occurrence
and overrun with separate modes in a single-core and
multiprocessors. However, it selectively chooses LC tasks
to continue their execution in each mode.

Few works like [9], [32], [33], and [34] cope with the energy
management problem in MCSs, but they do not consider
reliability requirements. Huang et al. [9] have proposed an
optimal solution based on DVFS with the EDF-VD sched-
uling to minimize dynamic energy consumption for single-
cores in normal mode, where tasks of the same criticality
level share the same frequency. The reference [32] have ex-
tended the work in [9] to multicores, and HC tasks share
the same frequency in overrun mode. Legout et al. [34]
have developed an optimal solution for static energy re-
duction by applying DPM technique for single-core MCSs.
Volp et al. [34] have considered an energy budget for mul-
ticore MCSs, and focus on energy utilization of HC tasks at
the expense of sacrificing LC tasks. The reference [35] ap-
plies DVFS only on LC tasks with the cost of degrading
their service level and only in the low-criticality mode of
the system. Lia et. al in [36] and [37] have reduced the
energy consumption of a single-core fault-tolerant MCS
through resource demand analysis. However, they con-
sider two-mode model, and drop all LC tasks in overrun
situations; also the re-execution energy is not taken into ac-
count. All the mentioned works have considered two op-
erating modes and have discarded all LC tasks or have se-
lectively executed them in the overrun mode.

In this paper, we address the problem of scheduling
mixed-criticality tasks on multicores, and reduce energy
consumption while satisfying timeliness and reliability re-
quirements, and at the same time, guarantee the acceptable
service level for LC tasks in each mode.
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Table 1. Timing parameters for tasks in different models
Gi WCET Basic MC task model | VD model E-MC E2MC MEMC (proposed model)
HC WiLO, Wit Ti Di Ti | DiLO< Ti Ti Di Ti Dito< Ti Ti Dito< Ti
LC WiLo Ti Di Ti Di Ti, Timax | Di | Ti, TiLO, TiH! Di Ti, TINR, Ti0V, TifO, Ti€R DiX<TiX
. ;.:*.'-C . . W Lo
3 MODELS AND PRELIMINARIES U(LC,min)=> """ uy™, u™ =_! (4)
! ger 1T e
i

In this section, we introduce the models and preliminaries
which are used throughout the rest of the paper.

3.1 System and Application Model
In this paper, we consider an MCS with two different crit-
icality levels, which are denoted as high-criticality and
low-criticality levels. Also, we may choose any two criti-
calities out of the five criticality levels in DO-178B stand-
ard [21]. There are n mixed-criticality tasks I'={r1,72, ..., Tn}
that will be executed on a multicore platform. The cores are
identical and DVEFS enabled with a finite set of available
frequencies, i.e. F={fi,...,f;} where fi=finax and fz=fmin. These
frequencies are normalized with respect to fiax, i.€. fuax=1.
Tasks are independent, and do not share any resources
other than the core. Also, similar to [49], [50], [51], and [52]
we assume that the context switching overhead is negligi-
ble.
Each task 7j has hextuple of parameters {g, W0, W;HL, T;,
D;, Li}:

e (i€ {LC, HC} denotes the criticality level of 7..

e Wil0 is the designer-specified WCET for Ti.

o Willlis the CAs-specified WCET for 1.

o Tiis the period of 7i (minimum inter-arrival time).

e Diis the deadline for the task. We assume Di< Ti.

e Liis the task’s safety level according to DO-178B.

It should be noted that in dual-criticality systems, if {=LC,
then WiHI=WILO, otherwise WiLO<WiHL Each task 1; gener-
ates a sequence of jobs (or task instances) with the period
of T;. Table 1 shows different task models. In conventional
(basic) mixed-criticality task model, both of the LC and HC
tasks have one desired period T;. The Elastic Mixed-Criti-
cality (E-MC) task model [18] defines a maximum period
Timax for LC tasks in addition to their desired period. When
a task is executed with the desired period, it has a
maximum level of QoS. However, maximum period repre-
sents the minimum level of QoS. The period of LC tasks
can be extended by 2 to 5 times [35]. In the E-MC model,
the utilization of the system is defined as follows (which
will also be used in this paper):
e Low-level utilization of HC tasks:

[ W.Lo
i=6i LO LO i
U(HC’L)=ZI|6F ui ' ui = T (1)
o High-level utilization of HC tasks:
HI
a=c wom W
U(HC,H):ZT‘EF it ot == 2)
o Low-level (desired) utilization of LC tasks:
Lo
Gi=¢te Wi
U(Le.D= 37 e, i - o

T.

I
e Minimum utilization of LC tasks:
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The Extended E-MC (E?MC) task model [23] assumes that
an LC task can have a pair of small and large periods T:LO
and T;H! which represent its service guarantee in the nor-
mal and overrun execution modes, respectively.

Our Modified E-MC (MEMC) task model: We present
MEMC task model, where HC tasks have one period T;,
while LC tasks, in addition to their desired period Tj, have
four other periods. Each of these periods reveals QoS of LC
tasks according to a specific execution mode of HC tasks.
TNR and T;9V are the periods of LC tasks in the normal and
overrun operation of HC tasks and fault-free scenario, re-
spectively. T¥O and Ti“R are the periods of LC tasks with
the normal and overrun operation of HC tasks and fault
occurrence, respectively. These periods are bigger than or
equal to the desired period, and show the minimum
achievable release frequency for jobs of the LC tasks in
each mode. Details of the binary search method to find the
proper periods are clarified in Section 4.3. Table 2 shows
the notation used for variables throughout this paper.

3.2 Fault Model and Reliability Analysis

As mixed-criticality embedded systems often control
safety-critical applications, tolerating faults and achieving
high reliability levels are of great importance; i.e., faults
must be detected, and appropriate recovery tasks must be
successfully completed before the deadlines. In MCSs,
each criticality level has an important property, which is
known as Probability of Failure per Hour (PFH). PFH rep-
resents the maximum probability of failure to which each
task of that level must adapt. The avionics DO-178B
standard defines five criticality levels from A with highest,
to E with lowest criticality levels. Safety requirements of
each criticality level are shown in Table 3 [2]. In this paper,
we assume that LC tasks are chosen from D or E levels
without any fault-tolerant provisions, and HC tasks are
chosen from A, B, or C levels. Hence, each task 1; from HC
task set must be guaranteed to be schedulable, even in
presence of faults, to achieve a failure rate of at most
PFH;=PFH({"). Faults can be categorized into transient

Table 2. Adopted notations

Notation Description
I'={r,12, ..., Ta} A set of n EEMC tasks
M={my, ...,mc} A set of c identical cores
F={fuaxs +s fouin} Core frequency levels
¢={HC, LC} Task’s criticality levels
WF |c={LO, HI} LO- and High-level WCET of task i
X={NR, OV, FO, CR} System operation modes
r Set of tasks on the core n including
e HC, LC and replica tasks
L, Q) Set of tasks with criticality level Con
e the core m
I, (B) Set of replica tasks on the core m;
PFH(Q) probability of failure per hour

of tasks with criticality level {

information.

ore
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Table 3. DO178B safety requirements [7]
C A B C D E
PFH <10° <107 <105 >10° -

and permanent faults. Transient faults are found more
frequently than permanent faults [36], [39]. Hence, in this
paper, we focus on transient faults. Nevertheless, we try to
provide provisions to tolerate permanent faults as well.
Transient faults are typically modeled using a Poisson dis-
tribution with an average arrival rate 4, which depends on
the core frequency [36], [38]. The fault rate at frequency f;
is modeled as [39]:

d@-f)

A(F) = 2,10 " o ®)
where Ao = 10~ (fault/ ms) is the transient fault rate at finax,
exponent d is a sensitivity factor parameter with typical
values in the range 2-6 [14], [15]. We choose d=2 similar
to [15]. The reliability of a task is defined as the probability
of executing the task successfully, in the absence of transi-
ent faults [38]. The reliability of task 7; running at fre-
quency f; can be expressed as [39]:

Wi
R, (f,)=e MO (6)
where A(f) is given by Eq. 5, and W; is the execution time of
the task 7. In our proposed method, similar
to [2], [11], [12], [15], and [39], the fault detection takes
place at the end of the completion of each task instance. If
a task instance completes earlier than its WCET, the fault
detection mechanism takes place as soon as the completion
of the task instance; otherwise, faults are detected at task’s
low and high level WCETs. Therefore, at the end of execu-
tion of each task instance, an acceptance test (or, sanity
check) [45], [46] is conducted to check for the occurrence of
transient faults. If the acceptance test indicates a fault oc-
currence, the faulty output is discarded and the task copy
(replica task) will be executed to determine the correct out-
put. Otherwise, task copies will be cancelled as soon as suc-
cessful completion of the corresponding primary
tasks [38].

It should be noted that acceptance tests are not completely
accurate. Sometimes a fault may remain undetected or the
acceptance test may diagnose a correct outcome as a faulty
one [11]. Therefore, the probability that the acceptance test
will perform incorrectly is considered as a factor in the re-
liability computation of the task, which is known as the
coverage factor of the acceptance test. Thus, the reliability
of a task instance can be expressed as:
(M
R(f)=(-a)xe A @)
where a is the probability of making an incorrect decision
during the acceptance test. The reliability of HC tasks de-
pends on their WCETs as follows:

(%

RiLo(fi)Z(l—C()Xe (8)
()M
R™M(f)=(1-a)xe '
Consequently, the probability of failure (PoF) of the task 7;
based on its W:?and WH! are as follows:

POFiHI(fi):l_RiHI (fi) )

POFiLO(fi) =1- RiLo(fi) (10)
In multicore platforms, task replication is likely to become
a quite viable option for reliability management. By sched-
uling multiple copies of the same task on multiple cores,
the likelihood of successfully completing at least one of
them (i.e., without encountering transient faults) increases
significantly. If the PoFH! of an HC task (when executed
with WHT) meets the PoFiuyg, it means that the mentioned
task does not need any replicas. Otherwise, the scheduler
should determine the proper number of replicas of task 7;
to achieve the reliability targets. Note that each replica
task, being a periodic task itself, generates a sequence of
instances on the core where it is assigned. Hence, we define
two extremes for the number of replica tasks. The mini-
mum number of required replica tasks for each HC task
(Piower_bound) is the case when all the replicas will be executed
with WLO, and can be expressed as:

POF e = POR™ (f;).POR (£,

i . {Iog(PoFtargel / POFM (1)) J
s = T log(POF (1,))
The maximum number of required replicas (Fupper_vound) is
the case when all the replicas will be executed with WHL
PO, > POR™ (f,).POR™ (f)’

] _ | 1og(POF . / PoF"™ (1))

Hoveboms log(PoF " (f,))
Therefore, we define upper and lower bounds for the num-
ber of required replicas. Hence, we define the parameter K,
where Ke[iower bound, Yupper vound]. When K=0, all the replica
tasks will be executed with WLO; i.e., r is the minimum
number of required replicas. Otherwise, increasing the
value of K, increases the number of replica tasks that will
be executed with WHL Therefore, by giving a certain PoFiug:,
we can find the minimum number of replicas r for each task
to achieve its reliability target as follows:

POR, . = POR™ (f,).PoR™ (f,)*.PoR ()™

target =

¢ 5 | 109((POFy / PoR™ (£,)")-PoF " (f)")

' log(PoF;"(f,))
Therefore, in task replication technique, it is sufficient to
have at least one task copy execution that passes the ac-
ceptance test. Hence, the execution will be unsuccessful
only if all copies of a task encounter faults. Therefore, in
task replication, if a primary task and its replica(s) have an
overlap execution part, as soon as a primary task com-
pletes successfully, the remaining parts of its replica(s) will
be abounded to avoid further energy consumption. Also,
we consider that each core is capable of detecting
faults [36], [37]. In order to detect faults, processing cores
typically employ a low-cost hardware checker like Ar-
gus [47]. Argus provides low-cost, comprehensive, low
power and high accuracy fault detection. It uses run-time
checking of control flow, computation, data flow, and
memory invariants. Meixner et al. [47] have shown that
checking these four invariants is sufficient for detecting all
possible single errors, and many multiple-error scenarios.
Argus adds less than 17% to the core area (and less than

(11)

(12)

(13)

(14)
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11% to the total chip area, including caches) and increases
runtime execution by 3.2-3.9% on average. Argus does not
change the clock cycle time, and is applicable to many em-
bedded applications as well as multicore chips. We con-
sider the overhead of fault detection as a part of the task’s
WCET [15], [36], [37].

3.3 Power and Energy Consumption Model

Power Model: System-level power model consists of static
and dynamic components [9], [36], [37]. The static power,
Pstaric, is consumed even when no computation is carried
out [38]. The dynamic power Pgyumic includes a frequency-
independent (Pi4), and a frequency-dependent (Pyy)
power consumption factor. Pi,s is consumed by the periph-
eral modules such as I/O in the active mode. Hence, the
total power consumption of each core can be written as:

Ptotal = Pstamic + denamic = IsubVi +Ceffvi2fi + I:)ind (15)
where Cy, Vi, and f; are the effective switched capacitance,
supply voltage, and operating frequency of the core during
the execution of task 7;, respectively. Also, we assume that
Pina is equal to 0.1 [36]. When DVFS is used, each task 7; is
executed at a voltage V;, which is less than the maximum
supply voltage V.. By considering a near-linear relation-
ship between voltage and frequency [13], [15], [39] when a
taskz is executed at the scaled voltage Vi=pi.Viu, the oper-
ational frequency is fi=pi.fuax, Where fi is the operational fre-
quency corresponding to Vj, and fux is the maximum
operating frequency corresponding to Vyux. Therefore, the
total power consumption, which is consumed to execute a
task zis given by:

Ptotal = Isubpivmax +Ceff (plvmax)2p| fmax (16)
Ptotal = pl F’S;T:':(C + pi3 Rir;:;mic (17)

In this equation, p; is in the range of puin to pun=1 and
Pmin=Vmin/ Vmax. In this paper, in contrast to most of the pre-
vious works that consider Pg.ic=0 [9], [12], [36], [37], we as-
sume that maximum static power is constant and is a por-

tion of the maximum dynamic power, ie.
s"?;t)%c = Q. P(;rglzcrllgflmic' [11]/ [35]/ [67] where, ¢=0.2

[11], [35], [38]. Hence, the total power consumption can be
re-written as follows:
|::otal = p| (pF:ir;na;mic + pi3 Pd?r?;mic (18)
By scaling V-f, in addition to power, the execution time of
the task, and its energy consumption will change.
Energy Model: Scaling down the voltage and frequency
levels increases the execution time of the task W;'=W;/p..
The energy consumption of j* job (single job) of a task (z)
is as follows:
max 3 VViJ
Eij = denamic (¢:D|J + pij ) X— (19)
i
Also, the normalized energy consumption NE of a single
job of a task  is:
NEij =(p+ pijg)xvvij (20)
Since the tasks are periodic and they may have multiple
jobs in any time interval, the total normalized energy con-
sumption of a task in any time interval of a given length is
the summation of all its jobs” energies h; in this duration.
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2) OV Mode
Slack usage - DVFS & DPM

HC: WCET(HI) HC: WCET(HI)
LC: T,OV LC: T,< T’Runrmw(T’

3) FO Mode
Slack usage - DVFS & DPM

HC >WCET(LO) |[  HC: WCET (LO)
e 770 LC: T, < Tremtime 0

1) Normal Mode

HC: WCET(LO)
Lc: 7"

Slack usage - DVFS
& DPM

4) Critical Mode

HC: WCET(HI)
Le: 7

Slack usage - DVFS

HC: WCET(LO)
LC: T <Tomime 8

HC: WCET(HI)
LC: T,< T/ <T,

Overrun | Fault

Fig. 1. Overview of system execution model (The execution
model of each core).

hz'I
NETi = Z((P"' pi?) ><Wij
i1

The normalized total energy consumption of each core
is the sum of energy consumptions of tasks on that core
(my: Set of tasks on the core my including HC, LC and rep-
lica tasks) as follows:

h'I
NE, = z Z(¢+ pi]?) xWj;
Voely j=1
Finally, the normalized total energy consumption of the
whole system is the sum of energy consumptions of tasks
on all the cores as follows:

C h,
NE,ysem = z NE,, = z Z Z (p+ p5) xW;
K

C
=1 k=1 Vrely j=1

1)

(22)

(23)

3.4 System Operational Model

The overview of the execution model for each core is
shown in Fig. 1. Similar to [20], we distinguish between the
execution time overrun of tasks and fault occurrence.
Therefore, we guarantee an achievable service level for LC
tasks in each execution mode to improve their overall QoS,
and also save more energy. The behavior of our execution
model in each mode is defined by the following epochs:
Epoch 1: The system starts with a normal mode (called
NR). Each core stays in NR mode until either overrun or
fault occurs. Hence, in this mode, all tasks are executed
once with WLO, and LC tasks are executed with T;NR period.
TNR represents the highest service level of LC tasks.
Epoch 2: If any HC task exceeds its low-level WCET, its
designated core switches to the overrun mode (called OV),
where HC tasks (on that core) are safely executed once, and
must meet their deadlines assuming high-level WCETs. LC
tasks of that core will be executed with T;°V period to guar-
antee their service levels. If an LC task does not complete
in its low-level WCET, it will be terminated.

Epoch 3: If any HC task signals completion after running
for its WWLO but encounters a fault, the system switches to
the fault-occurrence mode (called FO), where the sched-
uler guarantees the execution of the sufficient number of
replicas of a faulty HC task to satisfy its reliability require-
ment. Hence, the scheduler executes its replicas on the
cores. Only the cores which host the replicas of the faulty
tasks switch to the FO mode. In this mode, HC tasks and
replicas are still executed with WLO. Also, the execution of
the required replicas for HC tasks must be guaranteed to
finish before the deadline. LC tasks will be executed with
T0 period.

Epoch 4: When a core is in OV mode, the fault can occur;
similarly, when it is in FO mode, overrun can happen, and
both of these conditions enter the designated core into the
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Design Flow

Algorithm 1: The task mapping mechasim of LETR-MC scheme
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critical mode (called CR). In this state, HC tasks are exe-
cuted with WHI, and replicas are executed completely to
tolerate faults, and LC tasks are executed with their TR
period which is the minimum guaranteed service level that
can be maintained.

Fig. 1 shows the various operating modes that each core
can operate independently of the others. As it is clear in
Fig. 1, in all epochs, the scheduler exploits the released dy-
namic slacks to improve the periods of LC tasks at runtime
(Tirumtime), which is between their desired periods and the
guaranteed ones. Also, we consider a local switching [31],
i.e. any core switches from one mode to another one, inde-
pendent of other cores. Therefore, it is not necessary to re-
duce the QoS of LC tasks on all cores at once. Also, in our
proposed operational model, the system switches back
from each of the OV, FO, or CR modes to the normal mode
at the end of each hyper period.

4 PROPOSED METHOD

In this section, we explain each part of our proposed
scheme in details.

4.1 System Overview

Fig. 2 illustrates the overall design flow of the proposed
LETR-MC scheme. The scheduler receives different inputs
from hardware and software levels, and schedules tasks in
the offline and online phases. In the offline phase, the
scheduler initially creates Information Table (IT), which
will be used during system operation in different modes to
find the best V-flevel for each task to satisfy its reliability
and timing constraints. IT consists of the task set, criticality
and required PFH levels for tasks, V-f (voltage-frequency)
levels, the WLO and WH! of tasks, reliability, and the number
of required replicas in each V-flevels. After mapping all
tasks, the scheduler calls the service guarantee exploration
function for computing scaling factors to apply to LC tasks’
periods. We adapt the ER-POED scheduling for our pro-
posed method. The offline scheduler applies partitioned
scheduling to all tasks on each core. After scheduling all
tasks, the service guarantee exploration is called again to
update scaling factors, while checking for DBF-based
schedulability. The last section of the offline phase is to
apply DVES by using static slack reclamation. Eventually,
the final offline schedule is sent to the online manager for
applying DVFS and DPM, or improving the service guar-
antees of LC tasks by using dynamic slacks.

4.2 Task Mapping

Algorithm 1 shows the pseudo-code of our proposed task
mapping method. In line 1, IT is constructed and sent to
the task mapping mechanism, where HC tasks I'(HC) and
their corresponding replicas I'(B) are initially mapped to

Inputs: I, PFH, M, V-flevels.
Output: The task mappimg on each core.

BEGIN:
1. IT=Construct(I,PFH, V-f levels);

2. I(HB)=T(HC)+I'(B); / /# of replicas at finax
3. I'(HB).sort(); //Sort HC and replica tasks w.r.t utilization
4. for all tasks in I'(HB) do

5. 7;=I'(HB).select();  //Select the task with largest utilizaton
6. TC=M-{V my:tiem};

7 TTC=TC.sort();

8. sc=TTC.select();

9.  if scis empty then

/ / Sort cores based on WFD or FFD
//Select the core sc

10. TC=M;

11. goto line 7;

12.  endif

13.  if sc.schedulability_test() then //Based on Eq. 24
14. sc.map(T);

15. else

16. TC.remove(sc); //Remove sc from TC for the task 1;
17. if TC is empty then

18. TC={V mpniemy};

19. TTC=TC.sort(); //Sort cores based on WFD or FFD
20. sc=TTC.select(); //Select the core sc

21. if sc is empty then

22. return infeasible;

23. else if sc.schedulability_test() then //w.r.tEq.24
24. sc.map(r);

25. else

26. TC.remove(sc);

27. goto line 19;

28. end if

29. end if

30. goto line 7;

31. endif

32. end for //Have all HC & B tasks mapped

33.T(LC).sort();

34. for all tasks in I'(LC) do
35.  1=I(LC).select(); //Select the task with largest utilizaton
36. TC=M;

37.  TTC=TC.sort(); / /Sort cores based on WFD or FFD
38.  sc=TC.select(); // Select core sc
39.  if sc.schedulability_test() then

// Sort LC tasks w.r.t utilization

//Based on Eq. 25

40. sc.map(n);

41. else

42. TC.remove(sc); //Remove sc from TC for the task 7;
43. if TC is empty then

44. return infeasible;

45. end if

46. goto line 37;

47.  endif

48. end for

END

cores, and then LC tasks I'(LC) are allocated. HC and rep-
lica tasks are sorted in decreasing order of utilization at the
maximum V-flevel, respectively (in lines 2-3). In each iter-
ation, the first task in the queue is selected for mapping
onto the cores (line 5). Since task replication has the poten-
tial to tolerate permanent faults in addition to transient
faults, the scheduler tries to avoid assigning replicas of the
same task on the same core. Therefore, in line 6, set of cores
containing the primary or replica versions of the selected
task is removed from the core set M, and the remaining
cores are put into the temporary core set TC. However, if
after removing the mentioned cores, the TC becomes
empty, all cores are returned to the TC. Selection of cores
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for mapping is based on Worst-Fit Decreasing (WFD) and
First-Fit Decreasing (FFD) bin packing. In the Worst-Fit
Decreasing bin packing cores are sorted in decreasing or-
der by utilization (line 7), then the core with the lowest uti-
lization among others is selected for mapping (line 8), i.e.,
WEFD allocates the selected task into the core with the
greatest capacity available, in which it can be feasibly allo-
cated. In the First-Fit-Decreasing bin packing, cores are
sorted in decreasing order by utilization (line 7), then the
selected task is allocated into the core with the lowest ca-
pacity available (largest utilization), in which it can be fea-
sibly allocated in line 8. WED is the best from the energy-
awareness perspective, due to its load-balancing behav-
ior [48]. If there is a core for mapping, the schedulability
condition is checked in line 13 as follows:

Ur, el (HO) (HC, H)+U1| ermk(s)(Br L<1 (24)

If the selected core sc passes the schedulability test, the se-
lected task is mapped to the core sc in line 14 and the next
task is chosen for mapping. However, if the selected core
cannot satisfy the schedulability constraint, it is removed
from the core set and the algorithm goes to line 7. Remov-
ing the cores which contain the primary or replica versions
of the selected task, and also removing the cores which
cannot satisfy the schedulability constraint may make TC
empty. In this case, the cores containing the primary or
replica versions of the selected task are added to the TC,
and selection of a core is performed based on this set in
lines 17-29. After mapping all HC and replica tasks, the
scheduler sorts LC tasks in a queue, based on their utiliza-
tion in decreasing order in line 33, and selects the first task
in the queue for mapping as shown in line 35. The core se-
lection (sc) is also based on WFD and FFD lines 37-38. In
each iteration of LC task mapping the scheduler checks the
total utilization of each core in lines 39-40 as follows:
U, ooy HCH)HU, o ) B,L)+U, o o) (LC,L)<U _bound  (25)

5Ty,
where U_bound<1.5. If the schedulability test is passed, the
selected task is mapped to the chosen core. Otherwise, the
core sc is removed from TC, and the algorithm iterates in
lines 42-47.

After mapping all tasks, due to the challenges associated
with task migration including increased sensitivity to im-
plementation complexity, tight power budgets, require-
ments on execution predictability, the lack of virtual
memory support in many low-end MPSoCs, and high
runtime overhead [56], [58], migration of task instances
from a core to another one is not permitted; i.e., at runtime
each task is permitted to execute only on its designated
core. After mapping all tasks, the service guarantee explo-
ration function is called for finding the proper scaling fac-
tors for periods of LC tasks in each core to extend their pe-
riods and reduce their utilization.

4.3 Service Guarantee and Period Assignment

As it is mentioned in Section 2, most mixed-criticality
scheduling algorithms discard all LC tasks after entering
the overrun mode, or selectively execute them [6], [9], [15-
16], [19-20], [23], [26-28], [31-36]. In order to guarantee an
acceptable service level for LC tasks, we consider different
execution modes (NR, FO, OV, CR), and define four uni-

7€y,
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form scaling factors {a, §, 8, y} for each LC task in each ex-
ecution mode. These scaling factors indicate the period of
LC tasks in each execution mode, and also represent how
frequently LC tasks release their instances to guarantee the
timeliness and QoS level. Similar scaling factors of LC
tasks that run on the same core are equal to each other.
Also, the relationships between these scaling factors and
the desired periods T; of LC tasks in each operation mode
are as follows:

TV =T, T =BT, T =0T, T® =T

. (26)
The total utilization of a core after mapping LC tasks may
be bigger than one. Therefore, T;NR, T;V, Ti©, and T;°R may
have a bigger value than T;. Differences between T; and the
other periods of LC tasks are illustrated in the example in
Appendix.
Based on the schedulability conditions, we first derive
lower and upper bounds of these uniform scaling factors
in each operation mode. The feasible periods, which satisfy
scheduling constraints, will be found between the lower
and upper bounds.
Epoch 1: Each core’s utilization in NR mode is defined as
follows:

U =U, g (HC,L)+U

(Lc, L) <1 (27)

By replacing the desired period of LC tasks with
TNR=q, Tiin their utilization formula, we have:
WiLO 1 WiLO

Ur, wo(LC.L)= > =

Vg el (LC) al, Qyger, () 1

It should be noted that Ti is the original period of LC tasks
that determines when the tasks are generated. T*® is the
period of LC tasks in the normal operation mode of the
system. Difference between T; and TN for LC tasks is illus-
trated in Appendix.

To ensure the schedulability of tasks in NR mode, by
replacing Eq. 28 in Eq. 27, we need to have:

T (HC) T (LC)

(28)

U =U, (Hc)(Hc,L)+1ur o (LC,MC) <1 (29)
'k mk a mk
Hence, the lower bound for a can be found as:
Urm (LC)(LC ,MC)
gy = —2 (30)

T1-Up e (HC L)

Here, the utilization which arises from execution overlap
of HC tasks and corresponding replicas is ignored. The
point is that utilization-based approach does not consider
scheduling of tasks (the start time and end time of tasks).
Therefore, considering the utilization of all replicas in nor-
mal mode is pessimistic because in the actual case in the
normal mode, replicas do not need to completely proceed,
and only their overlap time with primary tasks will be ex-
ecuted. Therefore, at first, the service guarantee unit com-
putes the scaling factors based on the utilization of tasks.
Then, after scheduling the tasks, if it is necessary, the com-
puted scaling factors will be updated through demand
bound function analysis, as explained in Section 4.4.

Epoch 2: The utilization bound at OV mode is as follows:

U2 =U; ey (HC,L)+U, 6, (LC, L) <1 (31)

In the OV mode, LC tasks are executed with T;°V=4.T:. By
replacing the desired period of LC tasks with T;%Y, in their
utilization formula gsimilar to computation of a) the lower
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bound for §§ can be found as:
5 Ur e (LC,MC)
® T 1-Up o) (HC H)
Epoch 3: In the FO mode, replicas are executed completely
due to fault occurrence in primary HC tasks. The utiliza-

tion bound at this point is as follows:
U =U, ) (HC,L)+U, g (B,L)+U; ) (LC,L)<1

(32)

(33)
In the fault-occurrence mode, the execution period of all
the LC tasks on core mx is TiF© where TiF0=0.T:. Hence, the
lower bound for 6 can be found as:
- U, c,(LC MC) o
_(Urmk (HC)(HCvL)+U T (B)(B!L))
Epoch 4: In the CR mode, the utilization bound of each

core is as follows:

U =U; 4o (HCH)+U, (B L)+U, () (LC,L)<1  (35)
In the FO mode, LC tasks execute with T;R=y.T;. Hence, the
lower bound for y can be found as:

U (e, (LC,MC)
1_(Urmk(HC)(HCn H)+Urmk(a)(Bv L))
We now define the upper bounds of these scaling factors.
yis is the factor that makes the task set schedulable in a
worst-case scenario [18], [23]. Suppose that, Ti<T{FO<TR
and T;<TOV<TR. Therefore, the upper bound for f and 0
are set as follows:

(36)

Tis =

B =0 =7 (37)
Also, assume that TNR < TiF0 and TNR < T)°V. However, T{#©

and T°V are not equal, hence we choose the maximum of
the two, as the upper bound for a:
ag =Max{05, Ao} (38)

Hence, the lower and upper bounds are guaranteed in the
offline phase by considering task utilization. The pseudo
code for finding proper scaling factors is described in
Algorithm 2. The scaling factors are defined iteratively
through binary search, according to [23], and e shows the
tolerable error. The code iterates for each core to find
proper scaling factors for all LC tasks on that core. In line
9 of the algorithm, the scheduler checks whether the
computed a, §, and 0 are feasible based on the proposed
scheduling (the effect of scheduling algorithm on scaling
factors are described in Section 4.5). It should be noted that
if the lower-bounds of these factors become less than 1, the
algorithm sets them to 1. After finding the proper scaling
factors, the scheduler updates Eq. 23 to set proper periods
for LC tasks, and tune Ijob's release distances als follows:

NR | ov FO | CR

TR TR

4.4 Unified Demand Bound Functions Analysis

Demand Bound Functions (DBF) present an approach to
analyze the schedulability of real-time workloads [22]. A
mixed-criticality task set is schedulable if the maximum ex-
ecution demand of all tasks is less than the resource supply
in any time interval of a given length in each operation
mode. The demand bound of a task in a given interval is
defined as the sum of execution times of all jobs of tasks,
which have both arrival times and deadlines in this

(39)

Algorithm 2: Find feasible scaling factors SF={ a, §, 6, 1 }

Inputs: I, tasks to cores mapping, M, ats, aus, fis, fus, Ois, Ous, yis,
and ¢=0.001. Execution modes X.
Output: Finding the best scaling factors.

BEGIN
1.fori=1toMdo
2. while (Bus - i > ¢) do

// loop over all cores

3. B=(Bus+ Pus)/2;

4.  while (Ous - 0s > e) do

5. 0= (Ous + Ous)/2;

6. aus_new = max{f, 0};

7. while (aus_new - aLs > €) do
8. a = (AUB_new + aLB)/2;

9. If (T is schedulable in all execution modes X) then
10. ﬂug = ﬂ, Gug = 6, aus = a,
11. else

12. ,BLB = IB, BLB = 6, as = a,
13. end if

14. end while
15. end while
16. end while
17. end for

END

interval. DBF based test is effective but has high computa-
tion complexity, and can be applied to general mixed-crit-
icality task sets. In the following, we develop a new DBF
computation in each operation mode by considering tim-
ing, reliability, QoS, and energy reduction. We compute
DBEF locally for each core, but we should also have a global
glance at all cores because of replicas existence since exe-
cution or cancelation of replicas may have an effect on DBF
computations of other cores. Also, in order to improve the
accuracy of demand bound analysis, we use the unified
DBF approach similar to [22], [40], which considers time
intervals crossing the mode switch point (transition from
one mode to another one) to link the system behaviors in
different execution modes. We now derive task’s resource
demands in all operation modes (epochs) to determine
whether a given task set is schedulable under our pro-
posed method.

Epoch 1: In the NR mode, the DVFS technique is applied
to HC and LC tasks. Although replicas are canceled at the
end of the successful completion of their corresponding
primary tasks, their execution time overlaps with corre-
sponding primary tasks should be considered in DBF com-
putations. The overlap time of each replica job (over-
lap_time;) is the difference between the completion time of
the primary HC job and the start time of its corresponding
replica job. The resource demands of tasks which are exe-
cuted on core my are computed as follows:

1+7,-0,| - ..
DBF,”QW(HQ(T“I):max{{ . 'J,O}. . W (40)
Y (a1)
DBFY. ()= ), overlap_time,
j=1
I +Ti _ Di fmax (42)
DBFTTFW (LC) (7;,1) = max TJ,O}.T.WiLO

A task set is schedulable in NR mode on core 1 if and only
if for VI> 0:
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DBFTTrmk (z,.1)= Z DBFI":,T(HC)(THI)+
f,ermk(HcN)R . (43)
Y DBRFg(m.)+ > DBRN (<!
el (B) 7€l (LC)

Epoch 2: When an overrun occurs, three types of jobs may
exist, i.e. normal, overrun, and crossover [22], [23]. Normal
jobs have both release time and deadline before the mode
switch point; these jobs execute with VL©. Overrun jobs are
released after the mode switch point. Jobs which are
released before the mode switch point but have later
deadlines are candidates for crossover jobs and their finish
time (when they signal their completions) indicates their
role. Assume that the switch point to the overrun mode is
to (t<t°< t¢) where the length of time interval [#, ] is [=f¢-ts
and the time that the core spends in overrun mode is g=f¢-
fo. In this case, we define x to show which tasks have
crossover candidate jobs as follows:

) {X:O, if t°mod T, =0

crossover _candidate =
x=1 if t°mod T =0

Now, if there is a task that has a crossover candidate job,
i.e. x=1, we initially specify its job number j that has release
time before the mode switch point and the deadline after
this point, and then check whether it is a crossover. Here,
if a crossover candidate job j signals completion before the
mode switch point #, it is counted as a normal job (alt-
hough its deadline is after t); if the released job starts after
to it is an overrun job. Otherwise, it is a crossover job:

(44)

y=0, if finish_time, <t°
crossover =1y =1, if start_time, <t’ < finish_time, (45)
y=0, if t°<start_time,

If x.y=1, task 7; has a crossover job and the scheduler saves
its executed time before mode switch point in Exc;. Note
that, n;(I) = |(l + T; — D;)/T;] is the number of jobs of the
taskz in interval I. Also, ni(w) and ni(q) are the number of
jobs of each task in normal and overrun modes, respec-
tively. Therefore, ni(w)+ni(q)=ni(l). We can find the number
of overrun jobs for each task in duration g as follows:

{w i wy=1
n@=4
{(t “t )T+Ti—DiJ' f xy—0 (46)

Here, crossover job is considered as an overrun job. The
crossover job has different execution time and frequency in
the NR and OV modes. Hence, If x.y=1 the DBF require-
ment for crossover job (called nov) is computed as follows:

oy = (Exc,.%)ﬂwl”' -Exc) (47)
The DBF of HC and replilca tasks in OV mode are as fol-
lows:
NN @MW xy=0
e (48)

=W, £ (-, i xy=1

e

DBFz,Oevrmk (HC) (r.])=

LG
Y. (overlap_time,)
i1

Jobs of LC tasks are initially released based on T:¥® period,

DBEY_(r1)= (49)
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and their frequency for applying DVFS is fyr. After over-
run, jobs of LC tasks on core my; are released according to
TV, and the frequency scaling factor changes to foy, which
may be different from their normal frequencies due to var-
ious slack reclamation in these two modes.

(t"—t)+T" D, J t [(te—l°)+Ti°V -D,

DBF?!r LC) ( |):(

J.'pa*).ww 50)

T f o
The DBEF of each core in Epoch 2 is computed as follows:
DBFY (D)= Y. DBRY i (ml)+
5Ty (HC)
Y DBRY(r )+ Y DBRY (N <! (51)

fely, (B) fely (LC)

Epoch 3: When a job of an HC task 7; encounters a fault at
time #f (where t:<#/< #), the replica(s) of the faulty job will
be executed completely. Hence, the cores which contain its
replicas are activated for updating their DBF computation.
In this condition, all previous jobs of a faulty task are exe-
cuted correctly and their replicas are dropped, and only
their execution time overlap is calculated in DBF (Eq. 48).

I+TiT— D J (52)
(53)

op Joe gyeo

mk(HC)(TiVI) = max t
1 1

(t'-t)+T,-D; (t*-t")+T,-D;
TI TI

DBF:EOFW o) = Z

DBFR o (r1)- ({a -t )ZINR DJ {(t f)gﬁ“—D.J_ Tryyio (54)

T, f, T f

A task set is schedulable in the FO mode on core my if and
only if for VI> 0:

DBF'S

overlap _time; + > W/

Iro

DBES. (5,1)= DBF, ) (5, 1) +

5Ty, (HC)

> DBR g (m.)+

fely, (B) 7€l (LC)

DBF® _ (r,1)<I (53)
Iy (LC)NTi0 T/ =

In DBF based approach, according to the online conditions,
the scheduler can provide better service levels for LC tasks,
and execute them more frequently than T;°V or T/©. Similar
to [35], the scheduler introduces a set of early release points
between the desired period and T;°V or T#° and chooses
one of the early release points that passes DBF test as a new
release point of LC tasks (T;#"m in Fig. 1).

Epoch 4: As soon as a core experiences both the fault and
overrun situations at time #, all LC tasks on the core should
be executed with T;°R. The scheduler considers two consec-
utive mode changes, i.e. from the NR to the OV and then
to the CR (Fig. 3 (a)), and from the NR to the FO and then
to the CR (Fig. 3 (b)). For example, in Fig. 3 (a) one of the
jobs of the HC task 1, on C2 overruns at the time # and C2
switches to OV mode. Also, one of the jobs of 7, encounters
a fault in C1 and its replica in C2 (Br) should be executed.
Therefore, C2 enters the critical mode at switch point time
tcand all remaining LC jobs on this core are executed with

T Fault
C1 /I B

Overrun

Fault

Overrun

WO WHLWLO WO WHWLO

czl—y = 11— s g

{ t
epochl | epoch2 epoch 4 epoch3 i epoch4
é:T H chﬂT ov LC!LT *® LC-TFO 1 LCoT®

tu tc [' [c

@) (®)
Fig. 3. Overview of Epoch 4. a) Mode switch from NR to FO to
CR, b) Mode switch from NR to OV to CR.
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TR period. Hence, DBF computations from switch point
time # to the end of the interval are as follows:

DBF. (%ﬁ-ﬁ):qu“'4?:L‘DwAnwﬂ

o (@t =t) = max{{(te_tc)TMJyo}WiLo (57)

e 4 (te _tc) +TiCR B Di fmax (58)
1o (Tt =t )=ma\x{{TCR '0}'T-Wim

A task set is schedulable in the CR mode on core m if:

(56)

DBF®

el

DBFCR

rel'
i

DB :er nlh)= 3 DBFrCR(HC) 1)+
7€l (HC) 9
5
Y DBFT @+ Y DBFfR(LC)(Ti,l)s(te—f)( )
tiely (B) fiel g (LC) ™

4.5 Scheduling Algorithm

Our proposed LETR-MC scheme consists of an offline and
an online phase. Algorithm 3 shows the pseudo code of the
task scheduling mechanism of LETR-MC. Algorithm 1 is
called for task mapping in line 1. Then, in line 2, Algorithm
2 is called to compute the scaling factors of LC task periods.
Afterward, tasks on each core should be scheduled based
on our proposed algorithm. We assume that each type of
tasks has a preference to indicate how the jobs of its tasks
will be executed. For this purpose, we adapt the parti-
tioned ER-POED (ER-Preference-Oriented Earliest-Dead-
line) scheduling algorithm on multicore fault-tolerant
MCSs [25]. The scheduler divides tasks into two different
groups, i.e. as soon as possible (ASAP) and as late as pos-
sible (ALAP) tasks. The scheduler tries to execute ASAP
tasks before the ALAP ones. In this work, we consider HC
and LC tasks as ASAP, and replicas as ALAP, respectively.
The algorithm iterates over all cores (line 3) and goes on
until all the tasks on each core are scheduled. The sched-
uler checks ASAP (Qasar) and ALAP (Qarar) queues on
each event. If the Qarap is empty while Qasap is not, the
scheduler selects the task with the earliest deadline in
Quasar for scheduling. The preemption scenarios, when the
core is busy due to the execution of another job (J..), are
shown in lines 6-17. If ], is an HC or an LC job, ER-EDF
chooses one of them for execution. However, if ., is a rep-
lica task, the replica is shifted back toward its release time
to produce free time slots for executing ;. If there are more
than one task with the same deadline in ASAP queue, the
execution order of individual tasks with the same prefer-
ences (ASAP tasks) is distinguished with ER-EDF. If Qasap
is empty while Qarapis not, a replica with the earliest dead-
line is chosen for scheduling. The scheduler defines how
much the execution of replica task can be delayed while
still meeting its deadlines by executing at maximum fre-
quency. Here, the scheduler finds slack times (equal to
WCET of the replica task) from the deadline of selected
replica task toward its release time, and schedules the rep-
lica in these free time slots (lines 21-22). If there are tasks in
both of the Qasar and Qarap, if the deadline of an ASAP job
(Ji°) is smaller than ALAP one (J.,}), the algorithm sched-
ules J;® in lines 23-27. Otherwise, the ., is scheduled in
line 29. After scheduling all tasks based on the worst-case
scenario, the scheduler updates scaling factors of LC tasks.

Algorithm 3: The task scheduling of our LETR-MC scheme

Inputs: I, PFH, Scaling factors, M, Available V-f levels ,different
execution modes X.
Output: The task scheduling on each core.

BEGIN:
1. Call(Algorithm 1); //Task mapping
2. Call(Algorithm 2); //Compute SF

3. for each core my in M do
4. while (all tasks in T'my are not scheduled) do

-~ //Event: Ajob of 1; (J;j) is released at time t on the core m;

5. if (QASAP# & QALAPZQ) then

6. if my is busy then // Jmn is executed
7. if J;is HC or LC then / /ASAP tasks
8. if ],y is LC or HC

9. if (d(Jy) > d(Jun)) then //d: deadline of the job

10. ER-EDE(J;);

11. else

12. ER-EDF(Juum);

13. end if

14. else // Ju is replica

15. ER-EDEF(J;j);/ / shift J,., toward its release time
16. end if

17. end if

18. else // core my is idle

19. ER-EDEF(Jij);

20. end if

21. elseif (QASAP= D& QALAIﬁé @) then

22. Schedule Jj; in free time slots from d(J;) to r(J;) ;

23. else // Q/\s/\lﬁé D & Q/\L/\p#@

24. Ji*= Qasar.select(); / /Sort jobs based on their d

25. Jut= Qarap.select(); / / Select the first ] with earliest d

26. if d(J;°)< d(J,') then

27. goto line 6;

28. else

29. Schedule J,,! in free time slots from d(J,,) to r(J.,*);
30. end if

31. end if

32. end while

33. end for

34. Update.SF; // Update o, f, and 6
35. Check.DBF; // for each core in each execution mode X
36. Apply offline DVFS; //SUF and DBF-based heuristics
END

For example, in order to update a, the scheduler cancels the
overrun part of all HC tasks, i.e. WH-WL0, and drops the
non-overlapping part of the replica tasks. Hence, LC tasks
will be scheduled in these released slacks. During this pro-
cess, the scheduling of the HC tasks is left untouched, i.e.
HC jobs are executed exactly based on the times that the
scheduler determines in the worst-case scenario. For up-
dating B, only the released slacks from the cancellation of
non-overlapping part of replicas are used to schedule LC
tasks more frequently. For updating 6, only the released
slacks from the cancellation of the overrun parts of all HC
tasks (WHL-WiLO) are used to schedule LC tasks more fre-
quently.

By scheduling HC tasks as soon as possible and their cor-
responding replicas as late as possible, it is sufficient to
complete only one copy of each task successfully. So, if one
replica completes and no fault is detected, we can cancel
other versions of that task immediately to avoid further en-
ergy consumption. Also, in this paper we exploit
partitioned approach, i.e. each task is statically assigned to
a single core, and migration is not allowed due to its non-
negligible overheads among cores [56].
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The offline DVFS is applied to the final schedule of normal
execution mode based on our proposed method in Section
4-6. After applying DVFS, the scheduler updates execution
time overlap between primary tasks and their correspond-
ing replicas, and obtains new scaling factors if necessary.

4.6 Energy Minimization Problem

We define the energy minimization problem for a set of pe-
riodic mixed-criticality tasks on multicore platforms that
exploits task replication technique (task-level reliability
targets). The number of required replicas and the fre-
quency of tasks should be properly determined, while the
timing constraints of HC tasks and replicas are met, and
acceptable service levels for LC tasks are simultaneously
guaranteed.

1) Formal Problem Modeling: The goal of reliability-aware
energy minimization problem on mixed-criticality multi-
cores is to minimize the total energy consumption in all op-
eration modes (called X in Table 2). LC tasks are executed
with WO/ f; in all execution modes. However, HC tasks are
executed with Wit0/f; in NR and FO modes, and with W

in OV and CR modes. The objective can be written as:
. \

h_I f
Z z Z (p+ (%)2)Xwijx

k=L vrely j=1 max

Minimize: (60)
VX €{NR,0V,FO,CR}
Constraints of the energy minimization problem are as fol-
lows. Task’s frequency levels in each mode are in the range
of the minimum and maximum core frequencies:
st Ve, fe[f (61)

The WCET of a task z; at frequency level f; in criticality level

X should not exceed the task timing constraint (D;).
X

min ! fmax]

s.t. V7, VX, Vi, V\:‘i <D, (62)

Total DBF of each core in each execution mode should be
less than the given interval I:

sit. vX, vM, VI >0, DBF <I (63)

Each task’s reliability should meet the reliability target ac-
cording to PFH in DO-178B standard, as follows:

S.t. VTi’ Rri 2 Rtarget (64)
Frequency scaling affects the WCET of a task and conse-
quently its reliability and PoF. Therefore, the required
number of replicas for each task (;) to meet its reliability
target in frequency level f; should be considered in energy
minimization. Also, the scheduler should decide about us-
ing slacks for energy reduction or improving the QoS of LC
tasks. In addition, the task set should be schedulable in
each execution mode with computed scaling factors (a, p,
8, y) even after applying DVFS.

st Va,,0,7: 1<a<p0<y (65)

Optimally solving the energy minimization of multicore
systems without considering the reliability requirement is
NP-hard [9], [11]. Therefore, solving this problem in fault-
tolerant mixed-criticality multicore systems is also NP-
hard; hence, we develop a heuristic to manage energy con-
sumption.

2) Proposed Heuristics: Offline DVEFS is applied to the nor-
mal execution mode of the system. In the offline phase, the
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scheduler uses static slacks to apply DVFS for energy re-
duction. At first, f... is assigned to all the tasks as their ex-
ecution frequency. Then, selection of tasks for reducing the
frequency and using the static slack in offline phase is done
according to Smallest-Ultilization-First (SUF), and the pro-
posed DBF-based heuristics. Although executing a task un-
der a lower frequency reduces energy consumption, the
task takes longer time to complete, which may violate the
timing constraints. Furthermore, lowering task’s execution
frequency increases the system transient fault rate, which
in turn increases the probability of executing all replicas,
or increments the number of required replicas. The sched-
uler should consider timing constraints, reliability and
QoS analysis simultaneous in energy management because
a decision made in any one affects the others. Algorithm 4
shows the pseudo-code of offline DFVS and the interplay
of energy, reliability, and schedulablity analysis in energy
management.

In SUF, HC and LC tasks are sorted in a queue, based on
their utilization in increasing order in line 2. The scheduler
selects the first task in the queue to scale down its fre-
quency, in line 4. First, the scheduler extracts the amount
of static slack times and finds the minimum frequency that
the selected task can use it, in lines 5-6. If the schedulability
constraints are met in DBF analysis of the normal mode,
and if the reliability target is met, this frequency is assigned
to the selected task in lines 8-9. If timing constraints in DBF
analysis are not satisfied, the frequency is scaled one level
up in lines 10-11. However, if the reliability target is not
met, the scheduler checks whether more replicas can be
properly mapped and scheduled. If it can, this frequency
is set in lines 12-16. Otherwise, it scales frequency one level
up in line 18. The scheduler repeats the previous steps until
no task’s execution frequency can be scaled down, and up-
dates the static slack in each iteration.

In the DBF-based heuristic, there might be more than one
task that can be scaled down; the scheduler chooses the
task which has more impact on total energy reduction. Af-
ter extracting the amount of static slack times (line 24),
while there is a task in a I'(HL) and there is static slack, the
algorithm iterates among all the tasks, except replicas, on
each core. In each iteration, it selects one of the tasks (line
27). The scheduler receives the WCET of the task and the
amount of static slacks, and finds task’s minimum accepta-
ble execution frequency based on the QoS, reliability and
timing constraints in equations 60-65 (line 28).

If the reliability of the selected task decreases after lower-
ing down the frequency level, the scheduler tries to in-
crease the number of replicas. If new replicas can be
properly mapped and scheduled on multicores, the sched-
uler sets the execution frequency of the selected task,
otherwise, it scales up the frequency level of the selected
task, and algorithm goes on (lines 30-37). If lowering down
the frequency violates the schedulability in DBF analysis,
the scheduler scales the frequency one level up and iterates
the above steps in lines 38-39. If the reliability and
certification constraints are met, the scheduler assigns the
computed frequency to the selected task, and computes the
energy efficiency factor (EEF) for each task based on the
minimum acceptable execution frequency (lines 41-42) as
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follows:

NE, (before_ DVFS)— NE_ (after _ DVFS)
EEF, =— i

NE, (before_ DVFS)

After computing the EEF for all the tasks, the scheduler
finds the task with maximum EEF, which decreases energy
consumption the most, in line 46. Afterward, the scheduler
sets the frequency of the selected task in line 47, updates
static slacks in line 48, removes the selected task from the
for loop in line 49, returns the frequency of all remaining
tasks to the maximum value in line 50, and repeats the
above steps for all remaining tasks. The above steps are re-
peated until the EEFs of all tasks become zero, or there are
no more static slacks. During applying offline DVFS spe-
cial care should be taken. One point is that the released
slack from cancellation of replicas in the normal mode can-
not be used for applying DVFS to HC tasks, because repli-
cas may require to be executed, and only LC tasks can oc-
cupy their places. Whenever a fault or an overrun occurs,
LC tasks can be extended and replicas are executed. The
other point is that all the available static slacks cannot be
used for applying DVFS to HC tasks. Regarding the over-
run occurrence, only slack S (S=Available slack-(IVii-
WiL9)) can be used for applying DVFS to HC tasks because
by applying DVES, each taskz is executed up to Wit0/f,
and overrun is detected at the end of this time. Therefore,
by reserving some of the available static slack time for the
overrun occasion, if an overrun occurs after applying
DVES, there is enough time for executing the remaining
parts of the job. It should be noted that after applying
DVES, the execution time overlap between the primary
tasks and their corresponding replicas will be updated and
considered in DBF analysis, i.e., applying DVFS and com-
puting the execution time overlap between primary tasks
and replicas are performed simultaneously.

Our offline approach can be used in conjunction with an
online energy manager which uses dynamic slacks to ap-
ply DVFS and DPM during runtime for further energy sav-
ings. Dynamic slacks are released due to replica cancella-
tion or early completion of tasks. In runtime, initially the
amount of released dynamic slack is determined. If the idle
time of the core is longer than Ay, it is beneficial for the
system to go into sleep mode to reduce energy consump-
tion. Otherwise, online lightweight job-level DVFES is used
for energy saving. It exploits greedy slack assignment, i.e.
all the released slack from the current job will be used to
further lower down the V-flevel of the next job whenever
it is possible to do so. In order to reduce the overhead of
DVEFS computations, inserting more replicas is not permit-
ted. Therefore, the V- level is lowered down to a level
where no more replicas need to be inserted. Otherwise, the
slack will be transferred to the next jobs or it may even not
be used. DVFS transition overhead may be significant or
negligible based on how often the DVFS is applied. In
modern microprocessors, changing the DVFS setting is ra-
ther frequent in response to rapid changes in the applica-
tion behavior. The DVFS transition delay overhead in
high-end Intel Core2 Duo E6850 is between 9 to 62 us, for
embedded Samsung Exynos 4210 processor based on ARM
Cortex-A9 core is about 11 to 18 us, and this overhead for

(66)

Algorithm 4: Offline DVFS, interplay of energy, reliability, and
certification

Inputs: The task scheduling on each core, I, PFH, Scaling factors,
M, Available V-f levels.
Output: Acceptable V-f level for each task.

BEGIN:

-- SUF hueristic
1. T(HL)=THC)+I(LC); // HC & LC tasks set
2. T'(HL).sort(); //Sort HC and replica tasks w.r.t utilization
3. forall tasks in I'(HL) do

4.  1=I(HL).select(); //Select the task with smallest utilization
5. S5« Extract_StaticSlack();

6 fr; & Determine_min_freq(W;, SS);

7. while (freq is not assigned) do

8 if (Ry,(r) = Riarger) and (DBF<I)

9. assign f;, to z;

10. elseif (DBF>I)

11. fo= LIP_Scale(fri);

12. elseif (R;,(r,) < Riarger) and (DBF<I)
13. increase the # of replicas;
14. Update_DBF;

15. if (DBF<I)

16. assign f,i tot;

17. else

18. fri= UP_Scale(fr;);

19. end if

20. end if

21. end while

22. end for

-- DBF-based hueristic

23. T(HL)= T(HC)+T'(LC);

24. SS¢ Extract_StaticSlack();

25. While (T'(HL)# Q) or (SS# @)) do
26.  for all tasks in I'(HL) do

// HC & LC tasks set

27. 7;= I'(HL).select();

28. fr; & Determine_min_freq(W, SS);

29. while (freq is not assigned) do

30. if (Rri(fri) <Rtarget) and (DBF<I)

31. increase the # of replicas;

32. Update_DBF;

33. if (DBF<I)

34. assign f;, to ;

35. else

36. fri= UP_Scale(fr);

37. end if

38. elseif (DBF>])

39. fri= UP_Scale(fr));

40. elseif (R;,r, = Riarger) and (DBF<I)
41. assign f,i tot;

42, Compute_EFFr; // w.r.tEq. 66
43. end if

44, end while

45. end for

46. j=determine_max_EEF(I'(HL));
47.  fr=set_freq();

48. SS¢ Update_StaticSlack();

49. T(HL)= T(HL)-z};

50.  fruy= set_freq(fua);

51. end While

END

the TI MSP430 microcontroller that is used for ultralow-
power embedded systems is about 10 to 145 us [66]. Also,
by using ultra-fast voltage regulators, where V4 switching
is moved into the sub-micron regime like the Intel Haswell
CPU, switching between voltage levels takes place in less
than 1us [65]. Therefore, since the online DVFS overhead is
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in the order of micro second (us), and the order of execu-
tion of tasks in the systems is millisecond (ms) [2], [15], the
overhead of applying DVEFS is negligible and can be con-
sidered as a part of the task’s WCET. Energy consumption
of the memory unit is out of the scope of this paper. How-
ever, there are data recompuatation techniques [59-64] that
can be used for energy reduction of the memory. Finally,
in order to explain how our proposed method works, there
is an illustrative example which is presented in the
appendix.

5 RESULTS AND DISCUSSION

In this section, we perform extensive simulations to pre-
sent the effectiveness of our proposed LETR-MC method
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from the perspective of energy saving, reliability and QoS
in different operation modes.

5.1 Experimental Setup

Due to lack of benchmark packages for MCSs, similar to
[18], [20], [22-23], [25-28], [30-31], [33-37], [40-43], [67], we
evaluate our proposed scheme using synthetic task sets.
The UUnifast algorithm is used to generate utilization for
n tasks I'={ry, 1o, ..., 7,} with total utilization equal to U [28].
The UUnifast algorithm is proposed by bini and
buttazzo [44] to generate utilizations of a task set to study
uniprocessor scheduling, which has the lowest complexity
among all task generation algorithms. The generated utili-
zations for HC and LC tasks correspond to their high-level
WCETs (i.e. ui(HC,H)) and low-level WCETs (i.e. u;(LC,L)),
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Fig. 4: Normalized energy consumption of different operation modes based on WFD and FFD mappings, with different fault coverage values.
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Fig. 5. QoS of LETR scheme in different operation modes and different fault coverage values.

respectively. We define the P! factor which is the proba-
bility that the generated task is HC. The periods of tasks
are randomly selected from the set T={10, 20, 40, 50, 100,
200, 400, 500, 1000} ms [20]. Hence, the WiH! for an HC task
is computed according to WiH'=T.u;(HC,H), and for LC
tasks WiH=WiL0. However, for HC tasks WiLO=p W,
where p is a random value in the range of [0.3, 0.5]. The
PFH level of all HC tasks is selected from levels A, B, and
C in DO-178B standard. Hence, the target reliability and
the number of required replicas for each HC task is com-
puted based on the selected PFH level. We consider a mul-
ticore platform, and the available frequencies for each core
are set as F={0.6, 0.7, 0.8, 0.9, 1}. In the online phase, tasks
are executed with actual execution time which varies be-
tween 70 to 100 percent of their WCET.

5.2 Experimental Results and Discussions

We evaluated the energy consumption, reliability and QoS
of our proposed method in different operation modes in a
quad-core platform based on WFD and FFD mapping, and
the results are shown in Fig. 4 and Fig. 5, respectively. Uti-
lization U was varied from 0.5 to 4.5 with steps of 0.5, and
in each utilization point, 50 task sets were synthetically
generated. The results are reported as the averages of 100
repetitions of the experiment at each utilization point. The
PHI factor is equal to 0.5. HC, and LC tasks are selected
from levels B and D, respectively. Therefore, the average
energy consumption and QoS are computed with preserv-
ing the target reliability in all experiments. Also, in Fig. 4
and Fig. 5 the energy consumption and QoS of our pro-
posed method for different fault coverage values (FC) are
reported. In these figures, the energy consumption and
QoS of each operation mode are computed based on the
worst-case scenario of that mode, i.e. the energy consump-
tion of OV and FO modes are reported where all the HC
tasks overrun, or all HC tasks encounter faults and all rep-
licas are executed completely with maximum frequency,
respectively. In addition to the worst-case scenario, the en-
ergy consumption is analyzed based on the actual case
(Real_WF and Real _FF). In the actual-case, faults are in-
jected into the system with Poisson distribution, and HC
tasks overrun randomly. In Fig. 4, the normalized energy
consumption before applying offline DVFS (X_Base, where
X represents the operation mode including NR, OV, FO,
and CR), after applying offline DVFS technique based on
DBF and SUF (X_OffDVES), and after applying online
DVES (X_OnDVES) are shown. By increasing the utiliza-
tion, the energy consumption is increased, and the DBF-
based DVES lowers the energy more than the SUF one.
Since transient faults and overrun are rare in nature, LETR-
MC achieves further energy reduction at runtime beyond
what is achieved through the offline part of LETR-MC at
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design-time.

Also, decreasing the fault coverage value reduces the reli-
ability of the system according to equations 6-8. Hence, the
schedulability of the task sets will be decreased, because
more replica tasks are needed to schedule to achieve the
given reliability target. Therefore, the lower fault coverage
value leads to lower schedulability. Fig 5. represents the
QoS of our proposed LETR-MC method in different oper-
ation modes with WFD and FFD mappings and different
fault coverage values. The QoS is computed based on the
fraction of the number of remaining schedulable LC jobs in
each operation mode to the total original number of jobs
based on the desired period of LC tasks. As it is clear, by
increasing the utilization, QoS is decreased to keep the sys-
tem schedulable. Also, due to the load balanced mapping
in the WFD, it out performs FFD in all operation modes,
i.e. WED can preserve higher percentage of LC jobs in each
operation mode in comparison with FFD mapping. Mean-
while, the normal operation mode with WFD mapping
(NR_WF) has the highest QoS, and the critical operation
mode with FFD mapping (CR_FF) has the lowest. The re-
sults of actual-case scenario (Real WF and Real FF) is
close to the QoS of Normal mode (NR_WF and NR_FF).
Also, lower fault coverage leads to lower schedulability
and also lower QoS in both the WFD and FFD mapping,
because replica tasks reserve the execution time of the
cores to satisfy the given reliability target.

Fig. 6 illustrates both energy consumption and QoS of the
LETR-MC method in different operation modes with WFD
and FFD mappings and fault coverage 100%. In this figure,
the energy consumption is normalized to that of the
scenario where all tasks are executed at fi.., HC tasks are
executed with WH! and the jobs of LC tasks are released
based on their desired period. This figure shows that in
each utilization point, the energy consumption of the FFD
mapping is close to WFD one. However, the QoS of FFD in
that utilization point is less than the WFD one. Hence, FFD
mapping consumes less energy at the expense of lowering
down the number of executable LC jobs.

We compared our proposed method from the QoS point of
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Fig. 6. Analyzing the energy consumption and QoS of LETR scheme
in different operation modes.
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view with [27] in Fig. 7. The reference [27] proposes an of-
fline algorithm which improves the QoS of EDF-VD algo-
rithm by trying to save as much LC tasks as possible in
overrun mode. Without considering any PFH level for
tasks, it assigns one re-execution to each HC and LC task.
Therefore, all HC and LC tasks and their re-executions
must be schedulable in normal mode. However, in overrun
mode, HC tasks and their re-executions must be schedula-
ble, and for LC tasks the algorithm tries to find schedulable
set of LC tasks based on the scaling factor in EDF-VD
scheduler. Afterward, it tries to reserve re-executions for
LC tasks that are schedulable in overrun mode. In this set
of experiments, the utilization of a single-core platform is
varied from 0.05 to 1 with steps of 0.05. In each utilization
point 50 task sets are synthetically generated and the ex-
periments are repeated 100 times. The P! factor is equal to
0.4. In the first scenario, we consider that all HC and LC
tasks need one re-execution. Therefore, the proposed
method in [27] finds the number of LC jobs that can be
schedulable in overrun mode. As it is shown in Fig. 7, this
method is not schedulable after utilization point 0.65. In
the second scenario, we modified their proposed method
considering that LC tasks do not need re-execution. Hence,
the schedulability of their method is improved. However,
LETR-MC is schedulable in all utilization points, also
LETR-MC can preserve higher number of jobs than [27] in
overrun mode. It should be noted that the reference [27]
considers two operation modes, i.e. normal and overrun.
However, in this set of experiments, we reported the QoS
of LETR-MC in FO and CR mode in addition to NR and
OV modes. By considering different operation modes and
proposing MEMC task model, the LETR-MC method can
provide higher guaranteed QoS.

We compared the energy consumption of LETR-MC with
HSFA algorithm in [36], [37] (Fig. 8). In these set of experi-
ments, each task set has 10 tasks and the experiments are
repeated 100 times and the average of these repetitions are
reported. In Fig. 8 (a), the high utilization of HC tasks is
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H FO_Base

®HSFA_NR_dbfDVFS EIHSFA_NR_SUFDVFS & HSFA_OV
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equal to 0.3 (UHC,H)=0.3), and the utilization of LC tasks
H(LC,L) varies from 0.3 to 0.7 with steps of 0.1 in a single
core platform. By increasing the utilization of LC tasks, all
methods consume more energy, since in higher utilizations
there is less slack time to use for energy saving. In Fig 8 (a)
and (b), the LETR-MC method consumes lower energy
than HSFA, since it lowers down the number of LC jobs to
make the system schedulable. Also, the DBF-based DVFS
lowers the energy more than the SUF one. It should be
noted that HSFA does not have an online manager, and
dynamic slacks are not used for energy saving. However,
the LETR-MC method can reduce the energy the most in
the online phase. The faulty mode of HSFA algorithm has
the highest energy consumption. However, in the FO and
OV modes of LETR-MC method, due to the lower number
of LC jobs, the energy consumption is less than the worst-
case scenario where all HC tasks are executed with WH! and
all replicas are executed completely at fi... HSFA uses
EDEF-VD algorithm and it drops all LC tasks after entering
the overrun mode. Hence, this method consumes the least
energy in the OV mode. However, LETR-MC executes
guaranteed service level of LC jobs in OV mode, which
leads in more energy consumption than HSFA. However,
by applying the online DVFS, we can mitigate the energy
consumption.

6. Conclusion

In this paper, we proposed the LETR-MC scheme that con-
currently considers certification, fault-tolerance, energy re-
duction, and QoS. We used task replication to tolerate
fault, and improve QoS of LC tasks. The number of re-
quired replicas for each HC task is computed through the
proposed formulas. Then, our proposed scheduling
algorithm reduces the execution time overlap between the
primary tasks and replicas to save more energy by drop-
ping the remaining parts of replicas at the end of correct
execution of their primaries. Also, through the presented
service guarantee exploration algorithm, we theoretically
guarantee an acceptable service level for LC tasks in differ-
ent operation modes of the system, i.e. normal, overrun,
fault-occurrence, and critical. In order to check the sched-
ulability of the proposed method, we analyzed the re-
source demands of mixed-criticality tasks with the dead-
line and reliability constraints, energy reduction and QoS
guarantee. Finally, we showed that energy consumption
can be reduced in the offline and online phases by exploit-
ing static and dynamic slacks, respectively, while the pre-
serving the guaranteed service level for LC tasks.

B HSFA_NR
HSFA_FO
®NR_OffDVFS_SUF
H FO_Base

B HSFA_NR_dbfDVFS EHSFA_NR_SUFDVFS @ HSFA_OV
ENR_Base RINR_OffDVFS_DBF NR_OnDVFS_DBF
HENR_OnDVFS_SUF  BOV_Base B OV_OnDVFS
FO_OnDVFS
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(b) Comparing energy consumption under various U(HC,H)

Fig. 8. Comparing the energy consumption of LETR method and HSFA in [37].
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