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Ellipse Recovery from Blurred Binary Images
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Abstract—In this paper, we address the problem of ellipse
recovery from blurred shape images. A shape image is a binary-
valued (0/1) image in continuous-domain that represents one or
multiple shapes. In general, the shapes can also be overlapping.
We assume to observe the shape image through finitely many
blurred samples, where the 2D blurring kernel is assumed to
be known. The samples might also be noisy. Our goal is to
detect and locate ellipses within the shape image. Our approach
is based on representing an ellipse as the zero-level-set of a
bivariate polynomial of degree 2. Indeed, similar to the theory
of finite rate of innovation (FRI), we establish a set of linear
equations (annihilation filter) between the image moments and
the coefficients of the bivariate polynomial. For a single ellipse,
we show that the image can be perfectly recovered from only
6 image moments (improving the bound in [1]). For multiple
ellipses, instead of searching for a polynomial of higher degree,
we locally search for single ellipses and apply a pooling technique
to detect the ellipse. As we always search for a polynomial of
degree 2, this approach is more robust against additive noise
compared to the strategy of searching for a polynomial of higher
degree (detecting multiple ellipses at the same time). Besides, this
approach has the advantage of detecting ellipses even when they
intersect and some parts of the boundaries are lost. Simulation
results using both synthetic and real world images (red blood
cells) confirm superiority of the performance of the proposed
method against the existing techniques.

Index Terms—Algebraic curves, blurred images, ellipse recov-
ery, finite rate of innovation, image moments.

I. INTRODUCTION

THE ellipse recovery from digital pixels is a well-studied
task in computer vision [2], pattern recognition [3] and

has various applications in astronomy [4], biomedical imaging
[5]–[8], process control in semiconductor industry [9], traffic
sign detection [10], object tracking [11], and pupil detection
[12].

An image that consists of ellipse-shaped objects is a
continuous-domain signal which is mapped to a discrete-
domain space via an imaging device. The optical part in most
existing imaging devices can be fairly approximated with a
linear and shift-invariant operator (a filter). This implies that
the incoming light to the camera (the imaging device) is first
convolved with a 2D blurring kernel, which is commonly
referred to as the point spread function (PSF). Next, the
blurred image is sampled to form the output samples. As
the boundary of an ellipse in the discrete-domain image is
affected by both the PSF and the sampling process, detecting
and locating the ellipse based on the pixels is no longer an
easy task. In particular, note that the width of the boundary is
not necessarily limited to one pixel (depending on the PSF)
and simple curve fitting techniques are not sufficient to locate
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the ellipse. Another issue is that the sampling process might
introduce some noise in the pixels; thus, a practical ellipse
detection method shall also be robust to additive noise.

A. Related works

There is a rich literature on ellipse detection over the
past three decades and various methods are proposed. All
introduced methods are based on unique properties of the
ellipse. The two main categories of more successful methods
are clustering or voting techniques based on Hough transform
(HT) and algebraic/geometric least square (LS) techniques.

The Hough transform is a voting scheme that assigns a
confidence value to each possible ellipse in the image. A
thresholding operator then, determines the most likely ellipses.
The HT-based methods are known to be robust against outliers;
in addition, HT allows for detection of multiple ellipses at the
same time. However, the HT-based methods usually have high
computational complexity and their storage requirement scales
exponentially in terms of the number of involved parameters
[13]. Several simplifications are introduced in [14], [15] to
overcome these issues. One of the efficient HT-based methods
is presented in [16]; in our numerical comparisons, we include
this method as a representative of the HT-based methods.

The LS-based algorithms use a parametric representation of
the ellipse and try to estimate the parameters by minimizing
a quadratic cost (e.g., the distance between the data points
and the ellipse curve); based on the definition of the cost, the
method is classified as algebraic or geometric. In algebraic LS-
based methods, a parametric algebraic expression is assumed
between the x and y coordinates of the ellipse boundary points.
Therefore, each known boundary point on the ellipse provides
us with an equation involving the parameters. This shows that
the parameters are the solution of a set of equations established
by the known boundary points.

Bookstein [17] showed that under a quadratic constraint,
the problem can be modeled as a generalized eigenvector
problem with a closed-form solution. Direct least squares
(DLS) algorithm with equality constraint was first proposed
by Fitzgibbon [18]. Thanks to simplicity and non-iterative
property of DLS, this algorithm is widely used in real world
applications. However, as studied in [19], the matrices involved
in DLS are sometimes singular; to avoid numerical instability,
a matrix decomposing technique is proposed in [19].

If the available boundary points cover only part of the
ellipse, the algebraic methods are likely to estimate a smaller
shape. To overcome this issue, geometric LS-based methods fit
an ellipse to the data so as to minimize the orthogonal distance
of the available points to the boundary of the estimated shape
[20], [21]. Unlike algebraic methods, the geometric techniques
are commonly iterative and do not have closed-form solutions.
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Fig. 1. The imaging system. The input image convolved with 2D kernel and
afterward the uniform sampling applied to generate the measurements.

A recent approach used in binary images is the frame-
work of signals with finite rate of innovation (FRI). In this
framework, which was first developed for 1D signals in [22]
(and extended to 2D in [23]), a family of signals with certain
piece-wise structures are studied, where each piece can be
represented with finitely many parameters. The structures are
linked with a set of algebraic equations referred to as the
annihilation filters. Well-known examples include the stream
of Diracs and piece-wise polynomial signals. Specifically, a
non-iterative ellipse fitting method based on the tools in FRI
theory is developed in [24]. The ellipse detection is a special
case of shape recovery, which is considered in more generality
within the 2D FRI framework. The recovery of piece-wise
continuous complex analytic images proposed in [25] is an
example of the FRI framework in 2D where the complex
derivative of such images is the zero-level-set of a polynomial
associated with periodic band-limited functions.

The application of the FRI theory in recovering binary
image shapes is studied in [1], [26]. By modeling the boundary
of image shapes using algebraic curves, an annihilation-based
recovery method is proposed in [1], which essentially recovers
the derivative of the image. It is particularly shown that for
the recovery of an algebraic curve of degree n (the degree
of the polynomial that represents the shape), 3n − 1 image
moments are sufficient (the moments are evaluated based on
pixel values). A similar problem is investigated in [27], where
the image is recovered from the Fourier samples (rather than
spatial pixels). Again, the guaranteed bound confirms with the
3n−1 moments in [1]. The latter bound is improved to 2n+1
moments in [28] for the case of convex algebraic curves.

Other than the general approaches mentioned above, there
are some ellipse detection methods in the literature. For
instance, a circle detection method (extendable to ellipses)
using pairs of opposite boundary points is devised in [29]. An
algorithm based on the local concavity of the edges is proposed
in [5]. Techniques based on principal component analysis
(PCA) and maximum likelihood are provided in [30] and [31],
respectively. Another stochastic approach using the marked
point process framework in presented in [32]. [33] introduced
a fitting technique by taking advantage of the sparsity of the
outliers. Among the recent deep learning approaches one can
name [34]; although deep learning methods are potentially
very accurate, their performances are greatly impacted by the
employed training dataset.

B. Challenges in ellipse recovery

In this paper, we are interested in detecting multiple ellipses
in a continuous-domain binary image like the one in left plot
of Fig. 1. The imaging/measurement system transforms this

image into a finite number of pixels by convolving it with
a 2D kernel (the PSF, shown in the middle plot) followed
by a uniform sampling. Therefore, the resulting image in the
right plot of Fig. 1 consists of blurred pixels. Now, the main
challenge is to detect the number of existing ellipses in the
image and to estimate their coefficients from the pixels. As we
shall show in our simulations, the standard HT or LS-based
methods fail as they ignore the blurring effect and try to fit
an ellipse to the boundary points; due to the blurring effect,
the exact location of ellipse boundaries cannot be determined
from the pixels.

Another issue is when we have multiple ellipses in an image.
Besides the fact that FRI-based methods (such as the one in
[1]) need to know an upper-bound on the number of ellipses
in advance, they become very sensitive to additive noise with
the increase of the number of ellipses. The reason is the use
of polynomial equations of high degrees.

The overlapping of the ellipses is also another challenge
for almost all the existing methods. The blurred image of two
overlapping ellipses could be easily mistaken with the image
of a single but larger ellipse.

C. Contributions

In this paper, we study the problem of multiple ellipse
recovery from blurred pixels by knowing the blurring kernel.
Similar to the approach in [1], we represent each ellipse
with the zero-level-set of a bivariate polynomial (algebraic
curve) of degree 2; however, we locally search for the ellipses
as opposed to higher order curves which has the advantage
of restricting the degree to 2 irrespective of the number of
ellipses. In each step, we derive a set of annihilation equations
to estimate the coefficients of a degree 2 algebraic curve. To
ensure that the estimated algebraic curve represents an ellipse
we introduce a quadratic optimization problem. Moreover, we
theoretically guarantee the uniqueness of the minimizer.

We further improve the theoretical bound for the required
number of image moments to extract an ellipse. It is proven
in [1] that for recovering a degree n algebraic curve, moments
of degrees up to 3n − 1 are sufficient; the image has

(
3n+1

2

)
moments with this degree constraint. The latter bound is
improved to moments of up to degree 2n+ 1 when the shape
is known to be convex (which is the case for an ellipse).
Interestingly, for the case of an ellipse with n = 2, these two
bounds coincide and require moments of up to degree 5 (21
moments in total). We show in this paper that the moments
of up to degree 2 (6 moments in total) are sufficient for the
recovery of an ellipse. This forms a tight bound as an ellipse
is parametrized using 6 coefficients.

As we would like to detect multiple ellipses which can
potentially intersect (and overlap), we devise a patch-wise
approach in which we search for an ellipse within a small
window (the patch). This window can include only a part of
an ellipse and our task is to estimate the parameters of an
ellipse only by observing a fraction of its blurred boundary.
Therefore, we introduce the generalized moments and modify
the annihilation equations accordingly.
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D. Paper organization

The rest of this paper is organized as follows: in Section
II we describe the image model, the sampling operator, and
the image recovery based on the moments. In Section III,
we first elaborate on estimating the coefficients of a single
ellipse using annihilation equations. We further present our
theoretical results on the uniqueness of the solution and the
sufficient degree of moments for perfect reconstruction. Next,
we introduce our patch-based approach for the detection of
multiple ellipses. The simulation results in Section IV confirm
the efficiency and robustness of the introduced method both
in the noiseless and noisy settings. Finally, we conclude the
paper in Section V.

II. CONTINUOUS-DOMAIN IMAGE MODEL AND SAMPLING

In this section, we define our binary image model via
algebraic curves and explain the imaging system. We also link
the image recovery problem with the annihilation equations in
the FRI terminology. This helps us in deriving a sampling
theorem for images.

A. Shape images

A bivariate polynomial of degree n with real coefficients
ai,j is denoted by

p(x, y) =
∑

0≤i,j,i+j≤n

ai,jx
iyj , (1)

where x, y represent the real-valued input arguments. The
algebraic domain corresponding to p(x, y) is defined as the set
of points {(x, y) ∈ R2 : p(x, y) ≤ 0}. The boundary of this
domain is the zero-level-set of p(x, y) which is the algebraic
curve of degree n. We define the continuous-domain binary
algebraic shape S associated with p(x, y) as

Sp(x, y) = 1p(x,y)≤0 (x, y) ∈ Ω, (2)

where 1 is the indicator function, Ω = [−L,L]2, and integer
L ∈ Z+ (which determines the boundary of the image) is
assumed to be large enough.

The ellipses (which are of particular interest in this paper)
are special cases of algebraic shapes of degree 2 polynomials.
Note that the algebraic shape of a degree 2 polynomial is not
necessarily an ellipse (e.g., parabolas and hyperbolas). The
shape boundary of a binary image consisting of N ellipses
(not necessarily a connected curve) is always included in the
algebraic curve of a degree 2N polynomial; by multiplying the
degree 2 polynomials associated with each ellipse, we obtain a
degree 2N polynomial that vanishes on the boundary of each
ellipse. However, note that if the ellipses are overlapping, some
part of the ellipse boundaries can be excluded in the shape
boundaries, while they appear in the corresponding algebraic
curve. Another issue is that while the shape boundary of the
original image can be represented by an algebraic curve, the
image itself might not coincide with any algebraic shape (e.g.,
the left image in Fig. 1). The continuous-domain images in
this paper are assumed to be binary (0/1-valued) such that
the boundaries belong to a union of N ellipses, but the shape
image is not necessarily assumed to be an algebraic shape.

B. Imaging system
The imaging device (or simply the camera) is the operator

that maps the continuous-domain (binary) image into a finite
set of pixels. To better explain the effect of this device,
let I(x, y) denote the input continuous-domain image and
let us represent the output pixels by {dk,l} (k and l are
integers). A naive camera model is a uniform 2D sampler, i.e.,
dk,l = I(kT, lT ), where T is the spatial sampling resolution.
This model is unrealistic due to the physical limitations of the
imaging device. A more realistic model is

dk,l = 1
T 2

∫∫
Ω

I(x, y)ϕ
(
x
T − k,

y
T − l

)
dxdy, (3)

where ϕ(x, y) is the sampling kernel or the point spread
function of the camera. In general, the pixels {dk,l} can also
be corrupted by additive noise. A high-level block diagram of
the imaging device is shown in Fig. 1.

Our goal in this paper is to recover I(x, y) by having access
to pixel values {dk,l}. We assume to know the sampling kernel
ϕ in advance and assume that I(x, y) belongs to the shape
model described in Section II-A.

C. Image recovery using annihilation equations
Let I(x, y) be a continuous-domain binary image whose

boundaries belong to the algebraic curve of the bivariate poly-
nomial p(x, y) =

∑
ai,jx

iyj of degree n. Due to the binary
nature of I(x, y), we know that ∂

∂xI(x, y) and ∂
∂y I(x, y) are

2D images that are zero except at the boundaries where we
expect Dirac-type behavior. Besides, the polynomial p(x, y)
vanishes at the boundary of I(x, y). Similar to the 1D equality
x δ(x) ≡ 0, where δ(·) is the Dirac’s delta distribution, we can
write that [1]

p(x, y) ∂
∂xI(x, y) ≡ 0, (4a)

p(x, y) ∂∂y I(x, y) ≡ 0. (4b)

It is interesting to mention that (4) remains valid irrespective
of the white/black coloring of the shape interior; further, the
edges in I(x, y) could be a subset (and not all) of the zero-
level-set of p(x, y). By integrating equalities in (4), we have
that ∫∫

Ω

xrysg(x, y)p(x, y) ∂
∂xI(x, y)dxdy = 0, (5a)∫∫

Ω

xrysg(x, y)p(x, y) ∂∂y I(x, y)dxdy = 0. (5b)

Using the adjoint property of the partial derivatives, we can
rewrite (5) as

−
∫∫

Ω

∂
∂x

(
xrysg(x, y)p(x, y)

)
I(x, y)dxdy = 0, (6a)

−
∫∫

Ω

∂
∂y

(
xrysg(x, y)p(x, y)

)
I(x, y)dxdy = 0, (6b)

which can be translated into constraints of the form∑
0≤i,j,i+j≤n

((i+ r)M
g(x,y)
i+r−1,j+s +M

gx(x,y)
i+r,j+s)ai,j = 0, (7a)∑

0≤i,j,i+j≤n

((j + s)M
g(x,y)
i+r,j+s−1 +M

gy(x,y)
i+r,j+s)ai,j = 0, (7b)
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on generalized image moments (see [1] for the details)

M
g(x,y)
i,j ,

∫∫
Ω

xiyjg(x, y)I(x, y)dxdy. (8)

M
gx(x,y)
i,j and M

gy(x,y)
i,j are Similarly defined by using the

partial derivatives of g as the weight function. Here, g(·, ·) is an
arbitrary weight function that could be tuned (with g ≡ 1 we
arrive at the standard image moments) with partial derivatives
as gx(·, ·) and gy(·, ·). Interestingly, (7) provides a set of
linear equations (called annihilation equations) for finding the
polynomial coefficients ai,j based on the generalized image
moments Mg(x,y)

i,j , Mgx(x,y)
i,j , and Mgy(x,y)

i,j (we shall explain
how to derive the moments from the pixels). Using the matrix
notations, we can write

Ma = 0, (9)

where M is a matrix formed by generalized image moments,
a is the vector of polynomial coefficients, and 0 is an all-zero
vector matching the size of a. Note that any scalar multiple
of a such as a′ = αa also satisfies (9). Therefore, we enforce
a0,0 = 1 to avoid multiple solutions; as p(x, y) and αp(x, y)
produce the same algebraic curves, this convention does not
affect the image recovery task.

It remains to describe how the generalized moments are
evaluated based on pixel values. For this purpose, let g(x, y)
be a non-trivial and non-negative-valued function such that
xiyjg(x, y) and its partial derivatives for 0 ≤ i, j ≤ µ can
be written as the linear combination of shifts of the PSF with
coefficients {ϑ(i,j)

k1,k2
},{ν(i,j)

k1,k2
},{υ(i,j)

k1,k2
}, i.e.,

∀ i, j = 0, . . . , µ, ∃{ϑ(i,j)
k1,k2
}, {ν(i,j)

k1,k2
}, {υ(i,j)

k1,k2
} :∑

k1,k2∈Z
ϑ

(i,j)
k1,k2

ϕ(x− k1, y − k2) = xiyjg(x, y),∑
k1,k2∈Z

ν
(i,j)
k1,k2

ϕ(x− k1, y − k2) = xiyjgx(x, y),∑
k1,k2∈Z

υ
(i,j)
k1,k2

ϕ(x− k1, y − k2) = xiyjgy(x, y). (10)

The parameter µ is the maximum order of the generalized
image moment required in our recovery method. Obviously,
the set of constraints in (10) becomes more restricting as µ
grows. For g ≡ 1, (10) is known as the polynomial reproducing
property of ϕ(·, ·) and is of interest in wavelet theory (the
Strang-Fix condition for determining the approximation order
of the wavelet). The 2D B-spline functions are well-known ex-
amples that satisfy this condition [35], [36]. Here, we have the
freedom of choosing g(·, ·); besides, in most practical cases,
it is numerically sufficient that (10) holds approximately (and
not necessarily exactly). For the robustness of the generalized
moments to cropping, it is desirable to have decaying g(·, ·)
functions; with this choice, the moments are automatically
evaluated locally.

By assuming (10), we can now relate the generalized
moments to pixel values:

M
g(x,y)
i,j =

∫∫
Ω

xiyjg(x, y)I(x, y)dxdy

=

∫∫
Ω

( ∑
k1,k2∈Z

ϑ
(i,j)
k1,k2

ϕ(x− k1, y − k2)
)
I(x, y)dx dy

=
∑

k1,k2∈Z
ϑ

(i,j)
k1,k2

∫∫
Ω

ϕ(x− k1, y − k2)I(x, y)dxdy

=
∑

k1,k2∈Z
ϑ

(i,j)
k1,k2

dk1,k2 . (11)

Similarly, we have that

M
gx(x,y)
i,j =

∑
k1,k2∈Z

ν
(i,j)
k1,k2

dk1,k2 , (12a)

M
gy(x,y)
i,j =

∑
k1,k2∈Z

υ
(i,j)
k1,k2

dk1,k2 . (12b)

In summary, finding a suitable g(·, ·) (in terms of ϕ(·, ·)) is
the key to transform the pixels into the generalized moments.

D. Recovery guarantee

The annihilation equations in (9) help us in recovering the
polynomial coefficients, and ultimately, the shape image. An
important issue here is the number of required equations in
(9) (or alternatively, the number of required image moments)
from which we can extract the original polynomial. For this
purpose, we describe a useful result from [1]:

Theorem 1: Let I denote an algebraic shape of degree
n defined on Ω without singular edges. Also let Mg(x,y)

i,j ,
M

gx(x,y)
i,j and Mgy(x,y)

i,j denote the generalized moments of I
corresponding to a non-trivial and non-negative-valued weight
function function g(·, ·). If ã = [ãi,j ]i+j≤n 6= 0 satisfies the
annihilation equations (7) for all 0 ≤ r, s, r + s ≤ 2n − 1,
then, the zero-level-set of the following polynomial contains
the boundaries of I .

p̃(x, y) =
∑

0≤i,j,i+j≤n

ãi,jx
iyj (13)

With 0 ≤ r, s, r+ s ≤ 2n− 1 in Theorem 1, one needs the
generalized moments of degree up to 3n− 1 which consist of
2
(

3n+1
2

)
equations. Compared to the

(
n+2

2

)
unknowns (number

of coefficients), this number is very large (almost 18 times the
number of unknowns when n is large). The 3n− 1 bound on
the moment order is further improved to 2n+1, given that the
shape image is convex [28]; thus, a suitable matrix M shall
have an aspect ratio close to 8 (instead of 18). In this paper
and for the particular case of ellipses (n = 2), we prove that
the 6 equations provided by the moments of degree up to 2
are sufficient to retrieve all the coefficients.

III. MAIN RESULT

In this section, we first study how to recover a single ellipse
from the image moments by solving an optimization problem.
We further discuss the uniqueness of the solution and the
sufficient number of moments for the exact recovery. Next, we
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introduce a patch-wise algorithm in order to estimate multiple
ellipses where they can possibly be intersecting with each
other.

A. Single ellipse recovery from the moments
Consider the following degree 2 bivariate polynomial

p(x, y) = a00 + a01y + a10x+ a02y
2 + a11xy + a20x

2 = 0. (14)

The zero-level-set of p(x, y) can be either an empty set,
a point, a line, an ellipse, a parabola or a hyperbola. The
special case of ellipse happens when a2

11 − 4a20a02 < 0.
Enforcing this inequality in recovery procedures is rather
complicated. Instead, it is common to scale the coefficients
such that the equality 4a20a02 − a2

11 = 1 holds [18]. We
should highlight that the zero-level-set of a scaled polynomial
remains unchanged; hence, this scaling does not affect the
recovery procedure in a negative manner. By representing the
polynomial coefficients as a vector a, this equality constraint
can be described as

aT


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 2
0 0 0 0 −1 0
0 0 0 2 0 0


︸ ︷︷ ︸

C

a = 1. (15)

We can now reformulate the ellipse coefficient recovery from
image moments (M) via the following optimization problem
with a quadratic constraint

min
a
‖Ma‖2 s.t. aTCa = 1. (16)

It should be highlighted that the constraint

a00 ≤ a20a
2
01 − a10a11a01 + a02a

2
10 (17)

shall be checked to make sure that the area of the detected
ellipse is non-negative; i.e., if the constraint in (17) is violated,
then, the detected ellipse is ignored.

Theorem 2: If M is full column-rank, then, (16) has a unique
minimizer. This minimizer can be expressed as

aopt = ζQ−1vmax, (18)

where Q =
√

MTM, vmax stands for the unit-norm eigen-
vector of Q−1CQ−1 corresponding to the maximum eigen-
value, and

ζ =
1√

vTmaxQ−1CQ−1vmax

. (19)

Proof: See Appendix A.
Theorem 2 describes the solution and uniqueness of the

minimization problem in (16). It does not, however, guarantee
that if M corresponds to the moments of an ellipse, the
minimzer aopt coincides with the coefficients of this shape.
From [1], we know that if we have enough moments (i.e., M
is tall enough), aopt exactly describes the ellipse. In Theorem
3, we improve the bound in [1] for the case of a single ellipse.

Theorem 3: Let Mg(x,y)
i,j , Mgx(x,y)

i,j and Mgy(x,y)
i,j denote the

generalized moments of an ellipse S , where g(·, ·) has a non-
trivial and non-negative-valued weight function. Further, let

𝑶𝑶(0,0)

𝑶𝑶(𝑥𝑥0,𝑦𝑦0)
′

(a) (b)
Fig. 2. (a) Estimating the coefficients of an ellipse from a window of samples
using generalized moments. The coordinate of each window is different. We
should be compensate the shifted coordinate to describe on system (b) The
fidelity metric of patches belong an ellipse are regenerated by a new patch of
same ellipse.

ã = [ãi,j ]i+j≤2 be a non-trivial solution to (16) for n = 2 and
0 ≤ r, s with r+s ≤Mmax, that forms a non-zero polynomial
p̃(x, y) =

∑
i,j ãi,jx

iyj . Then,
a) the zero-level-set of p̃ coincides with the ellipse S, given

that Mmax = 3, g is compact-support, and a part of the
ellipse border is contained in the support of g (the choice
of Mmax = 3 translates into having moments of degree
up to 5).

b) the zero-level-set of p̃ coincides with the ellipse S, given
that Mmax = 1, g ≡ 1 and the ellipse is fully contained
in the patch Ω (the choice of Mmax = 1 translates into
having moments of degree up to 2).

Proof: See Appendix B.

B. Multiple ellipse detection

The detection of N ellipses can be considered as a di-
rect generalization of (9) when the degree of the generating
polynomial is 2N (multiplying the polynomials associated
with each ellipse). However, this approach is likely to fail
when there is noise or the ellipses intersect like the one
in Fig. 1. Indeed, estimating the shape boundaries based on
image moments involves polynomial root finding which is a
nonlinear operation. As the degree of the polynomial increases,
the nonlinearity order of the overall operation also increases,
which causes instability against noise and model mismatch
(intersecting ellipses). In this paper, instead of increasing the
degree of the polynomial, we propose a patch-wise recovery
(detection) algorithm, in which we divide the image into mul-
tiple overlapping patches and search for a single ellipse in each
patch. To be able to correctly detect an ellipse that is partially
observed in a patch, the generalized moments shall be defined
locally. More specifically, the weight function g(·, ·) should
be such that xiyjg(x, y), xjyjgx(x, y) and xiyjgy(x, y) all
vanish (or approximately vanish) beyond the patch borders
for all i+ j ≤ 5. We assume this constraint is fulfilled in the
sequel1.

Our patch-wise approach consists of sliding an m × m
window/patch over the image and evaluating the generalized
moments solely based on the pixels within this window. m is
chosen such that the mentioned vanishing property of g(·, ·)

1In our simulations, for each blurring kernel ϕ, we numerically find a g
that satisfies these constraints.
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and its derivatives is fulfilled. Next, we fit a single ellipse
to the derived generalized moments by solving (16). If the
pixels in the considered window belong to a single ellipse
and a sufficient amount of the ellipse’s border is contained
in the patch, Theorem 3 implies that our recovered ellipse
shall coincide with the original one. However, if the window
contains an insufficient amount of an ellipse’s border, or the
window reflects a junction in which pixels represent multiple
ellipses, the argument is no longer valid. Therefore, we assign
a fidelity value to each fitted ellipse: we form two images
composed solely of this ellipse, one with black interior and
the other with white interior. Then, we sample these images
to regenerate the pixels within the same m×m window. Let
di,j represent the original pixels within the window, and eB

i,j

and eW
i,j denote the pixels of the images of the fitted ellipses

with black and white interiors, respectively, within the same
window. We initially define the fidelity of black/white ellipse
fitting as

FidelityB = ρ(d, eB)β(eB),

FidelityW = ρ(d, eW)β(eW), (20)

where

ρ(d, e) =
∑

i,j di,jei,j√∑
i,j d

2
i,j

√∑
i,j e

2
i,j

(21)

is a measure of correlation (ranging from 0 and 1) between
the original pixels and the pixels of the fitted ellipse, and

β(e) = 2

√
(
∑

i,j 1(ei,j>0.5))(
∑

i,j 1(ei,j<0.5))

m2 (22)

roughly describes what fraction of the pixels in the image of
the fitted ellipse represent the shape border. Next, we define
the overall fidelity of the window/patch as

Fidelity(window) = max
(
FidelityB,FidelityW

)
. (23)

In addition, we assign the label B or W to each window
depending on whether the ellipse with the black interior had
a higher fidelity value or the white one.

At the end of the sliding procedure, we have many fitted
ellipses accompanied with fidelity values and B/W labels.
However, it is likely that an ellipse is detected in multiple
windows (Fig. 2-b). Therefore, we need to unify/merge such
ellipses. For this purpose, we construct a merge-graph consist-
ing of all the patches (or ellipses) as the vertices. Our goal is
to connect vertices that represent the same ellipse and identify
each connected component of the graph as a single ellipse.
For instance, Fig. 2-b shows the subgraph for 10 patches
and the 3 connected components each representing an ellipse.
The connections in the merge-graph are formed as below: if
the B/W labels of the ellipses corresponding to the ith and
jth patches are different, their vertices are not connected. If
the labels are the same, we consider the set of pixels of the
corresponding ellipses over the full image (not restricted to
the patches), and denote them by Ei and Ej , respectively.
Let Ei|i and Ei|j (similarly, Ej|i and Ej|j) be the subset
of pixels of Ei (similarly, Ej) restricted to the ith and jth
patches, respectively. If any of the correlations ρ(Ei|i, Ej|i)
and ρ(Ei|j , Ej|j) exceeds a predefined threshold Tm (we use

the default value 0.95), where ρ is the same as in (21), then,
we connect the associated vertices in the merge-graph. After
all pairs of ellipses are checked, we fit a single ellipse to each
connected component of the merge-graph that best describes
all the generalized moments within the connected patches. We
highlight that the connected components are not necessarily
complete graphs. Moreover, we define the fidelity value of the
fitted ellipse as the sum of all the involved fidelity values.
This sum is again roughly proportional to the length of the
perimeter of the ellipse that is correctly detected in the whole
image. Finally, we discard all the ellipses that have overall
fidelity values below another predefined threshold Tf (we use
the default value 1).

An important issue in our patch-wise approach is the shift of
the origin. The coordinate origin in the annihilation equations
of each window is automatically the center of that window.
This means that the shift of the coordinates shall be taken into
account for comparing the ellipse coefficients (see Fig. 2). By
convention, we set the reference coordinate as the symmetry
axes of the image plane. Thus, by sliding the window, the
coordinate is shifted by (x0, y0) and the polynomial p(x, y) =∑
ai,jx

iyj in the reference system shall be mapped to

p(x, y) = p(x+ x0, y + y0)

=
∑

0≤i,j,i+j≤2

ai,j(x+ x0)i(y + y0)j

=
∑

0≤i,j,i+j≤2

ai,j

i∑
k=0

j∑
l=0

(
i

k

)
xi−k0

(
j

l

)
yj−l0 xkyl

=
∑

0≤k,l,k+l≤2

bk,lx
kyl,

where
bk,l =

∑
k≤i,l≤j
i+j≤2

(
i

k

)(
j

l

)
xi−k0 yj−l0 ai,j , (24)

This can be written in the matrix form as

b = B(x0,y0)a, (25)

where

B(x0,y0) =


1 y0 x0 y2

0 x0y0 x2
0

0 1 0 2y0 x0 0
0 0 1 0 y0 2x0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (26)

is an invertible upper-triangular matrix. Now if M(x0,y0)

denotes the matrix of generalized moments of the window
with center (x0, y0), the annihilation equations in the local
coordinate system can be rewritten in the global coordinates
as

M(x0,y0)b = M(x0,y0)B
(x0,y0)︸ ︷︷ ︸

Global annihilation filter

a = 0. (27)

In summary, we update the moment matrix M(x0,y0) of each
window with the associated multiplier B(x0,y0) before estimat-
ing the ellipse coefficients. With this modification, we always
achieve the coefficients with respect to the global coordinate
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Algorithm 1 Multiple Ellipse Detection
1: Input:
2: Measured pixels {dk,l}
3: Merge and fidelity threshold values Tm, Tf
4: Output:
5: Detected ellipses with B/W labels
6: procedure ELLIPSE DETECTION({dk,l}, Tm, Tf )
7: for each patch do
8: Evaluate M(x0,y0) according to (11)
9: Fit an ellipse to M(x0,y0) via (16)

10: Evaluate Fidelity in (23) and set the B/W label
11: end for
12: Construct the merge-graph with threshold Tm
13: Fit an ellipse to each connected component of the

merge-graph and define its fidelity value
14: Discard ellipses with overall fidelity values below Tf
15: return Detected ellipses.
16: end procedure

system of the image. These details are also illustrated in
Algorithm 1.

IV. SIMULATION RESULTS

In this section, we conduct various experiments to evaluate
the performance of the proposed algorithm and compare it
against some of the existing techniques such as HT [5], DLS
[18], the algebraic curve recovery in [1], and a widely used
ImageJ plugin for ellipse recovery [37].

In our first experiment, we consider the recovery of a single
ellipse from blurred noiseless and noisy pixels. Figure 3(a)
depicts the original image of size 3001 × 3001 (in pixels),
which is blurred with the 2D B-spline kernel of degree 2 with
a support of 300 pixels and uniformly sub-sampled to form the
33×33 pixel image in Fig. 3(b). The noisy pixels in Fig. 3(c)
are found by adding Gaussian noise with SNR = 5dB to the
noiseless pixels in Fig. 3(b). Besides the proposed method,
we consider the HT and DLS methods in this experiment.
Figures 3(d)-(f) represent the reconstruction error (black pixels
indicate perfect recovery) of HT, DLS, and the proposed
method respectively. With an PSNR of 52.64dB, the proposed
method achieves a remarkably better reconstruction compared
to PSNR = 21.33dB for HT and PSNR = 21.70dB for
DLS. The same pattern is also observed in the reconstruction
under noise shown in Fig. 3(g)-(i); PSNR = 24.87dB for
the proposed method compared to PSNR = 12.02dB for HT
and PSNR = 4.90dB for DLS. To further investigate the
performances under noise, we have plotted Fig. 4, where for
each input SNR value, the resulting PSNR values are averaged
over 200 realizations.

Unlike the HT and DLS methods, the algebraic technique
in [1] is able to incorporate the blurring kernel in the recon-
struction. However, this approach models the whole image as a
single algebraic shape. To better illustrate the drawback of this
approach, we have considered a 4201×4201-pixel image with
5 ellipses in Fig. 5-(a). The 49×49 blurred pixels in Fig. 5-(b)
were the result of a B-spline kernel of degree 6 with a support

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Fig. 3. Ellipse recovery in noiseless and noisy scenarios from blurred pixels.
(a) The input image with size 3001×3001, (b) noiseless samples of size 33×
33, (c) noisy samples with SNR= 5dB. The reconstruction error with noiseless
samples using the HT method (d), DLS method (e), and the proposed method
(f) achieve PSNR values of 21.33dB, 21.70dB, and 52.64dB, respectively.
The reconstruction error with noisy samples using the HT method (g), DLS
method (h), and the proposed method (i) achieve PSNR values of 12.02dB,
4.90dB, and 24.87dB, respectively.
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Fig. 4. Effect of noise on the recovery of the ellipse in 3(a) from blurred
pixels.

of 700 pixels. The reconstruction error of the proposed method
depicted in Fig. 5-(c) amounts to PSNR values of 27.97dB.

In our next experiment, we consider the 5801×5801-pixels
image in Fig. 6-(a) that contains ellipses with both black and
white interiors. The blurred image in Fig. 6-(b) is of size
65× 65 for which a B-spline of degree 6 with the support of
700 pixels is used. The reconstruction errors using the method
of [1] (with PSNR = 12.38dB) and the proposed method
(with PSNR = 26.25dB) are shown in Fig. 6-(c) and 6-(d),
respectively.

We now compare our method with the ImageJ ellipse
split software of [37]. For this purpose, we consider the
original image of size 3001 × 3001 in Fig. 7-(a) which is
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(a) (b) (c) (d)
Fig. 5. Recovery of multiple intersecting ellipses. (a) The original image
of size 4201 × 4201 pixels, (b) the blurred image of size 49 × 49, (c) the
reconstruction error of [1] (PSNR = 20.82dB), and (d) the reconstruction
error of the proposed algorithm (PSNR = 27.97dB).

(a) (b) (c) (d)
Fig. 6. (a) The original image with size 5801 × 5801 pixels, (b) 65 × 65
blurred image, (c) the error of recovering a polynomial of degree 4 with the
method of [1] (PSNR = 12.38 dB), and (d) the reconstruction error (PSNR
= 26.25 dB).

sampled as a 37 × 37-pixel image after being blurred by a
B-spline kernel of degree 6 with the support of 700 pixels
(Fig. 7-(b)). The proposed method recovers this image with
PSNR = 34.12dB (the reconstruction error is shown in Fig.
7-(c)). The ImageJ plugin can only work with binary-valued
input pixels (black/white), while the pixels in Fig. 7-(b) are
gray-level due to the blurring kernel. For this purpose, we
threshold the gray-level image to obtain a black and white
image; to avoid dependence on the threshold value, we apply
all threshold values from 0.1 to 0.9 with the step size of 0.1 in
Fig. 8. The detected ellipses of the software are also drawn on
top of each image in Fig. 8. It is evident that the software was
never able to detect the number of ellipses correctly, which is
justifiable (the software is unaware of the PSF).

In the next experiment, we examine the sensitivity of the
proposed method to non-ideality of the ellipse shapes. For this
purpose, we consider red blood cells, which are fairly approx-
imated with ellipse shapes. Figure 9-(a) taken from the open
library [38], depicts the original gray-level image of blood-
cells. We first threshold this image to achieve a 5001× 5001
binary image consisting of multiple roughly-ellipse shapes. We
blur the resulting image with a B-spline kernel of degree 6
with the support of 700 pixels, and subsample it to obtain a
57× 57 image (Fig. 9-(b)). By applying the proposed method
on the latter image, we obtain Fig. 9-(c) which consists of
exact ellipses; the difference between the reconstructed image
and the original binary image is shown in Fig. 9-(d), which is
measured as PSNR = 15.93dB.

In the last experiment, we use a microscopy image of human
HT29 cells taken from [39]. As we do not have access to the
imaging device, we are unaware of the blurring kernel a priori.
To proceed, we have assumed the kernel to be Gaussian (a
fair assumption in many cases) and estimated the variance as
σ = 0.8 based on the thickness of the edges in terms of the
number of pixels. With setting the sampling period T̂ = 50
(the desired magnification ratio), the result in Fig. 10-(c) is
obtained. For verifying the assumption, we have regenerated

(a) (b) (c) (d)
Fig. 7. Tow pairs of intersecting ellipses. (a) The original image with size
3001× 3001 (b) the blurred image of size 37× 37, (c) reconstruction error
of [1] (PSNR = 18.42dB), and (d) the reconstruction error of the proposed
method (PSNR = 34.21dB).

the blurred and down-sampled image in Fig. 10-(d). While the
shapes in Fig. 10-(b) and Fig. 10-(d) are not exactly the same,
the estimated ellipses are acceptable approximations.

V. CONCLUSION

In this paper, we focused on recovery elliptical shapes from
pixels. We design a sampling and reconstruction algorithm
for elliptical binary shapes where they are the zero level of a
bivariate polynomial. We derived a set of linear annihilation
equations from the pixels and proved that the ellipse boundary
is the solution of this system. We improved the degree of
moments for exact recovery in the case ellipse and decreases
the previous bounds. Also, to make algorithm stable to noise,
we aid generalized moments instead conventional moments.
We showed that from a patch of pixel, the ellipse can be
recovered. For the case of multiple ellipses, we proposed a
patch based algorithm that recover every ellipse from a patch.
Hence, instead of estimating a polynomial of high degree, we
always recover a polynomial of degree 2 which increases the
robustness of the algorithm against noise.

APPENDIX

A. Proof of Theorem 2

Using the Lagrange multipliers we know that the minimizer
of (16) shall satisfy

MTMaopt = λCaopt, (28)

aToptCaopt = 1, (29)

for some suitable scalar λ. The first equation presents a general
eigen-value problem. If we multiply both sides of the first
equation by aTopt, we have that

aToptM
TMaopt = λaToptCaopt = λ. (30)

Since M is full column-rank, MTM is strictly positive-
definite and 0 < aToptM

TMaopt. Therefore, λ shall be strictly
positive. In addition, if Q =

√
MTM, we can rewrite (28) as

1

λ
(Qaopt) =

(
Q−1CQ−1

)
(Qaopt). (31)

Thus, Qaopt is an eigen-vector of Q−1CQ−1 with eigen-
value 1

λ . It is known that the sign of the eigen-values of
Q−1CQ−1 and C are the same [40]; hence, Q−1CQ−1

has only one positive eigen-value (the eigen-values of C are
{2, 0, 0, 0,−1,−2}). Consequently, Qaopt is the eigen-vector
of Q−1CQ−1 corresponding to the maximum eigen-value
(which is unique). It is straightforward to complete the proof
of the theorem by considering (29). �
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(a) (b) (c) (d) (e) (f) (g) (h) (i)
Fig. 8. The results of the ImageJ ellipse split package [37] applied to the thresholded 37× 37 blurred image in Fig. 7(b) using threshold values 0.1 to 0.9
with the step size of 0.1 (subfigures (a) to (i)).

(a) (b) (c) (d)
Fig. 9. (a) The original image of blood cells, (b) the pixelized data, (c) the
recovered image, and (d) the reconstruction error.

(a) (b) (c) (d)
Fig. 10. (a) The available microscopy image, (b) a part of the image with
size (65×65) pixels, (c) reconstructed image (1201×1201 pixels) assuming
a Gaussian blurring kernel with variance (σ = 0.8) and sampling period of
T̂ = 50 pixels, and (d) the pixelized version of the reconstructed image.

B. Proof of Theorem 3

Let I(x, y) represent an arbitrary ellipse associated with
p(x, y) =

∑
ai,jx

iyj . Here, we prove part (b) of the claim,
as part (a) is obtained from Theorem 1 by setting n = 2.
Therefore, we assume g ≡ 1 and gx = gy ≡ 0. We first show
that by having the moments of I(x, y), we can obtain the
moments of rotated, scaled and translated versions of I(x, y).
For this purpose, let Γ = [γi,j ]2×2 with det(Γ) > 0 be an
invertible matrix with inverse Λ = [λi,j ]2×2 = Γ−1 and
det(Λ) = dΛ. We define

J(x, y) , I(γ1,1x+ γ1,2y + ξ1 , γ2,1x+ γ2,2y + ξ2),

where ξ1, ξ2 are real numbers. Indeed, J(x, y) represents a
rotated, scaled and translated version of I(x, y); alternatively,
any rotated, scaled and translated version of I(x, y) could be
represented in this form. We assume γi,js and ξis are such
that the ellipse J(x, y) is also fully contained in Ω. For the
moments of J(x, y) we have that∫∫

Ω

xiyjJ(x, y)dxdy

=

∫∫
xiyjI(γ1,1x+ γ1,2y + ξ1︸ ︷︷ ︸

X

, γ2,1x+ γ2,2y + ξ2︸ ︷︷ ︸
Y

)dxdy

=
∑

i1+i2≤i
i1,i2≥0

∑
j1+j2≤j
j1,j2≥0

Ci1,i2j1,j2

∫∫
Xi1+j1Y i2+j2I(X,Y )dXdY, (32)

where

Ci1,i2
j1,j2

= dΛ

(
i

i1, i2, i− i1 − i2

)(
j

j1, j2, j − j1 − j2

)
×

λi1
1,1 λ

i2
1,2 λ

j1
2,1 λ

j2
2,2 (−λ1,1ξ1 − λ1,2ξ2)

i−i1−i2×
(−λ2,1ξ1 − λ2,2ξ2)

j−j1−j2 . (33)

Therefore, the moments of J(x, y) could be obtained by
linear combinations of the moments of I(x, y). In addition,
for a fixed and invertible Γ, the mapping from I to J is one-
to-one. This implies that reconstructing J(x, y) is equivalent
to reconstructing I(x, y). Consequently, if we prove that the
moments of J(x, y) uniquely determine J(x, y), we shall have
the same statement for I(x, y).

Our approach is to use a matrix Γ such that J(x, y)
corresponds to the disk x2 +y2 = r2 (where r is small enough
that the disk fits within Ω); it is straightforward that this
operation could be accomplished by applying a rotation (with
respect to the center of Ω) to make the ellipse axes parallel
to the coordinate axes, separate downscaling of the horizontal
and vertical axes to convert the ellipse into a circle with ratios
larger than

√
2 to ensure that the circle is fully contained in Ω,

and a translation to center the ellipse inside Ω. Hence, to prove
part (b) of Theorem 3, we can now safely assume that I(x, y)
is associated with p(x, y) = x2 + y2 − r2. It is not difficult
to check that the moments of the disk p(x, y) = x2 + y2− r2

are given as

M1
0,1 = M1

1,0 = M1
2,1 = M1

1,2 = M1
1,1 = 0,

M1
0,0 = π r2, M1

0,2 = M1
2,0 = π

4 r
4. (34)

Besides, the matrix M in this case has the form

M =


0 M1

0,0 0 2M1
1,0 M1

0,1 0
M1

0,0 2M1
1,0 M1

0,1 3M1
2,0 2M1

1,1 M1
0,2

0 M1
0,1 0 2M1

1,1 M1
0,2 0

0 0 M1
0,0 0 M1

1,0 2M1
0,1

0 0 M1
1,0 0 M1

2,0 2M1
1,1

M1
0,0 M1

1,0 2M1
0,1 M1

2,0 2M1
1,1 3M1

0,2



=
πr2

4


0 4 0 0 0 0
4 0 0 3r2 0 r2

0 0 0 0 r2 0
0 0 4 0 0 0
0 0 0 0 r2 0
4 0 0 r2 0 3r2

 . (35)

The reduced echelon form for M is given as

πr2

4


1 0 0 0 0 r2

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 0
0 0 0 0 0 0

 . (36)
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Therefore, we conclude that rank(M6×6) = 5, or equiva-
lently, the null-space of M is one-dimensional. Let p̃(x, y) =∑
i+j≤2 ãi,jx

iyj be any solution of (16); thus, Mã = 0, i.e.,
ã shall be in the null-space of M. As the null-space of M is
one-dimensional, all possible solutions ã are scaled versions
of the particular solution a = [−r2, 0, 0, 1, 0, 1]T . Hence,
p̃(x, y) differs from p(x, y) = x2 + y2 − r2 only by a scalar
constant, which does not change the roots. Consequently,
p̃(x, y) generates the same algebraic shape. �
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