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Abstract

Food choice is one of the most fundamental and most frequent value-based decisions for all animals including
humans. However, the neural circuitry involved in food-based decisions is only recently being addressed.
Given the relatively fast dynamics of decision formation, electroencephalography (EEG)-informed fMRI analysis
is highly beneficial for localizing this circuitry in humans. Here, by using the EEG correlates of evidence accu-
mulation in a simultaneously recorded EEG-fMRI dataset, we found a significant role for the right temporal-
parietal operculum (PO) and medial insula including gustatory cortex (GC) in binary choice between food
items. These activations were uncovered by using the “EEG energy” (power 2 of EEG) as the BOLD regressor
and were missed if conventional analysis with the EEG signal itself were to be used, in agreement with
theoretical predictions for EEG and BOLD relations. No significant positive correlations were found with
higher powers of EEG (powers 3 or 4) pointing to specificity and sufficiency of EEG energy as the main
correlate of the BOLD response. This finding extends the role of cortical areas traditionally involved in palatability
processing to value-based decision-making and offers the “EEG energy” as a key regressor of BOLD response
in simultaneous EEG-fMRI designs.

Key words: EEG energy; EEG-informed fMRI analysis; food choice; gustatory cortex; value-based decision-
making

Significance Statement

Choosing what to buy at a local grocery or to eat from a diner’s menu involves decision-making based on in-
ternal states and past memories. It is shown such food choices can be behaviorally governed by the same
evidence accumulation processes underlying other forms of decision-making. A previous investigation
using simultaneous electroencephalography (EEG)-fMRI implicated motor related areas in posterior medial
frontal cortex (pMFC) in the process. Here, by using an improved methodology, we uncover significant evi-
dence accumulation activity within the Gustatory cortex (GC) itself. Given the involvement of GC in gusta-
tory imagery in addition to primary taste processing, these results suggest the intriguing possibility that
during food choice the low-level sensory taste information may be conjured up to guide deliberation be-
tween appetitive options.

Introduction
The choice of what to eat is probably one of the most

common and yet most basic forms of decision-making in
the Animalia kingdom. This decision-making problem like
any other, requires deliberation to commit intentions in
favor of one choice to the exclusion of others. In decision-

making with uncertain sensory information (also known
as perceptual decision-making), this process is often
modelled with a drift-diffusion process supposedly re-
presenting evidence accumulation in favor of a given op-
tion (Britten et al., 1996; Mazurek et al., 2003; Gold and
Shadlen, 2007; Hanks et al., 2015). Neural correlates of
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perceptual decision-making is found in a couple of brain
areas most notably the lateral intraparietal sulcus (LIP)
and the prefrontal cortex (Gold and Shadlen, 2007;
Pisauro et al., 2017). The accumulation of evidence during
perceptual decision-making is also observed in human
electroencephalography (EEG; Philiastides et al., 2014). In
value-based decision-making however, the evidence accu-
mulation is done not on the momentary external evidence but
on the mnemonic internal variables representing the subjec-
tive value of choice items (Bakkour et al., 2019). More specifi-
cally, if we focus on the appetitive values of food items, we
shall note that this type of subjective value depends on both
the internal states of the subjects and their previous experi-
ence. Representations of value memory are reported in a
couple of temporal and prefrontal cortices as well as in some
basal regions in monkeys and humans (Anderson et al.,
2014; Kim et al., 2015; Ghazizadeh et al., 2020; Ghazizadeh
and Hikosaka, 2021).
Recent studies have extended the drift diffusion model

of choice to value-based decision by relating an item’s
subjective value to the drift term in the decision variable
(DV; Krajbich et al., 2010; Milosavljevic et al., 2010). Given
the relatively rapid evolution of DV in time, neural corre-
lates of such a process have to be searched for by meth-
ods with sufficient temporal resolution such as single unit
electrophysiology or EEG. In particular, EEG studies have
found neural correlates of value-based decision-making
across centro-parietal electrodes reflected in the raw EEG
or g band signals (Polanía et al., 2014; Pisauro et al.,
2017). However, the low spatial resolution of EEG pre-
vents accurate localization of brain loci for value-based
evidence accumulation. One work-around is to use simul-
taneous EEG-fMRI which combines the localization
strength of fMRI with high temporal resolution of EEG
(Pisauro et al., 2017). Indeed, with this technique, Pisauro
et al. (2017) found EEG signal correlates of DV in a value-
based decision-making task and then used these EEG
correlates as a regressor on the BOLD responses (EEG-
informed fMRI analysis) to find brain regions involved.
Using this method, signatures of evidence accumulation
was found in the posterior-medial frontal cortex (pMFC).
But because of the highly nonlinear mapping from electric
potentials to the BOLD signal, the raw EEG may not be
the best regressor for BOLD in an EEG-informed fMRI
analysis.
Here, we argue that from a theoretical standpoint based

on physics of EEG and fMRI, a quadratic relation between
BOLD and EEG (i.e., EEG energy) may be more accurate as
a first-order approximation. This conjecture is in agreement

with previous reports that suggest a linear relation between
the mean power of event-related EEG sources and the neu-
ral efficacy (input of vascular system for BOLD response;
Wan et al., 2006) or between EEG energy across various fre-
quency bands and the BOLD signal (de Munck et al., 2009;
Scheeringa et al., 2009; Sato et al., 2010). Notably, reanaly-
sis of simultaneous EEG-fMRI data recorded during a value-
based decision-making task with EEG energy as the BOLD
regressor, revealed significant activations in cortical areas
involved in palatability processing including the insula and
operculum which were missed in previous analysis with raw
EEG signal.

Materials and Methods
Data and analysis
We used the open-access simultaneous EEG-fMRI data

associated with Pisauro et al. (2017), https://openneuro.
org/datasets/ds001219/versions/1.0.0. The data were
partly preprocessed which included motion-correction,
slice-time correction, high-pass filtering (.100 s) and spa-
tial smoothing (8-mm FWHM). We performed the remaining
proceeding preprocessing steps similar to (Pisauro et al.,
2017) except those described below.

fMRI preprocessing
We used FSL to register the cleaned EPI images to the

MNI space just as previously described (Pisauro et al.,
2017) using six-parameter rigid body transformation and
the nonlinear registration tool, except for subject number
20, for whom we used 12 parameter affine transformation
to map his EPI to his structural image, because of a need
for scaling in this case. Finally, the BOLD signal in each
voxel is transformed to percentage of change with respect
to time average of that voxel for the subsequent analyses.

Building EEG and EEG energy regressors
We used the raw signal of the best EEG electrode in the

decision time period as described previously (Pisauro et
al., 2017, which takes zero value outside the decision pe-
riods; Extended Data Fig. 3-1b). After convolving the EEG
regressor with the HRF, we subsampled this signal in in-
tervals equal to the fMRI repetition time (here, TR=2.5 s)
and replaced the signal at each TR by its temporal mean
within that TR. The EEG signal previously described
(Pisauro et al., 2017) was first subsampled to 50-ms reso-
lution, then convolved with HRF and then subsampled to
fMRI TR. Our downsampling method does not result in
significant difference from that by Pisauro et al. (2017),
since the signal was smoothed because of convolution
with the HRF. We did the same procedure but with the
square of the EEG signal to build the “EEG energy” re-
gressor. We demeaned all regressors. For the normalized
regressors, we also divided them by their SD.

fMRI analysis and the generalized linear models
(GLMs)
We did the GLM analyses in AFNI 20.2.05. We used

step-wise GLM analyses to gauge robustness of our
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findings and to overcome the multicollinearity between
various EEG-driven regressors (various powers of
EEG) as well as the correlation between the regressor
of interest and the nuisance regressors. For most strin-
gent analyses, we used EEG raw signal in the primary
GLM and the higher powers in the subsequent GLMs
to ensure explaining brain activation over and beyond
raw EEG. GLM1 is just same as the main GLM analysis
by Pisauro et al. (2017) and consists of the three nui-
sance regressors and the raw EEG regressor. GLM 2 is
a regression of the residuals of GLM1 over the “EEG
energy.” This paradigm is in favor of the null hypothe-
sis (sufficiency of raw EEG) and lets it explain as much
variance in the fMRI data and only leaves the orthogo-
nal components to be explained by the new regressor,
i.e., EEG energy. Since visual stimulus offset timing is
close to the reaction times for food choice decision
(,1 s), it can be a serious confound for the decision
correlates observed in brain activation. To control for
this effect, GLM3 is performed. This GLM is similar to
GLM1, but with an added nuisance regressor account-
ing for the stimulus offset. Once again GLM4 regresses
the residuals of GLM3 over the EEG energy to ensure
robustness of findings with respect to inclusion of
vstim-off. Simultaneous regression using both raw
EEG and EEG energy is also performed (GLM6) over
residuals of GLM5 which only consists of the nuisance
regressors. We have also performed similar analyses
replacing vstim-off with a boxcar function for the dura-
tion of visual stimulus in GLMs 7–9. Since the total
EEG power substantially differs from subject to sub-
ject, we repeated similar analyses in GLMs 10–11,
using normalized EEG-driven regressors (normalizing
EEG regressors in each subject by their SD). Higher
order powers of EEG were also investigated. GLM12
regresses the residuals of GLM3 over the third power
of EEG signal. In order to test the fourth power of EEG
signal (GLM13), we used residuals of GLM4 rather than
GLM3, because of the high correlation between powers 2
and 4. Details of all regressions done in this study can be
found in Table 1.
The model for each primary GLM is as:

Y ¼ bX1 r: (1)

Where, Y is the time series of the normalized BOLD re-
sponse of a single voxel for T time samples, X is a n� T
design matrix with rows representing n regressors. b is a
1� n vector, containing the regression weights for each
regressor for this particular voxel and r is the 1� T resid-
ual of this regression.
The model for each secondary GLM (second step of

step-wise GLM) is as:

r ¼ b 2X2 1 « : (2)

Where, r is the residual from the primary GLM for a spe-
cific voxel, X2 is the design matrix for the regressors of in-
terest and e is the regression residual.
We performed all our GLMs in AFNI via “3dREMLfit.”

For group-level analysis, we used “3dttest11.” The

group-level activation maps were then masked by the
gray matter mask associated with the standard MNI brain
with resolution of 2 mm (results for the raw EEG regressor
were not masked to make them comparable with Pisauro
et al., 2017). By applying 3dFWHMx on these group-level
residuals, we estimated the parameters for the non-
Gaussian spatial autocorrelation function of the fMRI
noise. Then, using 3dClustSim, we calculated the cluster
thresholds for various p-values such that the probability
of a false positive cluster among the p-thresholded clus-
ters is less than a = 0.05. The inflated surfaces are pre-
sented using SUMA 20.2.05.

The lead-field matrix for analysis of correlation of
voxels
In this part, we collected whole-brain MRI T1 image for

a single subject, using a 3T Siemens scanner with resolu-
tion of 1 mm. In order to make a precise estimation of the
lead-field, we also captured the EEG electrode coordi-
nates registered to the subjects T1-image using Localite
TMS navigator. Both measurements were performed in
the National Brain Mapping Laboratory (NBML, Tehran,
Iran). Then we calculated the lead-field matrix using
“brainstorm” toolbox. We used a custom three-layer BEM
head-model and tessellated the cortex to 15,000 vertices
and assumed dipoles perpendicular to the cortex surface.

Code accessibility
The lead-filed matrix and the simulation code as well as

the fMRI analysis codes are available at https://github.
com/poyaata/code-data.

Results
We re-examined the simultaneous EEG-fMRI data pre-

viously published (Pisauro et al. (2017)), in which subjects
were asked to choose between pairs of previously rated
snack items and to indicate their choice with a button
press (Fig. 1a). Each trial began with display of a fixation
point for a random time in the range 2–4 s, and the sub-
jects were asked to maintain the fixation point. Then, two

Table 1: Summary of all GLMs used in the study

GLM
index

Signal to
regress Regressors

GLM1 BOLD vstim – VD – rt – EEG
GLM2 Residual of GLM1 EEG energy
GLM3 BOLD vstim – VD – rt – vstim

off – EEG
GLM4 Residual of GLM3 EEG energy
GLM5 BOLD vstim – VD – rt – vstim off
GLM6 Residual of GLM5 EEG, EEG energy
GLM7 BOLD vstim (onset) – VD – rt

– vstim boxcar
GLM8 Residual of GLM7 EEG
GLM9 Residual of GLM7 EEG energy
GLM10 Residual of GLM5 EEG (normalized)
GLM11 Residual of GLM5 EEG energy (normalized)
GLM12 Residual of GLM3 EEG pow3
GLM13 Residual of GLM4 EEG pow 4
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randomly selected food items were displayed to the right
and to the left of the fixation point for 1.25 s, and the sub-
ject had to respond during this period. The difficulty of the
decision was controlled by the value difference (VD) in the
ratings of the presented items. Before the experiment and
outside the scanner, each subject was asked to rate 80
snack items with real scores in the range of (�5,5) based
on his/her subjective value. The EEG electrode that best
matched “theoretical prediction of a dynamical sequential
sampling model (SSM) fitted to the behavioral data of
each subject” was used as a regressor against the BOLD
signal in all voxels for localization of brain regions sup-
porting decision-making in this task (Fig. 1b,c; for further
details on the task and previous findings, see Pisauro et
al., 2017).
Initial analysis of this data by Pisauro et al. (2017) using

the electrode whose raw EEG signal correlated best with
the evidence accumulation model prediction, revealed a
significantly positive cluster in pMFC. In the original gen-
eralized linear regression model (GLM), raw EEG was
used as the signal of interest along with three nuisance
factors including visual stimulus onset, the value differ-
ence (of food items) and the (subject’s) reaction time
(Extended Data Fig. 3-1).
As suggested previously (Wan et al., 2006) and based

on physiological relationship between BOLD and energy
consumption in a given region, we hypothesized that the
instantaneous energy of a desired EEG electrode should
be a more natural regressor against BOLD response.

Modelling the relation between EEG and BOLD
EEG and other extracellular measurements are the

electric potentials associated with volume conduction of
current dipoles arising from a bulk of activated neurons
(Buzsáki et al., 2012). These dipoles arise from ion

displacements across the cell membrane. The dissipated
energy through these displacements would be proportional
to the square of the membrane voltage, V2. Moreover, the
electrical work performed by the active pumps can also be
shown to be proportional to V2, since a linear relation be-
tween the pump’s current and the membrane voltage in a
wide range of pump’s activity is previously reported (Nakao
and Gadsby, 1989). Therefore, the energy used in a voxel
may be considered proportional to the square of “the elec-
tric potential or the magnitude of the current dipole” associ-
ated with this voxel. In particular, the electric potential for
EEG electrode i, eiðtÞ can be written as the weighted sum of
the dipole magnitudes from voxels across the brain:

eiðtÞ ¼
XL

j¼1

WijvjðtÞ1 niðtÞ : (3)

Where, L is the number of voxels (dipoles), vjðtÞ is the di-
pole magnitude associated with voxel j, Wij are the lead-
field weights from voxels to the EEG electrodes and niðtÞ
is the noise present in EEG electrode i. The energy of this
signal over a time interval of T equals:

« i ¼
ð
T

e2
i ðtÞ ¼

X
j¼1:L

W2
ij

ð
T

v2j ðtÞ

1
X
j;k;j 6¼k

WijWik

ð
T

vjðtÞ:vkðtÞ1 « noise: (4)

While the first summation in the right-hand side (R.H.S.)
of Equation 4 is a weighted sum of the energies con-
sumed in voxels, the second term is a summation of the
voxels’ correlations. While the first term is strictly positive,
the second term can be suppressed because of positive
and negative correlations across voxels. The noise term

Figure 1. Task design, behavioral, and modeling results and EEG. a, Schematic representation of the experimental paradigm. After
a variable delay (2–4 s), two stimuli (snack items) were presented on the screen for 1.25 s, and participants had to indicate their pre-
ferred item by pressing a button. The central fixation dimmed briefly when a response was registered. Snack stimuli shown here are
for illustration purposes only. Participants viewed real branded items during the experiments. b, Behavioral performance (red circles)
and modeling results (black crosses). Participants’ average (N=21) reaction time (RT) and accuracy (top and bottom, respectively)
improved as the value difference (VD) between the alternatives increased. An SSM that assumes a noisy moment-by-moment accu-
mulation of the VD signal fit the behavioral data well. c, Average (N=21) model predicted evidence accumulation (EA; black) and
EEG activity (red) in the time window leading up to the response (on average, 600–100ms before the response), arising from a cen-
troparietal electrode cluster (darker circles in the inset) that exhibited significant correlation between the two signals. Shaded error
bars represent standard error across participants (reproduced with permission from Pisauro et al., 2017).
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niðtÞ is assumed to be orthogonal to the dipole time series.
Thus, as a first order approximation, EEG energy can be
considered as a weighted sum of dipole energies in voxels
which is the first term in Equation 4. The error in this ap-
proximation can be quantified as the ratio of the second
summation in Equation 4 with respect to the whole sum
as parameter z:

z ¼

����
X
j;k;j 6¼k

WijWik

ð
T

vjðtÞ:vkðtÞ
����

X
j¼1:L

W2
ij

ð
T

v2j ðtÞ1
X
j;k;j 6¼k

WijWik

ð
T

vjðtÞ:vkðtÞ:
(5)

In order to quantify the amount of error arising from
ignoring the second term in Equation 4, we conducted
multiple simulations for various correlation magnitudes
between the sources using a real lead-field matrix (for
details of lead-field construction, see Materials and
Methods). Specifically, we considered 20 active sour-
ces randomly distributed in the brain and produced
the associated coherence matrix between these sources
using a truncated Gaussian distribution. The overall

correlation level between sources was controlled with
the variance of this Gaussian distribution. We consid-
ered four levels of overall coherences and performed
10,000 simulations for each level.
In each simulation, we recorded the average of the five

highest correlation magnitudes between the sources (as
the overall coherence level) as well as the maximum and
average of z among the 63 EEG electrodes. Simulations
show that while this error term is an increasing function of
correlation among dipole sources, nevertheless its maxi-
mum among the electrodes is ,25% by average (Fig. 2a)
even for coherences of up to 0.2 among voxels. The co-
herences below 0.2 are reported previously (Lehmann et
al., 2012; Nentwich et al., 2020) and seem relevant even
for patients with epilepsy and schizophrenia with high
levels of synchrony among regions (Bowyer, 2016).While
the maximum of z among EEG electrodes provides the
upper-bound of error, the expected value of error tends to
be much smaller (,8%) in the same dynamic range of co-
herences between dipole sources (Fig. 2b). Figure 2c also
indicates that even for the highest correlation level, the
maximum of z among electrodes lies most frequently be-
tween 10% and 20%.

Figure 2. EEG energy of electrodes is a good correlate of energy consumption across voxels for modest levels of dipole coher-
ences. a, Effect of dipole coherences on the maximum of the error percentage (‘z’) in approximating EEG energy as a sum of voxel
BOLD values among 63 EEG channels averaged across simulations. b, Same as a but for the average of ‘z’ rather than its maximum
across EEG electrodes. c, The histogram of the maximum of ‘z’ among EEG channels for the highest coherence level simulated
(coherence=0.2).
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Therefore, we can approximately write:

« i½n� ¼
ðnT1T

nT

e2
i ðtÞ ¼

X
j¼1:L

Mij

ðnT1T

nT

v2j ðtÞ ; Mij ¼ Wij
2: (6)

Obviously the route from the energy consumption in a
voxel and the observed BOLD signal has to go through a
couple of other steps including neurovascular coupling
and blood vessel dynamics which subject this relationship
to further nonlinearities and smoothing and can be mod-
elled by detailed biophysical processes such as the
Balloon model (Buxton et al., 1998). However, for simplic-
ity, here, we only considered the simple hemodynamic
function commonly used in the analysis of BOLD with
GLMs. In this case, convolving the two sides of Equation
6 with the hemodynamic function we will have:

~« i½n� ¼ « i½n� p h½n� ¼
X
j¼1:L

Mij bj½n�ph½n�
� �

; bj½n� ¼
ðnT1T

nT

v2j ðtÞ:

(7)

Since bj n½ �ph½n� is assumed to be proportional to the
BOLD signal of voxel j in the time volume n, the R.H.S. of
Equation 7 is actually a weighted sum of the BOLD signals.

EEG energy shows evidence accumulation in cortical
regions involved in processing of food palatability
To examine whether “EEG energy” explains BOLD fluc-

tuations over and above the three nuisance factors and
the raw EEG, we used a step-wise GLM paradigm by first
repeating the main GLM analyses previously described
(Pisauro et al., 2017; Table 1, GLM1) and then regressing
its residuals over the EEG energy regressor (Table 1,
GLM2). Interestingly, the activation map for the EEG

energy (Fig. 3; p, 0.05, cluster-corrected; Table 2) was
highly different from the activation map for the raw EEG
(Extended Data Fig. 4-1a) and showed one significant
positive cluster in each hemisphere that included parts
of operculum, insula and the inferior somatosensory
cortex [collectively referred to as the gustatory cortex
(GC) hereafter] as well as several significant negative
clusters across frontal, temporal, occipital, and tem-
poroparietal regions.
Since in this task the process of evidence accumulation

was fully overlapping with stimulus presentation, and in
particular the fact that decision termination could be con-
current with stimulus offset, one may consider the event
of stimulus offset as a nuisance factor. Indeed, it is shown
that stimulus offset can evoke additional responses in the
brain (Herdener et al., 2009; Mullinger et al., 2013, 2017).
Therefore, we repeated the previous analysis by adding
the “vstim-off” regressor (stick functions at offset times;
Extended Data Fig. 3-1a) as an additional nuisance factor
to ensure that the EEG-related activations (especially
those related to EEG energy) are not simply explained by
temporal dynamics of sensory information on the screen.
In this case, the first-step GLM consists of the four nui-
sance regressors plus EEG (Table 1, GLM3). Then we re-
gressed its residuals over the EEG energy (Table 1,
GLM4). Notably in this condition, the activation map for
the EEG energy was similar to the case without inclusion
of “vstim-off” (GLM2; Fig. 3) but with positive correlation
passing the cluster correction threshold only in the right
GC (Fig. 4; p, 0.05, cluster-corrected, Table 2). This sug-
gests that at least part of the positive activity seen in rela-
tion to EEG energy was not explainable by the “vstim-off”
regressor. Given the intrinsic correlation between the two
regressors (EEG energy and raw EEG), placing the EEG
energy regressor in the second GLM, allows for the pri-
mary regressors including the raw EEG signal to absorb
the biggest possible variance in the BOLD data leaving

Figure 3. GC shows a significant positive correlation with EEG energy during food choice (GLMs 1–2). Group-average activation
map (t stats) for the “EEG energy” regressor in GLM2 (step-wise regression on the residuals of original GLM done by Pisauro et al.,
2017) showing activity in the bilateral insular, opercular and inferior somatosensory cortices; p, 0.05, cluster-corrected (right
cluster = 293, left cluster = 218. threshold =136); a, axial and multiple coronal views, b, lateral and medial views on the inflated cor-
tex. See Extended Data Figure 3-1 for the illustration of the regressors used in the single-subject GLMs. See Extended Data Figure
3-2 for the activation maps regarding to the nuisance regressors.
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only residuals orthogonal to the primary regressors to be
explained by the EEG energy. This method is in favor of
the null hypothesis (sufficiency of raw EEG regressor) and
puts the hardest constraint against adding the EEG
energy regressor. Nevertheless, we find essentially the
same result if we were to simultaneously use EEG and
EEG energy in the second GLM (Extended Data Fig. 4-
2; p, 0.05, cluster-corrected, Table 2). Once again, the
areas within the GC show significant positive activation
with EEG energy.
On the other hand, inclusion of “vstim-off,” removed the

previously reported activation in pMFC in relation to the
“raw EEG” altogether (Extended Data Fig. 4-1b), suggest-
ing that the observed activity in pMFC could be because
of visual offset rather than choice process per se. Indeed,
examination of activation maps for all four nuisance fac-
tors show a significant cluster for visual offset that over-
laps with pMFC (Extended Data Fig. 3-2b). A qualitatively
similar result was obtained if one were to use a boxcar for
the duration of stimulus presentation as the nuisance factor
instead of “vstim-off” (GLM7). In this case again a signifi-
cantly positive correlate in the right GC was observed for
EEG energy (GLM9, Extended Data Fig. 4-3a; p, 0.05,
cluster-corrected, Table 2). Once again, no significant clus-
ter of activity related to the raw EEG was observed in this
case when stimulus duration is taken into account (GLM8;

Extended Data Fig. 4-3b). These results suggest that the
observed positive activations in the GC is not explainable
by stimulus dynamics and are most likely reflecting the pro-
cess of value-based decision-making.
Moreover, the EEG power for different subjects may

vary substantially because of multiple reasons such as in-
trinsic differences in neuronal activity levels, differences
in the lead-field gains or measurement noise. Therefore,
it is often recommended to normalize the EEG signal of
subjects to achieve a more reliable group-level infer-
ence (Cohen, 2014). Here, also, we see a relatively wide
dynamic range in mean EEG power across subjects
(Extended Data Fig. 5-1). In order to make sure that
such variability does not affect our main conclusions
about significant positive activations observed in the
right GC, we performed another analysis with normal-
ized EEG regressors (Table 1, GLMs 10–11; for details,
see Materials and Methods) on the residuals of GLM5.
Results show that EEG normalization reproduced the
significant positive activation in the right GC in relation
to EEG energy even to a wider extent (GLM11, Fig. 5;
p, 0.05, cluster-corrected, Table 2). Once again, we
did not find any significant activity for the normalized
raw EEG regressor in this case (GLM10). Nevertheless,
some of the variability in variance of EEG regressors
across subjects may indeed reflect true differences in

Table 2: Number of voxels and location of peak activity for both positive and negative clusters

Region/cluster #(voxels) Hemisphere Peak X Peak Y Peak Z BA
Energy, GLM2 (1):

Inferior somatosensory (gustatory cortex) 293 Right �56 8 14 43/6
Insula (gustatory cortex) 213 Left 4 12 20 13

Energy, GLM4 (1):
Inferior somatosensory (gustatory cortex) 214 Right �54 8 14 43/6

Energy, GLM6 (1):
Inferior somatosensory (gustatory cortex) 213 Right �54 8 14 43/6

Energy, GLM9 (1):
Inferior somatosensory (gustatory cortex) 219 Right �54 8 14 43/6

Energy, GLM11 (1):
Insula (gustatory cortex) 567 Right �44 10 20 13

Energy, GLM4 (–):
Superior frontal gyrus 10945 Right �18 �56 30 9
Inferior parietal lobe 3351 Right �48 54 56 40
Supramarginal gyrus 2157 Left 58 54 36 40
Superior temporal gyrus 2048 Left 30 �14 �34 38
Middle temporal gyrus 1668 Right �52 22 �12 21
Cingulate gyrus 928 Left 12 44 30 31
Cuenus 872 Left 28 90 22 19
Cingulate gyrus 791 Right �4 44 34 31
Middle occipital gyrus 705 Left 38 64 �2 37
Declive (cerebellum) 683 Right �34 68 �26 —

putamen 603 Right �22 �12 0 —

Superior temporal gyrus 528 Right �44 �10 �20 38
Inferior frontal gyrus 488 Left 28 �10 �18 47
Caudate head 257 Left 8 �4 6 —

Thalamus 150 Right �14 12 12 —

Culmen (cerebellum) 148 Right �30 46 �32 —

EEG pow3, GLM12 (–):
Middle frontal gyrus 275 Left 40 �50 �10 11
Inferior parietal lobe 140 Right �46 68 48 40
Inferior parietal lobe 135 Left 40 66 48 40

BA, Broadman Area.
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the task-related activity across their brains, in which
case using normalized regressors is expected to reduce
the group level significance.

Absence of significant cluster correlates with higher
powers of EEG signal
Given the highly nonlinear mapping between electrical

activity in a voxel and its BOLD signal such as those pre-
dicted by the Balloon model (Buxton et al., 1998), it is
plausible that still higher order nonlinearities have to be
considered in EEG-informed fMRI analysis. In order to
check for possible higher order nonlinearities, we created

regressors for higher powers of the EEG (powers 3 and 4).
To account for the multicollinearity among various powers
of EEG, analysis of the power 3 of EEG (GLM12) was per-
formed on the residual of first-step GLM which included
nuisance factors and the EEG regressor (GLM3). For
power 4 of EEG, we did the regression (GLM13) on the re-
siduals of GLM4 because of high correlation between
power 2 (EEG energy) and power 4. Notably, no signifi-
cant positive cluster of correlations with higher powers of
EEG (powers 3 and 4) was found (Fig. 6; p.0.05, cluster-
corrected). Some clusters of negative activation related to
power 3 of EEG was found close to prefrontal and tem-
poroparietal areas (Fig. 6; Table 2).

Figure 4. Right GC activation is robust to the addition of visual stimulus offset as a nuisance regressor (GLMs 3–9). Group-aver-
age activation map (t stats) for the “EEG energy” regressor in GLM4 showing activity in the right insular, opercular and inferior
somatosensory cortices (p, 0.05, cluster-corrected (cluster = 214. threshold = 121); a, axial and multiple coronal views, b, lat-
eral and medial views on the inflated cortex. See Extended Data Figure 4-1 to compare the effect of addition of “vstim-off” re-
gressor on the activation map for the raw EEG regressor. See Extended Data Figure 4-2 for a similar result for EEG energy
when the raw EEG and EEG energy regressors are simultaneously used in the second-step GLM. See Extended Data Figure 4-
3, for activations revealed by the raw EEG and EEG energy if instead of vstim-off, one uses a boxcar function for the duration
of visual stimulus.

Figure 5. Right GC activation is robust to normalization of EEG-driven regressors (GLMs 10–11). Group-average activation map (t
stats) for the normalized “EEG energy” regressor in GLM11 showing activity in the insular, opercular and inferior somatosensory cor-
tices (p, 0.05, cluster-corrected (cluster = 567. threshold = 295); a, axial and multiple coronal views, b, lateral and medial views on
the inflated cortex. See Extended Data Figure 5-1 for variability of average energy of EEG over a total run between subjects.
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Finally, we did not observe any subcortical activations
with any of the EEG-driven regressors used (raw EEG or
any of its powers). The only notable subcortical activation
was found in the amygdala in correlation with the “value
difference” regressor (Extended Data Fig. 3-2c).

Discussion
EEG-informed fMRI analysis is a promising method in

localizing fast cognitive processes in the brain such as the
formation of a decision. Here, using simultaneous EEG-
fMRI in a value-based decision-making task, revealed sig-
nificant correlates of evidence accumulation in the insular
and opercular cortices. This activity was uncovered by
using “EEG energy” as the EEG-driven regressor and was
missed if one were to use the raw EEG correlate of DV as
was done previously (Pisauro et al., 2017). Here, we
proved the relevance of EEG energy for BOLD theoreti-
cally, in agreement with the previous experimental evi-
dence (Wan et al., 2006). Notably, despite the highly
nonlinear nature of neurovascular coupling, we did not
find any significant correlations with the higher powers of
EEG (powers 3 and 4) in this task.
Given the multicollinearity of the experimental proce-

dure at hand in which the decision formation and stimulus
presentations were concurrent, one needed to make sure
that the EEG-related brain correlates were not because of
stimulus onset, duration and offset. This problem was ad-
dressed by using step-wise GLMs which lets the nuisance
regressors to describe as much as the variance in the
BOLD as they can and leave the orthogonal components
to be described by the regressor of interest in the second-
step GLM (GLMs 2, 4–6, 8–13). Using this orthogonaliza-
tion procedure, the “EEG energy” as the BOLD regressor
revealed activity in the right operculum, insula and the in-
ferior somatosensory cortex (Figs. 3-5). Multiple parts of
insula and operculum, including the anterior, middle and
posterior insula as well as the frontal and parietal opercu-
lum (PO) extending to the inferior somatosensory cortex

(area 3b) are reported to participate in taste and gustatory
representations (Small, 2010; Veldhuizen et al., 2011; Mai
and Paxinos, 2012) and form the GC. Some meta-analysis
studies (Small, 2010; Yeung et al., 2018) have distin-
guished the involvement of these diverse cites, in various
aspects of taste and gustatory processing. The middle in-
sula is reported for its role in coding the “pleasantness”
aspect of taste and in attention to taste (Small, 2010) as
well as its participance in coding the affective value and
quality of food regardless of its intensity (Yeung et al.,
2018). The activity observed in the middle insula in our
study, agrees well with the hypothesized role of insula in
this task which is to evaluate the food’s pleasantness. It is
conceivable for the activity in the GC to induce a gustatory
imagery of the food items which are used in the evidence
accumulation process for food choice. Interestingly, the in-
sular and opercular regions have been also previously re-
ported to be implicated in “gustatory imagery” (Kobayashi
et al., 2004, 2011). Furthermore, the structural (Ogawa,
1994; Ghaziri et al., 2018) and functional (Roy et al., 2009)
connectivity between insula and amygdala and the fact
that amygdala showed value-based activation in this task
is in agreement with a possible value retrieval from amyg-
dala. Representation of the subjective value of choice
items in the relevant primary sensory cortex is also previ-
ously reported (Shuster and Levy, 2018).
Experimental evidence for a quadratic relation between

the vascular input and the neural electrical sources esti-
mated from EEG was provided previously (Wan et al.,
2006) and used for studies involving epileptic patients
(Murta et al., 2015; Abreu et al., 2018). Here, we extended
the use of EEG energy to cognitive studies and argue
from a theoretical standpoint that “EEG energy” should
be a better correlate of BOLD response compared with
EEG signal itself for the use in EEG-informed fMRI analy-
ses. Consistent with this suggestion, correlations be-
tween the BOLD response and the power of EEG in the
alpha band were reported in some studies especially in

Figure 6. Higher order EEG powers 3 and 4 do not reveal significant positive clusters of brain activation during food choice (GLMs
12–13). Group-average activation map (t stats) for higher powers of EEG in GLM12 and GLM13. a, Negative correlations with EEG
pow3 (p,0.05, cluster-corrected; clusters . threshold = 121). b, No significant correlations with EEG pow4 (p, 0.05, cluster-cor-
rected; cluster threshold= 71).
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the resting state experiments (de Munck et al., 2009; Sato
et al., 2010). Correlations between the BOLD response
and various frequency bands of EEG in task-based ex-
periments are also investigated (Scheeringa et al., 2009;
Sato et al., 2010). A negative correlation between the
theta power and BOLD response in the areas of the de-
fault mode network (DMN) is reported by Scheeringa et al.
(2009). Actually, the negatively correlated regions with the
EEG energy regressor in our study also highly overlap
with the DMN (Table 2), and this is plausible since the
lower frequency bands of EEG (including theta band)
dominate in EEG spectrum. These observed negative cor-
relations with EEG energy during the decision-making
may suggest shutting down of these areas during value-
based decision-making.
The nonlinear nature of the neurovascular coupling

could engender BOLD correlation with still higher powers
of EEG signal. However, examining powers 3 and 4 of
EEG signal in this study did not reveal any activations
across the brain, suggesting “EEG energy” as a suitable
and sufficient correlate of the BOLD response at least for
this data.
Furthermore, we shall note that despite the observed

significant activity in amygdala in correlation with the
“value difference” regressor, there was no significant sub-
cortical clusters in positive correlation with the EEG-
driven regressors. This may indicate that the subcortical
regions do not play a role in the process of evidence ac-
cumulation but only provide the needed inputs (value
memory) for cortical regions responsible for decision-
making. On the other hand, this negative result may also
be due the substantially lower signal-to-noise-ratio of the
subcortical potentials on the EEG signal recorded on the
scalp.
In summary, we conclude that because of the nonlinear

relation between EEG and fMRI, “EEG energy” (or total
power) proves critical for EEG-informed fMRI analysis. In
particular, using EEG energy regressor in GLM of value-
based decision-making revealed evidence accumulation
activity in the operculum, insula and inferior somatosen-
sory cortex. Activity in these regions as parts of the GC in-
dicates that gustatory imagery is likely to be used during
the decision-making process for food choices and im-
plicates cortical areas traditionally involved in palatabil-
ity processing, in value-based decision-making. Further
investigations using electrophysiological techniques in
human or non-human primates can help elucidate the
exact dynamics of evidence accumulation in the gusta-
tory areas during food choice.
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