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Abstract—The spatial sparsity of targets in the radar scene is widely used in multiple-input multiple-output (MIMO)
radar signal processing, either to improve the detection/estimation performance of the radar or to reduce the cost of
the conventional MIMO radars (e.g. by reducing the number of antennas). While sparse target estimation is the main
challenge in such an approach, here we address the design of a compressive sensing-based MIMO radar which facilitates
such estimations. In particular, we propose an efficient solution for the problem of joint power allocation and antenna
placement based on minimizing the number of transmit antennas while constraining the coherence of the sensing matrix.
Numerical results confirm the superiority of the proposed method over the existing ones.

Index Terms—Colocated MIMO radar, compressive sensing, antenna placement, power allocation.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) radar systems have been
the focus of extensive research in the last decade as they are known to
provide superior performances compared to the conventional radars
[1], [2]. Based on the antenna configuration, MIMO radars are
generally categorized as either colocated [1] or widely separated [2].
In this paper, we consider colocated MIMO radars that have superior
parameter identifiability, spatial resolution and interference rejection.

Due to the spatial sparsity of the radar scene, the techniques in
compressive sensing (CS) and in particular, sparse recovery methods
are found to be very efficient for multi-target detection/estimation
in MIMO radars [3], [4]. The success of sparse recovery methods,
besides the sparsity level of the radar scene, depends on the properties
of the associated sensing matrix. This matrix, describes how the
sparse targets are represented in the measured data. The restricted
isometery property (RIP) is a well-known sufficient condition that
guarantees the stability of sparse recovery methods in noisy settings
[5]. Unfortunately, the verification of RIP for a given matrix is
computationally NP-hard and infeasible in practice. The mutual
coherence of the sensing matrix is a common alternative to guarantee
the performance of sparse recovery methods in a worst-case scenario.
Computationally, the evaluation of mutual coherence is possible for
a wide range of matrix sizes, which makes it one of the popular
tools for designing and modifying sensing matrices [4], [6], [7].

There exist several research studies on the design of CS-based
colocated MIMO radars in recent years [8]–[15]. Power allocation
and waveform design schemes for CS-based colocated MIMO radars
with arbitrary given locations of antennas have been addressed in [8]–
[11]. While [8], [9] attempt to make the gram matrix of the sensing
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matrix as close as possible to identity matrix, the coherence of the
sensing matrix is directly minimized in [10], [11]. A sparsity-aware
design for the transmitting beam pattern of a frequency diverse array
(FDA) MIMO radar is proposed in [12]. Again, the mutual coherence
of the sensing matrix is minimized so as to achieve high-resolution
estimation in both range and angle. We should highlight that designing
a low-cost MIMO radar that meets the performance requirements
with a reduced number of antennas is highly desirable. Such antenna
reductions can be achieved by exploiting the available degrees of
freedom (DOFs) in placement of the antenna elements (in contrast
to the conventional equi-spaced linear arrays)[13]. In this regard,
there are also a few random placement methods such as [14], [15]
with statistical guarantees for sparse recovery performance. Aside
from the array geometry, as shown in [10], power allocation can also
help reduce the coherence, and thus, improve the radar performance.
Therefore, a joint scheme of power allocation and antenna placement
can exploit the available DOFs more efficiently. Such an approach
was previously considered in [16] where an iterative method was
proposed to reduce the required number of TX antennas compared
to a conventional sparse MIMO configuration over a given aperture.
Nevertheless, our experiments show that the method of [16] fails to
converge to a sparse solution (i.e., placement) for moderate to large
apertures. Besides, the method is computationally demanding. The
power allocation method proposed in [9], can also provide sparse
placement if the distance between elements is rather low (compared
to wavelength) as it assigns very low powers to some elements.
However there is no control on the coherence and the number of
antennas in this approach.

In this letter, we provide an efficient solution to the problem
of joint antenna placement and power allocation in a CS-based
colocated MIMO radar. Our approach is to minimize the number
of TX antennas while controlling the recovery quality (and thereby
the radar performance) by applying a tunable upper-bound on the
coherence of the resulting sensing matrix. Unlike the method of [9],
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the number of TX antennas can be controlled via appropriate tuning
of this upper-bound. We formulate the problem as minimizing the ℓ0-
norm of a selection-power vector with a total power budget constraint
on a uniform grid of all possible TX antenna locations. Due to the
non-convexity of the ℓ0-norm minimization problem, we reformulate
the problem as a convex relaxation and recast it as a second order
cone program (SOCP) that can be solved efficiently in polynomial
time. Using computer experiments, we show the superiority of the
proposed method over the existing ones. Especially, we demonstrate
that the proposed method, unlike the method of [16], yields sparse
placements even for large apertures.

II. SYSTEM MODEL

Consider a colocated MIMO radar system equipped with distinct
linear TX and RX arrays placed along the 𝑧-axis. The RX array is
assumed to be a fixed array which can be of any form such as uniform,
co-prime, nested, etc. Here, we consider an 𝑁-element uniform linear
array (ULA) with 𝜆/2 inter-element spacing. This array forms an
aperture of 𝐿𝑟 = 𝑁/2 if normalized by the wavelength. In the rest
of this paper, all reported distances are also normalized in a similar
way. The RX steering vector at the DOA parameter 𝑢 = sin 𝜃 can be
described as

b(𝑢) = [
ej2𝜋𝑧𝑟,1𝑢 , ej2𝜋𝑧𝑟,2𝑢 , . . . , ej2𝜋𝑧𝑟,𝑁𝑢

]𝑇
, (1)

where 𝑧𝑟,𝑛 = 𝑛−1
2 , 𝑛 = 1, . . . , 𝑁 is the location of the 𝑛th receive

element on the 𝑧-axis. To form the TX array, however, a number
of antennas, say 𝑀 , should be selected from an extended TX array
defined over a given aperture 𝐿𝑡 . To this end, we consider a uniform
grid of possible antenna locations with inter-spacing 𝑑 across the
array. The extended TX array consists of �̃� = 𝐿𝑡

𝑑
+ 1 elements, the

steering vector of which at 𝑢 = sin 𝜃 is denoted by

ã(𝑢) =
[
ej2𝜋𝑧𝑡,1𝑢 , ej2𝜋𝑧𝑡,2𝑢 , . . . , ej2𝜋𝑧

𝑡,�̃�
𝑢
]𝑇

(2)

where 𝑧𝑡,𝑚 = (𝑚−1)𝑑
2 , 𝑚 = 1, . . . , �̃� denotes the position of the 𝑚th

element in the extended TX array on the 𝑧-axis.
Let us define the selection-power vector as c = [𝑐1, 𝑐2, . . . , 𝑐�̃� ]𝑇 ,

where 𝑐𝑚 is a non-negative variable denoting the power of a possibly
selected transmit antenna. Indeed, 𝑐𝑚 = 0 implies that the𝑚th element
of the extended TX array is not selected, while a non-zero variable
indicates selecting the 𝑚th TX antenna with a transmit power equal
to 𝑐𝑚. By assuming 𝐾 targets at the far-field of the radar with
DOA parameters 𝑢1, . . . , 𝑢𝐾 , the baseband received signal at the 𝑛th
receiver can be written, in matrix form, as

r𝑛 =
𝐾∑︁
𝑘=1

𝛽𝑘 𝑏𝑛 (𝑢𝑘)XCã(𝑢𝑘) + n𝑛 (3)

where 𝛽𝑘’s stand for the target reflection coefficients, 𝑏𝑛 (𝑢𝑘) =
ej2𝜋𝑧𝑟,𝑛𝑢𝑘 is the 𝑛th element of b(𝑢𝑘) corresponding to the 𝑛th
receiver, and X = [x1, . . . , x𝑀 ] is the waveform matrix in which x𝑖
denotes the transmitted signal by the 𝑖th TX antenna (it is assumed
that ‖x𝑖 ‖2 = 1 for all 𝑖 = 1, . . . , 𝑀). C𝑀×�̃� is the selection-power
matrix constructed via removing the all-zero rows in diag (ĉ), where ĉ
denotes the element-wise square root of c (we have C𝐻C = diag (c)).
The vector n𝑛 denotes the noise term at the 𝑛th receiver which is
modeled as a circularly symmetric complex Gaussian random vector.

At a processing unit, the received vectors corresponding to all the
receivers are stacked together to form the total received signal

r = [r𝑇1 , . . . , r𝑇𝑁 ]𝑇 =
𝐾∑︁
𝑘=1

𝛽𝑘 b(𝑢𝑘) ⊗ XCã(𝑢𝑘) + n (4)

where ⊗ is the Kronecker product operator and n = [n𝑇1 , . . . , n𝑇𝑁 ]𝑇
is the total noise vector.

Next, we present the aforementioned model in a grid-based
formulation in a CS framework. To this end, let us assume a fine-
enough uniform grid 𝑔1, . . . , 𝑔𝐺 for the possible DOA parameters,
where 𝐺 is the size of the grid (𝐺 � 𝐾). Further, we assume that
the observed direction of all the targets in the surveillance area fairly
lie on the grid points. Hence, we can write the received vector r in
a CS framework as

r = 𝚽s + n (5)

where 𝚽 = [𝝋1, 𝝋2, . . . , 𝝋𝐺] is the sensing matrix whose 𝑙th column
(associated with the 𝑙th DOA grid point 𝑔𝑙) can be written as

𝝋𝑙 = b(𝑔𝑙) ⊗ XCã(𝑔𝑙), 𝑙 = 1, . . . , 𝐺, (6)

and s is a sparse vector, the 𝑙th element of which is equal to 𝛽𝑘 if the 𝑘th
target lies in the 𝑙th DOA bin (𝑔𝑙) and is zero otherwise. To detect and
estimate existing targets, we need to recover s from the measurements
r in (5) via a sparse recovery method. We employ the NESTA recovery
algorithm presented in [17] which is an appropriate technique for
complex-valued vectors and matrices. To decide about the presence
of a target in a DOA bin, the magnitude of the corresponding element
in the recovered vector s is compared with a given threshold; the
value of the threshold is determined based on a desired false alarm
probability.

III. PROPOSED METHOD

The task of joint antenna placement and power allocation is
performed with the aim of minimizing the number of TX antennas,
which can be formulated as minimizing the number of nonzero
elements in c. We further upper-bound the coherence of the sensing
matrix to control the sparse recovery accuracy, and thus the detection
performance of the MIMO radar. Mathematically, we consider the
following constrained minimization problem

min
c

‖c‖0 s.t.

𝜇(𝚽) ≤ 𝜂,∑�̃�
𝑚=1 𝑐𝑚 = 𝑃𝑇 , c ≥ 0

, (7)

where 𝑃𝑇 denotes the total power budget and 𝜇(𝚽) stands for the
coherence of the sensing matrix 𝚽 defined as

𝜇(𝚽) = max
𝑙≠𝑙′

��𝝋𝐻𝑙′ 𝝋𝑙 ��
‖𝝋𝑙′ ‖‖𝝋𝑙 ‖

, (8)

where 𝝋𝑙 is defined in (6). Furthermore, the design parameter 𝜂 is a
constant which sets an upper-bound on the coherence. In the rest of
the paper, we consider orthogonal radar waveforms, i.e., X𝐻X = I.
Furthermore, we denote the vectors ã(𝑔𝑙) and b(𝑔𝑙) by ã𝑙 and b𝑙
for the sake of brevity. According to (6), and using some properties
of the Kronecker product, the expression |𝝋𝐻𝑙′ 𝝋𝑙 | in the coherence
formulation can be simplified as

|𝝋𝐻𝑙′ 𝝋𝑙 | = 𝑏𝑙,𝑙′ | Tr
{
A𝑙,𝑙′ diag (c)} | (9)
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where 𝑏𝑙,𝑙′ , |b𝐻𝑙′ b𝑙 |, A𝑙,𝑙′ , ã𝑙 ã𝐻𝑙′ , and we used the relation
C𝐻C = diag (c) and a property of Tr {∗} operator. Finally, one can
simplify the expression as

𝝋𝐻𝑙′ 𝝋𝑙 = 𝑏𝑙,𝑙′ |c𝑇 a𝑙,𝑙′ |, (10)

where a𝑙,𝑙′ , diag
(
A𝑙,𝑙′

)
is the vector on the main diagonal in A𝑙,𝑙′ .

Furthermore, for 𝑙 = 𝑙′ we have 𝝋𝐻𝑙 𝝋𝑙 = ‖𝝋𝑙 ‖2 = 𝑁
∑�̃�
𝑚=1 𝑐𝑚.

By recalling that A𝑙,𝑙′ and 𝑏𝑙,𝑙′ are solely dependent on the difference
of the indices 𝑙 and 𝑙′, we can simplify the coherence expression in
(8) as

𝜇(𝚽) = max
𝑙=2,3,...,𝐺

𝑏𝑙,1 |c𝑇 a𝑙,1 |
𝑁
∑�̃�
𝑚=1 𝑐𝑚

. (11)

Now consider putting (11) into (7); the resulting problem is still
computationally difficult to solve due to the existence of ℓ0-norm in
the objective function. Therefore, we use the ℓ1-norm as a convex
relaxation of the ℓ0-norm. However, this substitution is not directly
compatible with the total power budget constraint (

∑�̃�
𝑚=1 𝑐𝑚 = 𝑃𝑇 );

indeed, as 𝑐𝑖s are non-negative we know that ‖c‖1 =
∑�̃�
𝑚=1 𝑐𝑚. We

should highlight that both the objective function and the coherence
constraint are invariant to scaling of c. Thus, we can simply remove
the total power constraint and satisfy it later via an appropriate
scaling. With the latter change, we write the corresponding ℓ1-norm
minimization problem as the following convex form:

min
c

‖c‖1 s.t.

{
𝑏𝑙,1 |c𝑇 a𝑙,1 | ≤ 𝜂 𝑁

∑�̃�
𝑚=1 𝑐𝑚, 𝑙 = 2, . . . , 𝐺

c ≥ 0. (12)

Unfortunately, c = 0 is the trivial solution of (12). To avoid this
solution, we need to guarantee that at least one of the 𝑐𝑖s is non-
zero. Due to the aforementioned scaling-invariance property of the
minimization problem, this non-zero 𝑐𝑖 can be set as 1 without loss
of generality (other 𝑐𝑖s shall be scaled accordingly). In case the index
𝑖 for a non-zero value is known, we can simply solve the following
second order cone program (SOCP)

min
c

1𝑇 c s.t.

{ |c𝑇 a𝑙,1 | ≤ 𝜂 𝑁
𝑏𝑙,1

1𝑇 c, 𝑙 = 2, . . . , 𝐺

𝑐𝑖 = 1, c ≥ 0. (13)

The above SOCP can be efficiently solved using off-the-shelve
packages such as CVX. Since the index of a non-zero element
(alternatively, the location of an existing antenna) is not known a
priori, we solve (13) for all 𝑖 = 1, . . . , �̃� and select the sparsest
solution. Due to the symmetry of the problem, it is not difficult to
check that the solution for 𝑖 and �̃�−𝑖 are equivalent. Hence, checking
the range 𝑖 = 1, . . . , d �̃�2 e suffices to find the sparsest solution.

Remark 1: As it is known, the angular resolution of a MIMO radar
is inversely proportional to the aperture of the virtual array which
equals the sum of the TX and the RX apertures (𝐿𝑣 = 𝐿𝑡 + 𝐿𝑟 ).
More precisely, the resolution in 𝑢 = sin 𝜃 domain equals 1/𝐿𝑣 . For
detection purposes in radar systems, typically one to two samples
are observed in each resolution cell. Here, we consider a uniform
grid of 2

3𝐿𝑣 -spaced for the 𝑢 parameter over the entire visible region
[−1, 1]; this is equivalent to taking three samples from each two
cells.

Remark 2: In the proposed method, the RX array with 𝑁 receivers
is a fixed ULA with aperture 𝐿𝑟 = 𝑁/2. The TX aperture 𝐿𝑡 , however,
is given as an input to the proposed method.
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Fig. 1. Required number of TX antennas versus coherence, (a) 𝑁 =
5, 𝐿𝑡 = 20, (b) 𝑁 = 10, 𝐿𝑡 = 55.

IV. SIMULATION RESULTS

In this section, we aim at comparing the proposed method with
the existing methods and especially with the method of [16] using
computer experiments. In the first experiment, we consider a standard
ULA with 𝑁 = 5 receiving antennas; it provides us with an RX
aperture of 𝐿𝑟 = 5/2. Further, we set 𝐿𝑡 = 20 and 𝑑 = 1/2. Under
these settings, we run the proposed method and the method of [16]
for different coherence values and report the required number of TX
antennas for each. The results are shown in Fig. 1a. As shown in
this figure, the proposed scheme requires fewer antennas and results
in sparser arrays, and thus is more cost-effective. We did the same
experiment using 𝑁 = 10 and 𝐿𝑡 = 55 and plotted the results in Fig.
1b. It is observed in this figure that for larger apertures, the method
of [16] does not exhibit good performances and the superiority of
our scheme is further emphasized under these circumstances. In fact,
as the aperture increases, the iterative method of [16] somehow fails
to find a sparse solution. This observation is confirmed by checking
the resulting locations and powers (Fig. 2). The results for both
methods for a coherence values of 0.38 are given in Fig. 2a and
Fig. 2b and for a coherence value of 0.5 in Fig. 2c and Fig. 2d. As
mentioned, we see that the method of [16] has not converged to a
sparse solution. Particularly, if we discard the antenna with the least
allocated (nonzero) power in Fig. 2c, the coherence is increased by
10% which is not negligible.

In the previous experiment, the reduction of the TX antennas
in the proposed scheme compared to [16] was reported. In the
following experiment, we evaluate our method in terms of the detection
performance. Indeed, due to the dependence of the sparse recovery
performance on the coherence, it is expected that methods perform
similarly under equal coherence values. To examine this, we compare
our design shown in Fig. 2d with 5 TX antennas with that of [16]
shown in Fig 2c with 11 TX antennas (employing the same setup
used in generating the curves of Fig. 1b); the coherence value in both
arrangements is 0.5. We also include the results of an arrangement
with 10 TX antennas and a coherence value of 0.26 using the proposed
method, as well as a configuration with 10 TX elements obtained via
performing the power allocation method proposed by [9] over a TX
aperture of size 𝐿𝑡 = 45; the coherence of the latter is 0.54. Note that
in all of the designs, the RX array is a standard ULA with 𝑁 = 10
antennas. we generate the curves of detection probability as a function
of signal to noise ratio (SNR) for a given false alarm probability
𝑃 𝑓 𝑎 via a Monte-Carlo simulation. Here, SNR is defined as 1/𝜎2

where 𝜎2 is the power of complex Gaussian noise at the receiver.
We consider a 2500-trial Monte-Carlo simulation with independent
realizations of noise, target locations and target gains. Furthermore,
we employ orthonormal DFT matrices as the waveform matrix X.
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Fig. 2. Position and power of the selected antennas, (a) method of
[16], coherence = 0.38, (b) proposed method, coherence = 0.38 (c)
method of [16], coherence = 0.5, (d) proposed method, coherence =
0.5.
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Fig. 3. Probability of detection versus SNR, 𝑃 𝑓 𝑎 = 10−4, 𝐾 = 4

In each ensemble run, we randomly place 𝐾 = 4 targets on the DOA
grid points with random reflection coefficients (𝛽𝑘’s) following a
Swerling case I model. In other words, 𝛽𝑘’s follow a standard complex
Gaussian distribution. Then, we form the noisy measurements using
the CS expression (5) and attempt to recover the target scene (the
vector s) using NESTA [17]. Next, we perform a detection procedure
by comparing the recovered data with a threshold computed according
to the given value of 𝑃 𝑓 𝑎 = 10−4. The resulting curves are given
in Fig. 3. As shown in this figure, our design with 10 TX elements
significantly outperforms the designs using the methods of [16] and
[9] with 11 and 10 TX elements, respectively. Further, for the same
coherence value of 0.5, the resulting MIMO configuration obtained
via the proposed scheme with only 5 TX antennas provides a detection
performance very close to that of the [16] with 11 TX antennas.

As a last experiment, we compare our schemes with that of [16]
in terms of computational time. For a fixed number of RX antennas
(𝑁 = 6), we extracted the run time of the algorithms over our machine
for different values of 𝐿𝑡 . The results are shown in Fig. IV, indicating
that the proposed method is much faster than the iterative method
of [16].

V. CONCLUSION

A joint scheme of antenna placement and power allocation in
CS-based colocated MIMO radars was proposed in this letter. Our
method was based on the minimization of the ℓ1-norm of a selection-
power vector defined over a uniform grid of possible locations for
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we employ orthonormal DFT matrices as the waveform matrix X.
In each ensemble run, we randomly place  = 4 targets on the

DOA grid points with random reflection coefficients (V:’s) following a
Swerling case I model. In other words, V:’s follow a standard complex
Gaussian distribution. Then, we form the noisy measurements using
the CS expression (5) and attempt to recover the target scene (the
vector s) using NESTA [17]. Next, we perform a detection procedure
by comparing the recovered data with a threshold computed according
to the given value of % 5 0 = 10�4. The resulting curves are given in
Fig. 3. As shown in this figure, our design with 10 TX elements
significantly outperforms the designs using the methods of [16] and
[9] with 11 and 10 TX elements, respectively. Further, for the same
coherence value of 0.5, the resulting MIMO configuration obtained
via the proposed scheme with only 5 TX antennas provides a detection
performance very close to that of the [16] with 11 TX antennas.

As a last experiment, we compare our schemes with that of [16]
in terms of computational time. For a fixed number of RX antennas
(# = 6), we extracted the run time of the algorithms over our machine
for different values of !C . The results are shown in Fig. IV, indicating
that the proposed method is much faster than the iterative method
of [16].

V. CONCLUSION

A joint scheme of antenna placement and power allocation in
CS-based colocated MIMO radars was proposed in this letter. Our
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Fig. 4. Run time vs !C , # = 6

method was based on the minimization of the ✓1-norm of a selection-
power vector defined over a uniform grid of possible locations for
antennas. The superiority of the proposed method over the existing
methods was shown by numerical simulations. As an extension to
our work, the problem could be formulated for continuous location
variables while taking into account some physical constraints such
as minimum antenna spacing. Furthermore, as a general scenario,
the inclusion of non-orthogonal waveforms could also be considered;
especially since it paves the way for beam-pattern design.
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antennas. The superiority of the proposed method over the existing
methods was shown by numerical simulations. As an extension to
our work, the problem could be formulated for continuous location
variables while taking into account some physical constraints such
as minimum antenna spacing. Furthermore, as a general scenario,
the inclusion of non-orthogonal waveforms could also be considered;
especially since it paves the way for beam-pattern design.
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