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ABSTRACT

Widespread growth in Android malware stimulates security re-
searchers to propose different methods for analyzing and detecting
malicious behaviors in applications. Nevertheless, current solu-
tions are ill-suited to extract the fine-grained behavior of Android
applications accurately and efficiently. In this paper, we propose
ServiceMonitor, a lightweight host-based detection system that
dynamically detects malicious applications directly on mobile de-
vices. ServiceMonitor reconstructs the fine-grained behavior of
applications based on their interaction with system services (i.e.
SMS manager, camera, wifi networking, etc). ServiceMonitor moni-
tors the way applications request system services in order to build
a statistical Markov chain model to represent what and how sys-
tem services are used. Afterwards, we use this Markov chain as a
feature vector to classify the application behavior into either mali-
cious or benign using the Random Forests classification algorithm.
We evaluated ServiceMonitor using a dataset of 8034 malware and
10024 benign applications and obtaining 96.7% of accuracy rate and
negligible overhead and performance penalty.
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1 INTRODUCTION

Android is the most popular smart phone OS currently being used.
Gartner [1] reported that 88% of smart phone sale in the second
quarter of 2018 were Android based devices. Android has brought
about many new applications, which have resulted in a complete
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different level of experiences for the end user. However, it has
created concern as to the security and privacy of the information (i.e.
contacts, geographical locations, photos, and etc.) being used/shared
with new applications. As a result, and due to its popularity, Android
OS has been a major target for new malware. In fact, it has been
reported by AV-Test [2], that over 99 percent of new malicious
applications targeting mobile devices are aimed at Android devices.

There have been many approaches [3-13] proposed to combat
the rise of malware in Android devices. These techniques vary in
their approaches to the problem; techniques that operate outside the
device, such as Google Play Protect [3], to applications that operate
on the end-user device [6, 11] and provide a malware detection
service. It is important to note that these different approaches are
complementary and it is a good example of defense in depth. This
could be explained by the fact that end-user detection is bound by
limited resources available on the device, but more importantly,
market based techniques suffer from the fact that not all applications
are downloaded from a single market. In fact, there are multiple
alternative markets to Google play, such as Amazon app store,
SlideME, and Samsung Galaxy Apps. This highlights the importance
of employing also on-device malware detection techniques.

Detection techniques that run on-devices are limited by resources
on the device as well as the user experience, i.e. users don’t want
to experience delay in app interactions due to the detection mecha-
nism. Generally, these techniques operate by collecting behaviors,
as a set of features, of the application being analyzed and then
decide on the nature of the application, i.e. benign or malicious.
The analysis could be done either statically or dynamically.

Static techniques analyze the application bytecode with near-
complete coverage, considering all execution paths, even if a part
of the program never executes. These techniques are vulnerable
to transformation attacks [14] and could be evaded by traditional
obfuscation techniques, such as Java reflection and bytecode en-
cryption, or newer runtime-based obfuscation techniques [15]. Fur-
thermore, malicious behaviors may be implemented in native codes
[16], which are usually not analyzed, or they might be hidden and
triggered at run-time through additional codes loaded dynamically
from external sources [17].

Alternatively, dynamic analysis techniques observe the behavior
of applications at run time. But as Zhang et al. [18] reported, most
of these techniques which operate on end-user devices, consider
the behavior of applications at the system call level, i.e. system
calls executed and the order of their execution. In fact, given An-
droid OS architecture, techniques based on the system call tracing
obtain an incomplete view of the behavior of the binary being an-
alyzed. This becomes clear, when one considers that in Android
OS, applications are not able to directly access system resources
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(e.g. SMS, camera, microphone) through system calls at the kernel
level. Instead, Android framework provides specific system services
at a higher semantic level than system calls in order to manage
communications among system resources and applications. Hence,
traditional dynamic methods, which are based on analyzing system
calls, are less effective in malware detection, as they reconstruct
behaviors of applications based on a number of intercepted system
calls which contain no information about system resources being
accessed.

Considering above observations and taking into account issues
and limitations of static analysis techniques, we propose a novel
System Service Use Analysis technique to capture and analyze the
fine-grained behavior, i.e. at the system services level, of applica-
tions with the aim of detecting malicious applications. We build a
statistical model to represent what and how system services are
used to access system resources. Specifically, we model sequences
of requested functions from system services as Markov chains, and
use them to extract features and perform classification.

In fact, ServiceMonitor systematically analyzes and models sys-
tem services use at multiple levels of semantics regardless of whether
it is from Java or native code, and classifies Android applications as
malicious or benign directly on mobile devices. In summary, this
paper makes following contributions:

o System service use analysis. We propose a systematic system
services use analysis technique, which automatically and
seamlessly models the state transitions achieved by func-
tions requested from system services as a Markov chain; aim
at representing the application behavior by its pattern of
accesses to system resources.

o Effective Android malware detection. We developed a dynamic
Android malware detection framework, named ServiceMon-
itor, to reconstruct the behavior of applications based on
system services use analysis technique with the aim of iden-
tifying malicious behaviors as well as malware. ServiceMoni-
tor is capable to detect Android malware with high accuracy
and few false positives.

o Lightweight detection procedure. With taking into account
the limitation of resources in mobile devices, ServiceMonitor
operates with a low performance overhead and using limited
energy.

In the remainder of this paper, we first survey a number of related
work in Section 2. Then we describe inter-/intra-process communi-
cation procedure in Android OS in Section 3. Then the proposed
system service use analysis technique and ServiceMonitor detec-
tion method are described in Section 4. After that we present the
implementation details and evaluation results in Section 5 and Sec-
tion 6 respectively. We also discuss some related issues on Android
malware detection and limitations of ServiceMonitor in Section 7
and conclude the paper in Section 8.

2 RELATED WORK

There exist many techniques in the literature for analyzing and
detecting Android malware. These techniques could be catego-
rized based on how the analysis/detection agent is deployed as: i)
Emulator-based techniques, such as [19, 20], which are based on
software virtualization and emulation. These systems suffer from
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several fundamental limitations, i.e. performance penalties, trans-
parency issues, and special software/hardware requirements, for
deploying on end-user devices. ii) Cloud-based techniques, such
as [12], which collect information from end-user device and then ag-
gregate and analyze the information on the cloud. The effectiveness
of such frameworks relies on the reaction of end users when they
are asked to send recorded logs from applications to an external
server. iii) Host-based techniques, which are deployed wholly
on the mobile device given the performance constraints, without
requiring emulators or cloud based analyzers. These systems can
be categorized into static and dynamic approaches.

2.1 Static Analysis and Detection

There have been a number of static learning based studies in which
features are defined and selected based on some malicious code pat-
terns and heuristics. For instance, DroidSieve [8] and DroidDet [10]
are two similar approaches that extract detection features from ap-
plications disassembled codes and manifest files as much as possible.
These two approaches hold the occurrence of sensitive API calls in
their feature sets beside other information such as requested permis-
sions and names of application components, i.e. activities, services,
broadcast receivers, and content providers. These approaches also
differ from each other in how to structure features extracted from
applications. ICCDetector [9] is a static based method that extracts
ICC (Inter-Component Communication)-related features that hold
interactions within or cross applications components, and then
leverage machine learning techniques to perform classification. As
noted briefly in introduction and stated in [14] and [15], static analy-
sis and detection techniques are thought to be insufficient to detect
malware variants generated by transformation and obfuscation
attacks. Also, most of the current static solutions are ill-suited to
analyze additional codes loaded dynamically from external sources
[17] as well as native codes [16].

2.2 Dynamic Analysis and Detection

On the other hand, there have been a number of proposed works
[5, 11, 21-24] in which applications are analyzed dynamically us-
ing extracted system calls in order to detect malware at runtime.
However, as Zhang et al. mentioned in [18], all system call based sys-
tems share one fundamental limitation. Due to the missing semantic
view of accesses to system resources, their analysis is ineffective to
demonstrate the fine-grained and accurate behaviors of Android ap-
plications. To solve this limitation, Sun et al. [13] proposed Patronus,
which focuses on fine-grained behaviors of applications. Patronus
is a host based intrusion prevention system for Android devices. Pa-
tronus considers a database of manually crafted malicious policies
from known malware samples and calculates the similarity score
between transaction footprint extracted from running applications
on user’s device and malicious transactions, which are recorded
in the policy database, aim at preventing malicious intrusions and
detecting malware at run-time. But Patronus depends on experts to
define security policies and rules to cover malware misbehaviors.
Hence, due to the known malicious policies in its database, it could
not be effective and suited for detecting unknown and zero-day
malware families.
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Figure 1: Accessing to system resources and interactions
between applications components through Binder transac-
tions.

In what follows, and based on noted limitations of previous
related works, we propose an effective dynamic detection method
for malware detection on end-user devices.

3 INTER-/INTRA-PROCESS
COMMUNICATION

As illustrated in Figure 1, in Android security architecture, each
application is isolated in a separate sandbox, and direct access from
applications to system resources (i.e. SMS, GPS, address book, etc.)
is prohibited. Instead, access to system resources is handled through
system services implemented in the framework layer of Android
architecture. Furthermore, alongside requesting system resources
in Android OS, interactions with other apps and with other com-
ponents of the same application are performed through system
services. For example, sending data between different components
of an application use Activity Manager system service via Binder
component.

System services, similar to other processes, are run in a sand-
boxed environment and with a distinct system identity, i.e. Linux
UID and GID, from other processes. Applications access system
services through Binder component. Binder component is deployed
at two levels, Binder Framework and Binder driver. The former is a
user-level library named libbinder which is loaded into the most
Android applications and used with the aim of marshalling requests
and sending them to system services via an specific system calls
named ioctl. On the other side, system services use libbinder library
for unmarshalling requests and creating respond objects. The sec-
ond level, Binder driver, controls all processes communications in
the kernel level. In other words, libbinder, by calling ioctl system
call, sends required services and requests to Binder driver, then it
drives them to the targeted system service.

4 OUR APPROACH

Android applications require access to different system resources
to operate properly. Where such operations could be benign as
advertised by the application creator, or malicious; although appears
to be benign by the client. In both scenarios system resources are
accessed, but the type of resources and the order of accesses are
different.
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Malicious behaviors that are frequently observed from Android
malware have been widely surveyed in the research literature [25—
27] and malware reports [28]. Based on those studies and the anal-
ysis that we have done on both benign and malicious samples, we
believe that a fine-grained behavioral model could be constructed
through observing accesses to a dozen of system services and their
functions implemented in the framework layer of Android OS. Fur-
thermore, and based on Android system documentation [29], sys-
tem services could be categorized into six broad categories. These
categories and services that they cover are shown in Table 1.

In what follows, we discuss details of the detection process in
which “ServiceMonitor" receives execution traces, i.e. functions
requested from system services, of an application and then models
the behavior of the application as a Markov chain. Finally, a feature
vector is generated from Markov chain model and fed to a binary
classifier to determine the nature of the given application as either
malicious or benign. Fig. 2 represents the mentioned process beside
the architecture of the proposed monitoring system.

4.1 Monitoring of Applications Service
Requests

As noted earlier, all transactions to/from each application, i.e. includ-

ing those appears between the application and other applications

or between the application and system services, would be only

possible through Binder library in Android security model.
Binder library itself is divided into two segments:

i) a user-space shared library called libbinder.so and
ii) a kernel-level driver.

libbinder.so is tasked with receiving requests from the user-space
process and marshalling them into a Parcel object which is then
passed to the kernel-level Binder driver for further processing, given
the permission granted to the application. More specifically, ioct!
system call is employed by applications to make requests to Binder
library.

In order to obtain detailed information about system services
requested by each application, we implemented a kernel module
with which ioctl system calls are intercepted and unmarshaled
(i.e. parsed). More details on the implementation are provided in
Section 5. The architecture and overall design of ServiceMonitor
is depicted in Fig. 2. ServiceMonitor kernel module is split into
hooking and unmarshalling components for obtaining ioct! system
calls and unmarshalling them respectively. We should note that
the unmarshalling procedure, which is introduced in the following,
is based on previous works [19, 30, 31] that present the structure
of ioctl system calls and architecture of Binder transactions. ioct!
system call has the following syntax:

ioctl(Driver_fd, BINDER_ WRITE_READ, &bwr);

Since we aim at intercepting Binder transactions, /dev/binder is
the only considerable value for us that determines the file descriptor
of Binder devices as the first ioct] argument. BENDER_WRITE_READ
command is the basis for all IPC operations. Thus, we consider that
as the request code that should exist in the intercepted ioctl system
calls.

The last and the most important argument of ioct! system call is a
pointer to a struct of the type bwr (short for binder_write_read). As il-
lustrated in Fig. 3, this data structure contains a pointer to a valuable
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Figure 2: Architecture and detection process of ServiceMonitor.

buffer named write_buffer, which holds the type of transactions and
respected parameters. Due to the fact that we would like to intercept
Binder transactions, BC_TRANSACTION is the only one of these
transaction types that is of interest to our work. At the next level and
in Binder transactions, we are dealing with a data structure named
binder_transaction_data. As depicted in Fig. 3, this data structure
contains some valuable attributes that could be used for extract-
ing system services, e.g. com.android.internal.telephony.ISms, and
corresponding functions, e.g. sendText, that are requested through
the invocation of this ioctl system call. code attribute is the code of
the requested function, which is implemented in the destination
system service and is required to be executed by the source appli-
cation. buffer-ptr is a pointer to Parcel object that we would like to
unmarshal. There is a 16-bit Unicode string named InterfaceToken at
the start of every Parcel object structure. InterfaceToken determines
the name of the system service that is considered as the server for
the application request.

Finally, requested functions and system services are recorded
in a chronological order as behavioral features and delivered to
ServiceMonitor service for modeling and classification. Owing to
the fact that these characteristics of Android OS have stabled during
all version releases of Android, our IPC dissecting procedure is a
portable way to reconstruct application behaviors, independent
from the internal complexity of applications.

ioctl(Driver_fd, BINDER_WRITE_READ, &bwr)

( write_size
( write_consumed ) m
E write_buffer ) p—
code
data_size )

( buffer_ptr )—» InterfaceToken

===

com.android.internal.telephony.ISms : sendText (...)

Params |

Figure 3: Dissecting ioctl system call. Service-
Monitor extracts the target system service (e.g.
com.android.internal.telephony.ISms) and  requested
function (e.g. sendText) by dissecting ioctl system calls.

4.2 Markov-chain Modeling of Application
Behaviors

ServiceMonitor employs Markov chains for modeling application

behaviors. A Markov chain could be described by a weighted di-

rected graph. In other words, in this representation there is a set
of nodes that belong to different states, and a set of edges between
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Table 1: System services could be categorized into 6 categories. The information noted in this table was obtained from docu-

mentations available at developer.android.com

Service Category

Interfaces

Functionalities

Telephony  Man-

ager

ISms
IPhoneSubInfo
ITelephony
ITelephonyRegistry

Sends text messages, retrieves phone numbers, retrieves the unique device ID (e.g. IMEI),
retrieves the serial number of the ICC, retrieves the unique subscriber ID (e.g. IMSI), re-
trieves the software version number of the device (e.g. IMEI/SV), retrieves the network type
for data transmission, retrieves the current active phone type (e.g. PHONE_TYPE_CDMA,
PHONE_TYPE_GSM), listens to the phone state changes

Location Manager

ILocationManager

Retrieves the last known location, registers for location updates, retrieves the list of the names
of LocationProviders that satisfy the given criteria, retrieves the name of the provider that has
the most compliance with the given criteria

Network Manager

IConnectivityManager

IWifiManager

Retrieves the current proxy settings, retrieves the connection status information of a particular
network type, retrieves the details of the current active default data network, retrieves the
connection status information of all network types supported by the device, retrieves the
dynamic information about the current Wi-Fi connection, retrieves the Wi-Fi enabled status

Activity Manager

[ActivityManager

Starts a service, Stops a service, Resumes an activity, Idles an activity, Gets the list of running
application processes, Checks permissions, Retrieves the memory information, Registers for
Intent broadcasts (e.g. Boot_Completed), Broadcasts Intents, Gets a content provider, Removes
a content provider, Starts an activity, Pauses an activity, Finishes an activity, Gets services,
Unregisters Intent receivers, Gets the orientation, Sets the orientation, Kills a list of processes,
Gets task id of an activity, Gets the sender of a given Intent

Package Manager

IPackageManager

Retrieves the list of all packages installed, retrieves information about a particular pack-
age/application, retrieves the names of all packages that are associated with a particular
user id, retrieves information about an application package installed on the system, retrieves
information about a particular activity class, retrieves all activities can be performed for the
given intent, checks whether a particular package has been granted a particular permission,
checks for the presence of the given feature name in OS

OS Related Activi-
ties

IPowerManager
IServiceManager
IMountService

Retrieves the overall interactive state of the device (i.e. actual state of the screen), acquires the
wake lock and forces the device to stay on, releases the wake lock, retrieves an existing service
with the given name, retrieves the state of a volume via its mount point, retrieves the list of all
mountable volumes

them weighted with the probability of transition from each node
to another one.

In our proposal, for each application, potential dependencies
between states obtained by calling functions of system services
are represented as a Markov chain. In other words, ServiceMoni-
tor generates a complete weighted directed graph in which each
vertex ¢ corresponds to a state obtained by calling a function of
a system service (using ioct! system call). For each function Fy of
system services, we take an abstract state, denoted by State(Fy),
representing the application state after calling the function. In this
way, the generated graph has |¢|? edges and each edge has a weight;
representing the probability of the corresponding state transition.

In this modeling scheme, weights of edges are obtained by analyz-
ing sequences (traces) of requested functions from system services;
which are logged by the monitoring system. The distance between
two requested functions F; and F; in a sequence o (where i and j
are the indexes of them in the sequence) is defined as follows:

d(Fi, Fj) = j -l

In fact, the distance value d(F;, Fj) can determine the potential
relationship, i.e. data or control flow, between a pair of requested

functions F; and F; in a sequence o. In other words, two requested
functions that are closer to each other have more contribution on
the weight of edge between their corresponding states in Markov
chain graph.

Now, we define Py as the probability of transition from state
sx to sy (the weight of the directed edge (s, sy)) as the following,
where State(F;) determines the abstract state of the application
after receiving the requested service function F;.

0 Jifx =y

Z 1
i<j<|ol, d(Fi. Fj)

sy=State(F;),sy=State(F;),
Bh,(i<h<j A sx=State(Fy)

FVyy = , otherwise

ny :Fny/ Z FVy
1<i<]o]|
Note that in this paper, for the sake of simplicity, we label the
state of an application after receiving a requested service, by the
name of the requested function from system services, e.g. see Fig.
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4; which is Markov chain model of the example represented in the
next section. The pseudo-code of building Markov chain graph is
represented in Procedure 1.

Procedure 1 Building Markov chain graph

Input: system_service_trace, system_service_list

Output: probability_matrix

. size=len(system_service_list)

: Declare Integer FV/[size][size]

. j=len(system_service_trace)

cfori=0—j—-1 do

line=system_service_trace[i]

index=system_service_list.index(line)

append index to map_list

: end for

: k=len(map_list)

:fori=0—> k-1 do
forj=i+1— k-1 do

N I A~ Y~ R

_
= o

12: if map_list[i] # map_list[j] then
13: FV[map_list[i]][map_list[j]]+=(1/(j-1))
14: else

15: Break

16: end if

17: end for

18: end for

19: fori =0 — size—1 do

20: S=SUM(FVTi][:])

21 for j =0 — size—1 do

2 FV[i][j]=FV[i][j}/S

23: end for

24: end for

25: Return FV

4.3 Feature Extraction and Classification

The final step for determining the nature of an application is ex-
tracting a feature vector and feeding the vector into a machine
learning algorithm for classification of the application behavior. To
this aim, we take weights of || edges of the Markov chain graph,
which are generated from logged sequences of requested functions
from system services, as a 1D feature vector fv = [fi, f2, ...,f|(p|z],
where f; is equal to Py, so thati = (k — 1) - [¢| + m.

Then we employ Random Forests algorithm for classifying the
application behavior to either malicious or benign using the ex-
tracted feature vector. To train the classification algorithm, we can
use samples of known malware and benign applications. Section 6
describes the training, evaluation, and feature reduction process in
more details.

Example: Consider an application that requests following func-
tions respectively: getSubscribedID, requestLocationUpdates, send-
Text, requestLocationUpdates, sendText. Following the proposed ap-
proach, we monitor and extract these functions requested from
system services by our proposed IPC dissecting procedure and
model them in a Markov chain graph similar to the Fig. 4. Then, we
extract the specified feature vector as [0, 0.64, 0.36, 0, 0, 1, 0, 1, 0]
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Figure 4: Markov chain model of an application behavior.

from Markov chain model of application behavior for classification
purpose.

5 IMPLEMENTATION

We implemented our proposed method in a system named Ser-
viceMonitor. The main module is a kernel module, which is im-
plemented in C and is tasked to monitor applications running in
the device simultaneously and log functions requested from sys-
tem services by each application in their chronological order, i.e.
based on their timestamps. More specifically, the developed kernel
module intercepts ioctl system calls and dissects them to extract
functions requested from system services. This is done by rewriting
the address of ioct! function implementation in system_call_table.

system_call_table is implemented in kernel level and is used for
organizing system functions and quick access to them. Hence, at
first, we need to obtain the address of system_call_table from the
vector_swi handler. Indeed, by using the technique proposed in
[32], we are able to obtain the address of system_call_table in all
versions of Android OS in a similar fashion. After that, we rewrite
the address of ioctl function and redirect all Binder transactions to
our unmarshalling component. Finally, after logging and dissecting
Binder transactions, we redirect them to the original ioct! function
for continuing the normal execution of the application.

Collected features are then processed using a second module,
implemented in Python, with which the requested system services
are transformed into Markov chain representation discussed earlier.
Lastly, an implementation of the classification algorithm, written
in R language [33], is used for distinguishing the malicious appli-
cations from the benign ones. Introduced modules are collected in
a standalone application, which could be deployed on an end de-
vice with the aim of employing a detection model, which is trained
offline, and classifying running applications as either malicious or
benign.

In the next section, details on automatic execution of applications
in the training phase of ServiceMonitor are presented.

5.1 Automatic Execution of Applications

In order to train the detection model of ServiceMonitor, applications,
which are included in the prepared dataset, were installed on an
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unmodified Android version 6.0 (Marshmallow version), which
was deployed upon a specific virtual machine called VirtualBox
[34] for executing and tracing them simultaneously. As mentioned
earlier in this paper, the tracing of applications behaviors with the
aim of extracting features are done through ServiceMonitor kernel
module.

In order to process the large number of applications in the dataset,
we automated the process of installation, execution, interaction, and
data collection. This was done by installing each application in a
clean state of the OS automatically by using adb tool and simulating
end users’ activities and interactions. We leveraged MonkeyRunner
tool [35] in a script written in Python to simulate the interaction, e.g.
screen clicks and touches, of end users with the application. In fact,
we were sending 5000 internal random events to the application
with 2 milliseconds pause period between successive events. In
addition, there are some behaviors in applications that only occur
as a reaction to some external events, e.g. SMS_RECEIVED, in the
OS. For the sake of completeness, we stimulate running application
with some artificial external events such as incoming call, location
updates, and SMS using capabilities of the OS emulator. Finally,
after the execution of all events, which takes about 1 minute, in
the virtual machine, we stopped the execution of application and
revert the machine to the clean state by replacing it with the clean
snapshot of the virtual machine that was taken before installing the
application. Taking a snapshot and reverting to it afterwards are
functionalities of VirtualBox and we used them by implementing a
bash script.

6 EVALUATION

To evaluate our ServiceMonitor framework, we conducted a number
of experiments. In what follows, we first describe the dataset, used in
evaluation phase, in Section 6.1 and then afterwards ServiceMonitor
framework is evaluated in Section 6.2. Furthermore, in Section 6.3,
we discuss a number of observations made with respect to the
different functionalities requested by the benign and malicious
applications existing in the evaluation dataset.

6.1 Dataset

In order to evaluate the accuracy and performance of ServiceMoni-
tor, we built a dataset of applications including benign and malicious
samples. Our dataset of malicious applications was composed of
9560 samples, from 194 different families, obtained from AndroZoo
[36], Drebin [6], and Malware Genome datasets [27]. The distribu-
tion of samples in each malicious family is illustrated in Fig. 5. Note
that Drebin dataset was built for a static analysis approach. There-
fore, a number of issues arise when employing dynamic analysis
approaches on samples provided in this dataset. First, a number
of samples in Drebin dataset could not be installed on an Android
device. More specifically, we found that 429 samples have broken
APK files. Second, we were unable to execute 1097 samples for
analysis, either due to the fact that the application was dependent
on the presence of another application, or the application executed
as a background service. Considering the above issues, we excluded
such applications from the dataset, hence our malicious set con-
tained a total of 8034 samples.
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Figure 5: Distribution of samples in each malicious family
in our initiated dataset.

Furthermore, we crawled the official Android store to collect
10370 samples from January 2019 to February 2019. In order to
make sure that these samples were benign in nature, we submitted
them to VirusTotal[37], which tests applications by fifty-four anti-
malware engines. We found and eliminated 346 suspicious samples,
therefore our benign dataset consisted of 10024 total number of
samples.

6.2 Experimental Evaluation

In order to evaluate the effectiveness of ServiceMonitor, we em-
ployed four different classifiers: Random Forests [38], 1-Nearest
Neighbor (1-NN) [39], 3-Nearest Neighbor (3-NN) [39], and Support
Vector Machines (SVM) [40]. For this experiment, we trained clas-
sifiers with feature vectors obtained from Markov chain modeling
procedure and also we used a k-fold cross-validation procedure
with k=10 to overcome the over fitting problem. Furthermore, we
should note that we extracted 51077 features for each application
in the dataset. So, due to the machine learning problems with high
dimensional data, it was difficult to have an efficient and accurate
estimator in this case. As a remedy, in this step we used a well-
suited feature selection method called Principal Component Analy-
sis (PCA) [41]. In this statistical procedure, PCA ranks features by
considering their variance in the feature space. In other words, we
apply PCA to identify uncorrelated and most important features to
reduce the dimension of feature space and improve the efficiency
and accuracy of the detection system as well. After application of
PCA, we reduced the dimension to 200 components/features with
the highest contribution to the classification decision (i.e. features
with maximum variance). Finally, we used the reduced-dimension
feature vectors for learning the classifier and building the detection
model.

The result of this experiment was encouraging. ServiceMonitor
effectively classified the malicious and benign applications in the
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Figure 6: ROC curves obtained by evaluating the trained
model, against the test dataset. Considering Random Forests
algorithm, the area under ROC curve is 0.97.

introduced dataset with accuracy rate of 96.7%, false-negative rate of
4.4%, and false-positive rate of 2.1%. Fig. 6 depicts the ROC curves of
this experiment to illustrate the true-positive rates against different
false-positive values. Considering Random Forests algorithm, the
calculated area under the ROC curve (i.e. AUC) is 0.97.

Even though ServiceMonitor is able to detect Android malware
accurately, it is worth mentioning a number of issues which could
limit its accuracy. Therefore, we describe the reasoning behind
applications which were flagged as false-negative/-positive and
some potential suggestions regarding how to overcome them in
Section 7.

6.2.1 Runtime Measurement. With the aim of measuring the over-
head of ServiceMonitor, we used PassMark PerformanceTest v2.0
[42] to benchmark the CPU and memory. In fact, PassMark con-
ducts eight different tests to determine a device PassMark rating
for CPU and memory. Since the benchmark results of PassMark
test are returned as indexes, the higher value in this test means
better performance. It is worth mentioning that we used a 2.5GHz
quad-core phone with Android 6.0 as the evaluation platform.

As illustrated in Table 2, the overhead of ServiceMonitor on CPU
and memory is acceptable. In fact, there is 0.8% and 2% performance
impact on CPU and memory respectively. As shown, the highest
overhead is on memory and this is mainly due to the IPC dissecting
procedure that incurs overhead on Binder transactions.

6.2.2 Comparison with Related work. Among many proposals in
the literature, we considered Patronus [13] as the state-of-the-art
host-based approach, with which we could compare the proposed
ServiceMonitor. However, as Patronus implemented system was
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Table 2: Run time overhead of ServiceMonitor, mea-
sured by passmark benchmark.

’ Test ‘ Baseline | ServiceMonitor | Overhead
CPU 13520 13410 0.8%
Memory 13860 13550 2%

Higher rating value means better performance.

not available, we were not able to evaluate Patronus based on the
dataset employed in our evaluations. Hence and in order to conduct
a valid and fair comparison, we employed a same dataset as used
in Patronus, to evaluate ServiceMonitor.

With the same dataset, ServiceMonitor obtains an accuracy rate
of 97.5% roughly 10% higher than Patronus; Furthermore, Service-
Monitor has false-positive rate of 0% against Patronus dataset,
which is 1% lower than Patronus FPR. More importantly, Patronus
is a policy-based solution, which is built on manually crafted mali-
cious policies. Hence in contrast to ServiceMonitor, Patronus is not
able to detect unknown malicious behaviors and zero-day malware.
Also we should note that the overhead of ServiceMonitor is smaller
than Patronus in the evaluated benchmark tests. Specifically, Pa-
tronus has 0.9% and 8% overhead on CPU and memory respectively
in comparison with ServiceMonitor that has 0.8% and 2% overhead
on CPU and memory respectively.

6.3 Observations

Given the large dataset employed in the evaluation of the proposed
technique, we were able to obtain further insight into how ap-
plications, either benign or malicious, request access to different
functionalities by means of system services.

1) Telephony Manager: As expected, requesting functions from
telephony system services, such as functions related to retrieve
phone number and unique device ID, i.e. IMEI, occurs more com-
monly in malware applications. More specifically, more than 67%
of malware applications retrieve phone-related subscriber infor-
mation, while there are only 9% of the benign applications with
similar functionalities. In fact, telephony related methods such as
getDeviceld(), getLineINumber(), getSubscriberld(), and getlccSerial-
Number() are widely used in malicious applications in comparison
with benign ones.

In addition, a great number of current malicious Android appli-
cations, such as malware samples belong to OpFake and Gemini
families, subscribe to premium-rate services and send SMS mes-
sages to them with profitability objectives. Based on results, while
17% of malicious applications have telephony activities which cause
financial charges to infected users, it was done by none of benign
applications in our dataset.

2) Location Manager: Some malicious applications have access to
GPS modules with the goal of collecting location data. For exam-
ple, a malware family named AccuTrack is a family of applications
that track down the GPS location of the device and turns it into a
GPS tracker. In practice during the test, 12% of malware applica-
tions gained access to the location data, while only 7% of benign
applications requested these services.
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3) Package Manager: In our experiments, it is common that mal-
ware, such as some samples in DroidDream malware family, invoke
getInstalledPackages() method to retrieve a list of all packages that
are installed on the device to take an appropriate action. The result
shows that about 16% of malicious applications requested such
data during their test time while only 1% of benign applications
requested it.

4) Activity Manager: getRunningAppProcesses() method from Ac-
tivityManager class was invoked in 3.7% of malicious applications
to retrieve the list of running application processes; however, only
1% of the benign applications invoked this method. Applications
can use this capability to check the presence of a running spe-
cific service, e.g. Anti-malware, in the device to take an action,
e.g. killing the anti-malware process. getMemoryInfo() is another
method used frequently by 5.7% of malicious applications to re-
trieve available memory space on the device, whereas only 0.7% of
benign applications requested this method.

5) Service Manager: As a whole, results show that requesting
system services in malware applications is more frequent than in
benign applications, such that on average each malware requested
38 system services during its test time whereas less than 12 service
requests occurred in each benign application. In fact, we considered
occurrences of getService() method, from ServiceManager class, in
Android applications to determine the average of service requests
in them.

7 DISCUSSION

In this part, we aim to find out why some of applications in the
dataset were misclassified. On a closer investigation, it is clear
that most of false positives occur because the benign applications
request system services in a similar way to the malicious ones. For
example, social networking applications gain access to the most
of the privacy-sensitive system resources (e.g. camera, location,
gallery, SMS, etc) as well as having connections with remote servers.
Although having unreal alarms is not user-friendly, it is clear that
there is no security impact on the device taking false positives into
account. One approach to decreasing the false positive rate is to
combine other techniques such as signature-based verification with
ServiceMonitor. However, further improvement of our solution in
this direction is important future work but beyond the scope of this
paper.

In addition, as noted in [43], detecting virtualization or emulation
environments is one of the most popular methods employed by
Android malware families, e.g. Android.HeHe [44] and OBAD [45],
to evade analysis procedure and alter their behaviors accordingly.
Therefore, due to the execution environment of ServiceMonitor
training phase, which is based on a specific virtual machine, some
malware could fingerprint the virtualized environment and avoid
requests to system services and hence be classified as benign in
our experiments (i.e. false negative). However, as an improvment
to this limitation, Alzaylaee et al. [46] describe how an analysis
environment can be configured to mimic a real device as much as
possible and limit common methods used by malware for evading
from analysis.

Furthermore, some malicious samples were unable to show their
malicious behavior and classified as benign applications, i.e. false
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negative. For example, C&C servers of some malware were not
available during the analysis time or the malicious logic maybe hid-
den and only executed, or triggered, under specific circumstances.
Nevertheless, as an improving and complementary work, Wang et
al. [47] proposed a system called Droid-AntiRM aims at detecting
and taming such kind of anti-analysis techniques, i.e. triggering
hidden malicious behavior under specific conditions.

As a learning-based method, ServiceMonitor might also be vul-
nerable to pollution and mimicry attacks [48]. In other words, ma-
licious applications could randomly request system services and
functionalities to change the original pattern of their requested
functions from system services aim at confusing the detection sys-
tem. However, Demontis et al. [49] proposed an adversary-aware
machine-learning method which is able to improve a linear clas-
sifier against evasion attacks. Hence, in our future work, we will
enhance our classifier with exploring the area of adversary-aware
machine-learning algorithms.

8 CONCLUSIONS

In this paper, we proposed a system service use analysis technique
that systematically extracts fine-grained behaviors of applications
based on their accesses to system resources. Furthermore, we de-
signed and implemented a host based system, called ServiceMonitor,
that dynamically tracks execution behaviors of applications based
on the proposed system service use analysis technique and models
these behaviors in the form of Markov chains to classify applica-
tions into benign or malicious.

Our evaluation results show that ServiceMonitor is able to de-
tect Android malware accurately and efficiently on mobile devices.
Employing Random Forests classifier against 8034 malware and
10024 benign applications, ServiceMonitor were able to obtain the
accuracy rate of 96.7% in distinguishing malicious applications from
the benign ones.
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