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Abstract—An important extension of the two-level discrete com-
plex image method is proposed to eliminate any concerns on and
shortcomings of the approximations of the spatial-domain Green’s
functions in closed form in planar multilayered media. The pro-
posed approach has been devised to account for the possible wave
constituents of a dipole in layered media, such as spherical, cylin-
drical, and lateral waves, with the aim of obtaining accurate closed-
form approximations of Green’s functions over all distances from
the source. This goal has been achieved by judiciously introducing
an additional level into the two-level approach to pick up the con-
tributions of lateral waves in the spatial domain. As a result, three
different three-level algorithms have been proposed, investigated,
and shown that they work properly over all ranges of distances
from the source. In addition to the accuracy of the results at all
distances, these approaches also proved to be robust and compu-
tationally efficient as compared to the previous algorithms, which
can be attributed to the fact that the sampling of the spectral-do-
main Green’s functions in the proposed approaches gives proper
emphasis to the associated singularities of the wave types in the
spectral domain. However, the judicious choices of the sampling
paths may not be enough to get accurate results from the approxi-
mations unless the approximating functions in the spectral domain
can provide similar wave natures in the spatial domain. To address
this issue, the proposed algorithms employ two different approxi-
mations; the rational function fitting methods to capture the cylin-
drical waves (surface waves), and exponential fitting methods to
capture both spherical and lateral waves. It is shown and numeri-
cally verified that a linear combination of exponential functions in
the spectral domain represent the lateral waves at the interface of
the involved layers.

Index Terms—Closed-form Green’s functions, discrete complex
images method (DCIM), Green’s functions, layered media.

I. INTRODUCTION

T HE METHOD of moments (MoM) is one of the most com-
monlyusednumerical techniquesincomputationalelectro-

magnetics for the analysis of layered printed circuits, antennas,
and very large scale integration (VLSI) interconnects, at least for
small and moderate size geometries [1]–[6]. In the application
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of the MoM for the solution of mixed-potential integral equa-
tion, the vector and scalar potential Green’s functions in the spa-
tial domain must be obtained in advance in order to be able to
write the governing equations in the form of an integral equation.
However,getting thespatial-domainGreen’s functions fromtheir
spectral-domain counterparts, whose expressions are known an-
alytically for planar layered media, requires the implementation
of Hankel transforms, generally referred to as Sommerfeld inte-
grals. Unfortunately, the direct computation of Sommerfeld inte-
gralsvianumerical integrationtoolsisa timeconsumingandcom-
putationally expensive process due to the oscillatory and slowly
decaying nature of the integrands [7], [8]. Motivated by this need,
there has been a flurry of interest in the development of efficient
algorithms to compute the spatial-domain Green’s functions fast
and accurately in layered media. The work proposed and dis-
cussed in detail in this paper is intended to provide such an algo-
rithmthatanswers themost, ifnotall,questionsandshortcomings
of the currently available approaches.

In the literature, there have been mainly two different
approaches to improve the efficiency of computation of Som-
merfeld integrals, which are: 1) to evaluate them numerically
in conjunction with some transform techniques [8]–[10] or 2)
to approximate them in closed forms [11]–[27]. As can be seen
from the list of references for the latter approach, which is by no
means complete, it has attracted significant amount of interest in
the computational electromagnetic (EM) community. The first
work published on this approach is considered to be the paper by
Fang et al., in 1988 [11], where they proposed approximating the
spectral-domain Green’s functions in terms of complex exponen-
tials, and transforming them into the spatial domain analytically
with the help of the Sommerfeld identity. However, there were
a couple of issues that rendered the algorithm inefficient and
not robust, which were: 1) the inaccuracy of the resulting image
representation at intermediate and large distances (beyond a few
wavelengths, even less, depending upon the geometry) and 2) the
noise sensitivity and instability of the exponential approximation
algorithm used in the work, the Prony’s method [28]. As a result,
they had to use the so-called “relay race” approach, in which
complex images were used up to a distance, beyond which the
surface-wave pole (SWP) contributions were used only. It is
understandable that not being able to predefine the switching dis-
tance encouraged researchers to find a single expression over all
ranges involved. Subsequently, unified closed-form expressions
for the spatial-domain Green’s functions were derived for thick
microstrip substrates [12], using almost the same procedure as
the one in [11], except for the relay-race implementation. The
method started with the extraction of the SWPs and quasi-static
terms, and then, the rest was approximated in terms of complex
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exponential functions via Prony’s method. Hence, transforma-
tion of the spectral-domain Green’s functions into the spatial
domain can be approximated analytically in closed forms, facili-
tated by the known analytical transforms of the spectral-domain
representations of SWP contributions, quasi-static terms, and
the discrete complex-image terms. Even though the proposed
approach had a few problems to be resolved, which were: 1) the
geometry specific extraction of the quasi-static terms; 2) the
noise sensitivity of Prony’s method; and 3) the large amount of
samples required for the implementation of Prony’s method, it
has inspired a good number of new approaches, modifications,
and improvements because of its potential in the development of
accurate and efficient computer-aided design (CAD) tools. This
approach was first extended to cover more general geometries,
i.e., microstrip structures with superstrates [13], with almost no
improvement on the problems of the original approach. However,
with the introduction of the two-level sampling algorithm that
has significantly reduced the number of samples required for the
exponential approximation [15], in addition to employing a less
noise-sensitive method for the exponential approximation, the
generalized pencil-of-function method (GPOF) [14], [29], the
resulting algorithm in conjunction with the MoM was considered
to have strong potential to be a robust and accurate CAD tool for
the analysis of most microwave circuits and printed antennas.
Moreover, when the cylindrical wave components, i.e., the
surface wave contributions, were handled analytically, or when
more exponentials were used in the approximation process, the
two-level approach using the GPOF was shown to approximate
the spatial-domain Green’s functions in closed forms over well
beyond a few wavelengths from the source [21], [22].

Meanwhile, there have been plenty of work in the literature to
obtain accurate and efficient closed-form representations of the
spatial-domain Green’s functions, among which the most recent
approaches use rational function fitting methods to approximate
the spatial-domain Green’s functions mainly in terms of Hankel
functions [19], [20], [23], [25]–[27]. Although the algorithms
based on the rational function fitting initially suffered from inac-
curacies in the near-field region due to the singular nature of the
approximating Hankel functions as , it has been quickly
remedied by: 1) approximating spectral-domain Green’s func-
tions as the sum of an asymptotic term and a rational function,
whose coefficients are cleverly defined to eliminate the artifi-
cial singularities at in the spatial domain [25] or 2) using
a combination of the discrete complex image method (DCIM)
and rational function fitting to approximate the spatial-domain
Green’s function by a sum of spherical waves and cylindrical
waves in the near- and far-field regions, respectively [26]. How-
ever, as they seem to provide accurate results over all ranges,
it was recognized that the far-field results in the vicinity of in-
terfaces for some configurations were not accurate. This was
rightfully attributed to the lack of lateral wave contributions in
the closed-form representations using cylindrical waves in the
far-field region, and has been fixed by adding a new term to the
closed-form representation obtained by properly accounting for
the new term [27]. Even though these approaches provide ac-
curate results, they may require some sort of tailoring for the
specific problems at hand and are quite laborious to implement
in conjunction with a MoM-based simulation algorithm.

As one of the contributions of this paper, it is mathematically
shown that a combination of spherical waves can mimic the far-
fieldbehaviorofthelateralwavesat theinterfaceoflayeredmedia,
and therefore, a DCIM-based algorithm can be devised to provide
a fully automated, easily implementable, robust, accurate, and ef-
ficient alternative to the available methods. Development of such
an algorithm is achieved by considering the wave constituents
of a dipole in planar layered media, provided the structure is ei-
ther backed by a perfect electric conductor (PEC) or has identical
semiinfinite materials at their outmost layers. This requirement
on thegeometry isdue to the fact that thealgorithmdevelopedand
presented in this work is designed only for structures supporting
a single lateral wave constituent, which corresponds to a single
pair of branch points and associated cuts in the spectral-domain
representations of the fields in the structure.

Since the proposed algorithm is, in principle, the extension of
the two-level approach, with judicious choices of the sampling
paths, this paper starts with a brief overview of the two-level
DCIM and its known problems in Section II. It is followed, in
Section III, by the introduction of three different extensions of
the two-level DCIM approximation, resulting in three successful
approaches of the three-level DCIM, and demonstrating the ro-
bustness of the approach for different choices of paths as long as
the wave constituents in the spectral domain are properly sam-
pled and represented. Section IV provides some numerical ex-
amples to validate the robustness, accuracy, and ease of imple-
mentation of the algorithm for a variety of geometries, and some
conclusions are drawn in Section V.

II. SPATIAL-DOMAIN GREEN’S FUNCTIONS AND

OVERVIEW OF THE TWO-LEVEL DCIM

A. Spatial-Domain Green’s Functions

Transformation of Green’s functions from the spectral do-
main to spatial domain is obtained by the following Sommer-
feld integrals:

(1)

where is the Hankel function of the second kind, is the
spectral-domain Green’s function, which can be obtained an-
alytically for planar multilayered media [14], [30], as seen in
Fig. 1, and the Sommerfeld integration path (SIP) is defined in
Fig. 2.

Since the whole idea of getting closed-form approximations
for the spatial-domain Green’s functions originates from the
possibility of finding a closed-form approximation of the Som-
merfeld integrals (1), one needs to study the integrand carefully
for the possible singularities and regions where the contributions
to wave constituents are dominant. Although the singularities
in the spectral domain—SWPs, branch points, and cuts—and
their contributions in the spatial domain—cylindrical and lateral
waves—have been well studied and documented [7], [31], it is
instructive to summarize some of the facts to help elucidate the
implementation of the algorithm in planar layered media com-
posed of left-handed materials (LHMs) and right-handed mate-
rials (RHMs). To provide a general picture of the singularities,
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Fig. 1. General multilayered medium. In this work, either layer-1 and layer-�
are identical, or one of them is PEC.

Fig. 2. SIP and possible singularities on the complex � plane. In this work,
there is only one pair of branch points and associated cuts, consistent with the
geometrical requirement in the caption of Fig. 1.

layer-1 and layer- in Fig. 1 are assumed to be lossy RHM
and LHM, respectively, and are of semiinfinite extent, thus con-
tributing the branch points at and , as shown in Fig. 2
along with the associated branch cuts, for time conven-
tion. Regarding the locations of SWPs (surface wave and surface
plasmon polariton singularities) for general multilayered struc-
tures composed of LHMs, metals (at optical frequencies) and
RHMs, they may be found at any location on the plane as
negative pairs [32]–[35], as opposed to the SWPs in the second
and fourth quadrants for the conventional structures of RHMs
and perfect conductors.

Once the integration path and possible singularities in the
complex plane have been defined, in addition to the definition
of the Sommerfeld integrals in (1), it can easily be deduced that
the integrands of Sommerfeld integrals over the path of integra-
tion (SIP or any legitimately deformed path) are quite oscillatory
for large distances, and slow convergent in general, rendering
numerical integrations time consuming [8]. To overcome this
burden, several approaches to approximate the integral in closed
form, without referring to commonly employed numerical inte-
gration algorithms, have been successfully developed, though
with a limited range of distances. Since the goal of this paper
is to provide a robust approach, based on DCIM, that would
approximate the Sommerfeld integrals in closed forms over all
ranges of distances, it is instructive to give a brief overview of
the original two-level DCIM [15].

B. Overview of Two-Level DCIM

The idea of DCIM originates from the fact that if the spectral-
domain Green’s function in (1) can be approximated in terms
of exponentials, the Sommerfeld integral (1) can be evaluated
analytically by using the well-known Sommerfeld identity

(2)

where is the wave vector in the -direction,
is the spherical radius, and the left-hand expression repre-

sents a spherical wave in the spatial domain. In essence, the
method facilitates a spherical wave representation of the spa-
tial-domain Green’s functions, which usually have other wave
components like cylindrical and lateral waves. In the original
two-level DCIM [15], the other wave components were not ac-
counted for explicitly because the main goal was to get a simple
closed-form expression for the spatial-domain Green’s func-
tions in order for them to be easily employed in the MoM im-
plementations. Since it was well known how to handle the SWP
contributions explicitly, the most of the problems attributed to
the two-level approach would have been resolved with the ex-
plicit handling of the SWPs and their contributions, as stated in
[21]. Assuming that SWPs are properly extracted in the spectral
domain, resulting in

(3)

where is the contribution of the SWPs in the spectral
domain, and the remaining function can be approx-
imated by complex exponentials via the GPOF method along
the two pieces of the path, as shown in Fig. 3 on the and
planes. The paths are parameterized by

For

For

(4)

where is the real running parameter of the sampling algorithm
along the paths, and the limits in the -plane, corresponding to
the pieces of the path, can be obtained as follows:

(5)

where and are the wavenumber and the component of
the propagation constant, both in the source layer (layer- ac-
cording to Fig. 1), respectively. In the parameterization of the
path, needs to be chosen so that becomes slightly
greater than the maximum wavenumber in the structure ,
as shown in Fig. 3(b). Once (3) is sampled along the path and
approximated by complex exponentials as

(6)
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Fig. 3. Paths of approximation for two-level DCIM on the complex: (a) �
plane and (b) � plane.

where is the number of exponentials used at each level , the
spatial-domain Green’s functions can be written, via the Som-
merfeld identity (2), as

(7)

where is the distance defined by

(8)

which is complex in general, and its branch must be chosen
so that exponential functions given in (7) decay for large argu-
ments.

The two-level DCIM, as briefly outlined above, has been quite
successful in casting the spatial-domain Green’s functions in
closed forms for most geometries [21], especially when used in
the analysis of geometries involved in microwave circuits and
printed antennas [6], [36]. However, as pointed out and discussed
in [27], its lack of capturing the contribution of the branch point
(lateral waves) seems to be an important shortcoming of the
method, though only for geometries that support dominant
lateral waves in the far field. In general, the contribution of the
surface waves dominate in the far field, as surface waves have
the following asymptotic behavior for large :

(9)

where is the SWP, whereas lateral waves at an interface of
two materials behave asymptotically like [7], [31],

(10)

where is the branch point, which is usually a real quantity,
as the uppermost and/or lowermost layers are lossless in most of
the practical applications. A simple comparison of (9) and (10)
reveals that when an SWP has an imaginary part, as in the cases
of lossy materials, its contribution decays exponentially, and as
a result, the contribution of a branch point, i.e., the lateral wave,
determines the far-field behavior of the spatial-domain Green’s
function. Also for lossless materials, in cases of no proper SWPs
or a SWP close to a branch point, the two-level DCIM may result
in erroneous data in the far-field region [27]. It is the intention of
thispaper toproposeanalgorithmthatwouldprovideclosed-form
spatial-domain Green’s functions accurate at all ranges of dis-
tances, and carries all the advantages of the DCIM method, such
as, simplicity, robustness, and ease of implementation. This goal
hasbeenachievedbymodifyingthepathofthetwo-levelapproach
with a view to incorporate all the wave constituents of a dipole in
multilayer planar environment, as discussed in Section III.

III. PROPOSED APPROACH: THREE-LEVEL DCIM

As noted earlier, the two-level approach, together with the ex-
plicit handling of the SWPs, is capable of approximating spher-
ical and cylindrical wave constituents, but not the lateral waves,
which are due to the branch points in the spectral domain. There-
fore, the main modification applied to two-level DCIM has to
overcome this shortcoming, i.e., the modification should pro-
vide better sampling of the spectral-domain Green’s functions
around the branch point, in order to capture the wave nature
of the lateral wave in the spatial domain. To achieve this, the
path , shown in Fig. 3(b), can be split into two paths by
using many different parameterizations, each of which results
in a three-level algorithm, and only three of which will be in-
troduced in this section. Note that, in the implementation of the
three-level algorithms, SWPs are subtracted a priori from the
spectral-domain Green’s function and handled separately, and
that the free-space wavenumber is assumed to be the only
branch point and the minimum wave vector of the structure.

A. Paths for Three-Level DCIM

1) Approach 1: Some modifications on the DCIM path have
already been proposed in [22] and [24], where the two pieces of
the path for the two-level DCIM were slightly deformed to better
capture the SWP contributions when they were not extracted and
handled explicitly. However, in the approaches provided here,
all the wave constituents are being approximated by suitable
functions after their spectral-domain features have been sam-
pled along a path emphasizing these features. Although there
are infinitely many variations of the paths, deformed from the
path of the two-level DCIM, the first one is a three-level variant
of the path given in [24], as shown in Fig. 4(a) and (b) in the
and planes, respectively, and is parameterized as

For

For

For

(11)
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Fig. 4. Path for the three-level DCIM approach on the complex: (a) � plane
and (b) � plane.

Note that , , and in Fig. 4(b) can be
easily obtained by , and needs to be
greater than the maximum wavenumber in the structure.
As can be observed from Fig. 4(b), the proposed path, deformed
from of the two-level DCIM, was designed to bring the
sampling path closer to the branch point in order to capture
the features around the branch point accurately.

2) Approach 2: Another path that would achieve accurate
sampling around the branch point is provided in Fig. 5 with the
parameterizations of

For

For

For (12)

As can be seen from Fig. 5(b), this parameterization eliminates
the cusp in the first approach, and provides closer sampling
around the branch point. Since the middle piece of the path,

, is almost exclusively over the region where the SWPs
are located, one could use the rational function fitting algorithm
over this part of the path to extract the SWP contributions nu-
merically, eliminating the need for a robust root-finding algo-
rithm in the method [26]. Note that the extraction of SWPs by
using the rational function fitting over the path must be per-
formed before the implementation of the proposed three-level
approximation, and it is only for capturing the surface wave con-
stituents.

3) Approach 3: The third approach for the choice of the path
is a simple three-piece real-axis path, motivated by its simplicity

Fig. 5. Path for the three-level DCIM approach on the complex: (a) � plane
and (b) � plane.

and suitability for structures that contain LHMs and/or metals
(at optical frequencies) as well as RHMs, for which SWPs may
be anywhere on the plane and branch-cuts may extend to in-
finity in any quadrant on the plane, as shown in Fig. 2. Note
that the first two approaches are not suitable for such structures,
as they are chosen to indent into quadrants where SWPs and
branch-cuts cannot be crossed for RHMs with time depen-
dence. Since the path is simply along the real axis of the
plane, its views on the and planes are simple and can be vi-
sualized without any graphical aid; hence, only its parametriza-
tion is provided as

For

For

For (13)

At this point, the nature of the SWPs of the structures that con-
tain LHM and/or metallic structures need be overviewed. As
seen in Fig. 2, the SWPs appear in pairs, negative of each other,
on the complex plane: one of them being physical (with a
negative imaginary part) and the other being nonphysical (with
a positive imaginary part). In the process of subtracting the sur-
face wave contributions from the spectral-domain Green’s func-
tions, the SWPs in the first and fourth quadrants of the complex

plane are taken into account, to obtain a smooth function in
the sampling range. However, in adding their contributions to
the spatial-domain Green’s functions, the physical SWPs, which
are on the third and fourth quadrants of the complex plane,
must be used [37]–[39]. In case of a SWP in the first quadrant of
the plane, it is subtracted from the spectral-domain Green’s
function, and its negative pair in the third quadrant is used to
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obtain its contribution in the spatial domain, resulting in a back-
ward surface wave [32]–[35]. This behavior cannot be seen in
multilayered structures that contain RHMs only, therefore, the
sampling paths of two-level DCIM and the first two approaches
of the three-level DCIM can be safely used for layered struc-
tures that contain only RHMs.

B. Implementation of the Three-Level DCIM

Note that, in all implementations presented here, SWPs are
assumed to have been extracted in advance, and the method is
applied to the remaining function given in (3). As
the first step of the method, is sampled along the
path , and approximated by a sum of complex exponentials
using the GPOF method, resulting in

(14)

where and are the coefficients and exponents obtained
from the GPOF method and is the number of exponentials
employed in the first level of the approximation. In addition,
the coefficients and exponents transformed into the domain,
using corresponding parameterizations of the sampling path, are
given by the following.

For approach 1:

For approach 2:

For approach 3:

(15)

After having obtained the first set of exponentials along the path
, they are subtracted from , and the remaining

function is sampled along the path and approximated by
the complex exponentials via the GPOF method resulting in

(16)

where and are the coefficients and exponents obtained
from the GPOF method, is the number of exponentials used
for the second level of the approximation, and the coefficients
and exponents transformed into the domain are given by the
following.

For approach 1:

For approach 2:

For approach 3:

(17)

The same steps are repeated one more time for the the sampled
data collected over the path , resulting in

(18)

where and are the coefficients and exponents obtained
from the GPOF method, is the number of exponentials used
for the third level of the approximation, and the coefficients and
exponents transformed into the domain are given by the fol-
lowing.

For approach 1:

For approach 2:

For approach 3:

(19)

As the result, combining all the approximating exponentials, in
addition to the SWP contributions, the spatial-domain Green’s
function can be written in closed form as

(20)

where ’s are defined in (8), the coefficients and the ex-
ponents are defined in (15), (17), and (19) for all three ap-
proaches.

C. Capturing the Branch Point Contribution by the
Three-Level DCIM

As stated above, the intention of the proposed three-level
DCIM approaches is to capture the branch point contribution of
a dipole in multilayered planar environments, thus to develop
a robust, accurate, and efficient algorithm for the closed-form
representation of the spatial-domain Green’s functions in such
structures. As it is already well known, since the DCIM method
is based on the exponential approximation of the spectral-do-
main Green’s functions, it only employs spherical waves in the
approximation of the spatial-domain Green’s functions. There-
fore, to achieve the goal, it is important that the branch point
contributions, known as lateral waves, can be accurately and ef-
ficiently expressed in terms of spherical waves. In other words,
the asymptotic behavior of a combination of spherical waves as



608 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 3, MARCH 2010

has to converge to the asymptotic nature of the lateral
wave. Although this point is partially validated by the imple-
mentation of the method for several geometries where the lateral
waves are the dominant wave constituents in the far field, veri-
fying it mathematically, which is the aim of this section, would
guarantee the convergence of the method in such cases.

Before providing the steps of the mathematical demonstra-
tion, it would be instructive to note that the asymptotic behavior
of the lateral wave, as at the interface of the semiinfi-
nite layer, can be shown analytically as , while the spherical
waves behave as . Thus, starting with a spherical wave as

(21)

where , and and are the coefficient
and exponent given in (15), (17), and (19) for the approaches
proposed in this paper, its limiting expression as can be
obtained at the interface as

(22)

This expression can be further simplified and cast into a series
of powers of as

(23)

by making use of the Binomial expansion of
and retaining its first two terms since as .
As it can be deduced from this truncated series, a sum of two
spherical waves may result in cancellation of terms, and be
dominated by the term, if there exist a pair of coefficients
and exponents that provide the cancellation. To show the ex-
istence of such parameters, two spherical waves with different
parameters are added for large values using (23)

(24)

which proves that the terms with dependence in spherical
waves (23) cancel out while the terms with do not for the
following combinations of the parameters:

(25)

After having shown mathematically that two spherical waves
combined may have an asymptotic behavior of for large
values of , it is time to see if the three-level DCIM algo-
rithms proposed here are capable of capturing the branch point
contributions. To test this, a lossy slab backed by the PEC, as
shown in Fig. 6 [18], for which the lateral wave contribution is
dominant at large distances, was used to obtain the closed-form

Fig. 6. Geometry that is known to be problematic for the two-level DCIM: a
PEC backed, lossy slab [18].

TABLE I
PERFORMANCE OF DCIMs TO CAPTURE LATERAL WAVES

expression for , the component of the vector-potential
Green’s function generated by an -directed dipole. Note
that the closed-form Green’s function was obtained at the
interface, where the source is located, at the operating fre-
quency of GHz, and before the implementation of
the algorithms, the only contributing SWP to was found
at and subtracted from the
spectral-domain Green’s function. As a result of the imple-
mentations of the three-level DCIMs over the path to
the resulting spectral-domain expression, it can be observed
from Table I that a simple combination of two spherical waves
with appropriate weights results in a wave
nature of spatial dependence. As expected, the closer the
path goes around the branch point , as it does for the lower
values of , the better the cancellation of the spherical wave
components in all three approaches. Note that the two-level
approach cannot capture the contribution of the branch point,
as the value of is relatively high. Further studies on
the performance of the three-level DCIMs, as compared to the
two-level DCIM, are given in Section IV.

IV. NUMERICAL EXAMPLES

In this section, several layered structures that belong to
the problematic cases of the preexisting DCIM-based and
rational-function-fitting-based algorithms, as described in
[27], are studied using the three-level approaches presented
in Section III, and the resulting Green’s functions are pro-
vided over an extended range to demonstrate the robustness,
efficiency, and accuracy of the algorithms over all ranges.
Although the results are shown in the figures up to ,
they actually predict the asymptotic behavior of the Green’s
functions very accurately as . Note that, for all the
cases studied, all components of the Green’s functions for
the scalar and vector potentials were examined and found to
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be in very good agreement with the exact data obtained by
the numerical integration of the corresponding Sommerfeld
integrals. However, for the sake of brevity, only the plots of the
scalar potential and the vector potential are provided.

A. Geometry With No SWPs, Approach 1

As it is well known, TE and TM surface waves are generally
supported in layered structures, and form the discrete spectrum
of the Green’s functions. However, certain components of the
dyadic Green’s function for the vector potential, e.g., , may
have surface wave contributions of TE type only, having a cutoff
frequency below which it can not be supported in the structure.
Hence, the geometry and frequency of the operation for this ex-
ample are chosen, as given in [27], such that TE surface wave
poles are not supported, and the Green’s function for the vector
potential is studied to see if Approach 1 can predict the
asymptotic behavior of the vector potential in the case of domi-
nant lateral waves. Here are the parameters of the structure based
on the descriptions in Fig. 1: layer-1 is the PEC; layer-2 is a di-
electric slab with and thickness mm; layer-3
is semiinfinite free space; the locations of the source [horizontal
electric dipole (HED)] and observation points are at the interface
between the free space and dielectric layer ; and
the frequency of operation is GHz. Note that there is only
one TM-mode SWP at in the structure at
the given frequency, whose contribution needs to be accounted
for in the computation of the scalar potential Green’s function

. The results of the numerical integration and those of the
two- and three-level DCIMs are provided in Figs. 7 and 8 for the
vector and scalar potential Green’s functions, respectively. For
the purpose of comparison, here are the parameters of the imple-
mentations of DCIMs for this example: for the two-level DCIM,

and , number of samples for each
path involved, and the number of exponentials used are
and for the vector potential and and for
the scalar potential Green’s functions; for the three-level DCIM,

and , number of
samples for each path involved, and the number of expo-
nentials used are and for the vector
potential and and for the scalar po-
tential Green’s functions.

As discussed earlier, the two-level DCIM cannot capture the
branch point contribution in the vector potential Green’s func-
tion, and consequently results in the far-field behavior of
dependence, introducing errors for , as shown in Fig. 7.
On the other hand, Approach 1 of the three-level DCIM cap-
tures the branch point contribution, and results in an excellent
agreement with the data obtained by the numerical integration,
not only in the near- and intermediate-field regions, but also in
the far-field zone. In the case of scalar potential Green’s func-
tions, since the surface wave contribution dominates the far-field
behavior of the potential, regardless of the performance of the
methods for capturing the branch point contribution, both two-
and three-level DCIM algorithms work fine, as shown in Fig. 8.
Note that all three approaches based on the three-level DCIM
algorithm work very well for all the examples studied, but for
the structures with LHMs, the paths defined in Approach 3 are

Fig. 7. Magnitude of vector potential Green’s function for the three-layer ge-
ometry with the following parameters: layer-1: PEC; layer-2: � � ���� � �

�� � � �� mm; layer-3: free space; � � � GHz; � � � � �.

Fig. 8. Magnitude of scalar potential Green’s function for the three-layer ge-
ometry with the following parameters: layer-1: PEC; layer-2: � � ���� � �

�� � � �� mm; layer-3: free space; � � � GHz; � � � � �.

employed only, in order to avoid crossing the branch-cuts and
surface wave poles involved.

B. Geometry With Lossy Layer, Approach 2

To provide a similar example for the implementation of Ap-
proach 2, the structure given in [18] was used with the following
parameters: layer-1 is PEC; layer-2 is a lossy dielectric slab with

and thickness mm; layer-3 is semi-
infinite free space; the locations of the source (HED) and obser-
vation points are at the interface between the free space and the
dielectric layer ; and the frequency of operation
is GHz. Note that, for this configuration, there are two
TM-mode SWPs at , and

, and one TE-mode SWP
at .

The difference of this example from the previous one is that
both potentials have surface wave constituents, but due to the
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Fig. 9. Magnitude of vector potential Green’s function for the three-layer
structure with the following parameters: layer-1: PEC; layer-2: � �

��� � ������� � � �� � � �� mm; layer-3: free space; � � �� GHz;
� � 	 � �.

loss in the medium, surface waves are expected to decay expo-
nentially as , resulting in dominant lateral wave con-
stituents in this region, as seen in Figs. 9 and 10. Note that the
surface wave components of the potentials were provided in all
figures in order to see the comparative nature of the wave con-
stituents of a dipole source in layered media. In order to assess
the performance of Approach 2 in a structure where the domi-
nating asymptotic behavior of the waves is , the vector and
scalar potential Green’s functions were obtained in closed form
and compared to the results of the numerical integration and
the two-level DCIM, as shown in Figs. 9 and 10, respectively.
Similar to the previous example, while the two-level DCIM is
not able to capture the branch-point contribution, Approach 2
of the three-level DCIM algorithms predicts the distribution of
the potentials very well, not only in the range where the lat-
eral wave is the dominant wave constituent, but over the entire
range, with the correct asymptotic behavior as , as seen
in Figs. 9 and 10. Here are the parameters of the implemen-
tations of DCIMs for this example: for the two-level DCIM,

and , number of samples for each
path involved, and the number of exponentials used are
and for the vector potential, and and
for the scalar potential Green’s functions; for the three-level
DCIM, and , number of
samples for each path involved, and the number of expo-
nentials used are and for the vector
potential and and for the scalar po-
tential Green’s functions.

C. A Geometry With Lossy LHM, Approach 3

As discussed in Section II, SWPs can be found anywhere in
the complex -plane for layered structures consisting of LHMs
and/or metals (in optic frequencies) in addition to RHMs. There-
fore, the paths of Approach 1 and Approach 2 of the three-level
DCIM algorithms may not be suitable, as they may cross the
branch-cuts or singularities in the process of deformation from
SIP. To eliminate this possibility for such configurations, the

Fig. 10. Magnitude of scalar potential Green’s function for the three-layer
structure with the following parameters: layer-1: PEC; layer-2: � �

��� � �������� � �� � � �� mm; layer-3: free space; � � �� GHz;
� � 	 � �.

approximation paths of Approach 3 were so defined as to stay
on the real axis, as detailed in Section III. This example is
chosen to cover this special case and to demonstrate the ro-
bustness and efficiency of the three-level DCIM for planar lay-
ered structures composed of arbitrary materials. Here are the
details of the structure, as referenced to Fig. 1: layer-1 is PEC;
layer-2 is a lossy homogeneous LHM slab with

and thickness cm;
layer-3 is free space; source (HED) and observation points are
chosen at the interface between the free space and the dielec-
tric layer ; and the frequency of operation is

GHz. For this configuration, there are total of three
SWPs; one TM-mode at
and two TE-mode at and

. At this point it must be
noted again that the SWPs with are subtracted from
the spectral-domain Green’s function before the GPOF method
is applied (for this example, SWPs at and

are subtracted), and their contributions are added
to the spatial-domain Green’s functions by using the physical
ones, i.e., SWPs with negative imaginary parts, (for this ex-
ample, SWPs at and are added).

After having implemented Approach 3 for this configura-
tion, the closed-form Green’s functions and their explicit sur-
face wave constituents were obtained and compared to the re-
sult obtained by the numerical integration of the corresponding
Sommerfeld integrals, as shown in Figs. 11 and 12 for vector
and scalar potentials, respectively. It is obvious that the results
obtained by the three-level DCIM and by the numerical integra-
tion agree extremely well, even though the asymptotic trend is
not dominated by the surface waves. It should be noted that this
observation is not limited to this specific example, but is valid
for all the cases studied during this work, the list of which may
not be exhaustive, but definitely covers a broad spectrum of lay-
ered structures. For the sake of completeness, the parameters
used in the implementation of the three-level DCIM, approach
3, are given as follows: and
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Fig. 11. Magnitude of vector potential Green’s function for the three-layer
structure with the following parameters: layer-1: PEC; layer-2: LHM with
� � ��� ������ � � ����� ������ � � ���� cm; layer-3: free space;
� � � GHz; � � 	 � �.

Fig. 12. Magnitude of scalar potential Green’s function for the three-layer
structure with the following parameters: layer-1: PEC; layer-2: LHM with
� � ��� ������� � ����� ������ � � ���� cm; layer-3: free space;
� � � GHz; � � 	 � �.

, number of samples
for each path involved, and the number of exponentials used

are and for the vector potential, and
and for the scalar potential Green’s

functions.

D. A Multilayered Geometry for Plasmonic Applications

Once the proposed approaches have been tested on the ge-
ometries that were introduced as the problematic cases of the
DCIM in the literature, Green’s functions of a general multilay-
ered structure, consisting of lossless and lossy dielectric mate-
rials and metals, are obtained at optical wavelengths by using
the proposed approaches. The main motivation for such an ex-
ample is to demonstrate the true potential of the proposed ap-
proach by examining a rather complex and popular structure
(due to the recent popularity of plasmonics) in optical regime.

Fig. 13. Magnitude of vector potential Green’s function for the five-layer plas-
monic structure with the following parameters: layer-1: free-space; layer-2: a
lossless dielectric material with � � ���� � � ���� � � ��� nm; layer-3:
gold with � � ����� � ������� � ���� � � �� nm; layer-4: a lossy
dielectric material with � � ���� ����� � � ���� � � ��� nm; layer-5:
free space; 
 � ��� nm; HED is at the interface between layer-4 and layer-5,
� � 	 � �.

The details of the operation and the structure, as referenced to
Fig. 1, are as follows: layer-1 and layer-5 are free space; layer-2
is a lossless dielectric material with nm;
layer-3 is made out of gold with

nm, which can support surface plasmon polari-
tons at the interface; layer-4 is a lossy dielectric material with

nm; the operating free-space wave-
length is nm and the source (in this case, HED)
and the observation planes are chosen at the interface between
layer-4 and layer-5, i.e., . Moreover, there are a
total of four SWPs supported by this configuration at the oper-
ating point:

and
. It would be worth noting

that the two of the SWPs (both TM types) were found in the re-
gion above the wavenumber of the densest dielectric medium in
the structure because of the existence of a thin gold layer in the
structure.

For the sake of completeness and assessing the comparative
computational advantages of all three approaches proposed in
this work, they have been implemented on this structure, re-
sulting in identical spatial-domain Green’s functions, as shown
in Figs. 13 and 14 for the vector and scalar potentials, respec-
tively. In addition, it is observed that the number of exponen-
tials employed in all approaches, even in each level, are iden-
tical, namely, (5, 5, 5) for the vector potential and (5, 6, 5) for
the scalar potential corresponding to the approximations over

. Although adding one more level into the
two-level approach adds one more implementation of the GPOF
method, the computational complexity of the approach has not
been affected significantly because identifying the major con-
tributing regions in the spectral domain and utilizing this infor-
mation result in a better approximation with a lesser number of
exponentials, even for a large number of layers in the structure.
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Fig. 14. Magnitude of scalar potential Green’s function for the five-layer
plasmonic structure with the following parameters: layer-1: free-space; layer-2:
lossless dielectric material with � � ���� � � ���� � � ��� nm; layer-3:
gold with � � ����� � ������ � � ���� � � �� nm; layer-4: a lossy
dielectric material with � � ���� ����� � � ���� � � ��� nm; layer-5:
free space; � � ��� nm; HED is at the interface between layer-4 and layer-5
� � 	 � �.

V. CONCLUSION

In this paper, three DCIM-based algorithms have been
proposed to obtain the closed-form Green’s functions over all
ranges in planar layered media, giving proper emphasis to the
wave natures of different singularities in the spectral-domain
representations. Although the three proposed algorithms are
mainly three-level DCIMs, a DCIM with any number of paths,
i.e., the level, may be devised and employed, as long as cap-
turing the signature of each singularity in the spectral domain
properly. Using the proposed three-level DCIM approaches,
the mostly pronounced drawback of the algorithms based on
DCIM, i.e., their lack of approximating the lateral wave nature,
has been alleviated by introducing an additional path around
the branch point into the already available two-level DCIM
approach. It has been demonstrated that these approaches work
very well and provide very accurate closed-form Green’s func-
tions, not only over all ranges of distances from the source, but
for any material type, including LHMs. Note that the success of
the algorithm proposed here is based on a single assumption; a
combination of spherical waves can accurately represent lateral
waves. As a part of the contribution in this work, this assump-
tion was verified mathematically, in addition to its numerical
verification in many examples, showing that the sum of two
complex images, with proper choices of their coefficients and
exponents, can accurately mimic the lateral wave behavior in
the far-field zone at an interface. Consequently, the proposed
algorithm, with its three variants, can be considered robust,
efficient, and easy to implement, and therefore, is a viable tool
to be employed in a CAD package.
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