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Aim
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Your most valuable asset is your learning ability.

This course is a practice in learning and specially improves your
deduction skills.

This course provides you with tools applicable in understanding many
natural, societal or financial phenomena.

End of semester objective: You should become able to calculate any
equilibrium thermodynamic property of a system given intermolecular
interactions in that system.



Aim
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Statistical mechanics is about deducing macroscopic properties of a
system from microscopic properties of the constituents of that same
system (molecules).

Equilibrium statistical mechanics aims at calculating equilibrium
properties of the system, e.g., energy, entropy and free energy.
Non-equilibrium statistical mechanics aims at calculating

non-equilibrium (transport) properties of the system, e.g., electrical
conduction, heat conduction, absorption spectra and viscosity.

This course will cover equilibrium statistical mechanics and leaves
non-equilibrium statistical mechanics to another course.



References

@ Statistical Mechanics by Donald A. McQuarrie
@ Statistical Thermodynamics by Donald A. McQuarrie

@ Statistical Thermodynamics, Theories and Applications by G. A.
Parsafar (In Farsi)
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Course structure

Midterm exam 16 Ordibehesht Ch. 1-4 35%
11 AM

Final exam 12 Tir3:30 pm Ch. 5-8 45%

Class presentation 15 Tir-22 Tir 20%

@ Raise your question and concern as it might be the question or
concern of your classmates.

@ Always remember that equations are the language of science but they
never do suffice.
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Preamble

Ensembles

Classical and quantum statistics
Monatomic and diatomic gases
Classical statistical mechanics
Polyatomic gases

Chemical equilibrium

Crystals
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Classical Mechanics-Newton formalism

@ In the alzsence of external forces, motion will continue with a constant
speed. F = ma. If body A exert a force on body B, then B exerts the
same force in the opposite direction on A.

@ Two dimensional motion under coulombic attraction to a fixed center.

o F= —kF/r3, break down into components.

gy and m = Fy =~

@ Use polar coordinate system x = rcosG and y = rsin @ to derive.

o mx=F,=—

o mr20 = constant and mié = — % + mr3
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Classical Mechanics-Lagrangian

@ Joseph-Louis Lagrange (1736-1813) was an ltalian enlightenment era
mathematician and astronomer with significant contributions to
analysis, number theory, and both classical and celestial mechanics.

o Lagrange succeeded Euler as the director of mathematics at the
Prussian Academy of Sciences in Berlin, where he stayed for over
twenty years, producing volumes of work and winning several prizes of
the French Academy of Sciences.

@ Lagrange's treatise on analytical mechanics offered the most
comprehensive treatment of classical mechanics since Newton and
formed a basis for the development of mathematical physics in the
nineteenth century.

. _ o m; o2

e Lagrangian, L= K — U, where K = Z,- X

@ Lagrangian dynamics: %% = %, the form of this equation is
. . qj qJ .
invariant under the change of coordinates.

@ Two dimensional motion under coulombic attraction to a fixed center.
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Classical Mechanics-Hamiltonian

e Sir William Rowan Hamilton (1805-1865) was an Irish mathematician,
astronomer, and mathematical physicist, who made important
contributions to classical mechanics, optics, and algebra.

@ His studies of mechanical and optical systems led him to discover new
mathematical concepts and techniques.

@ His reformulation of Newtonian mechanics, now called Hamiltonian
mechanics has proven central to the modern study of classical field
theories such as electromagnetism, and to the development of
quantum mechanics.

_ oL
(9('0'

e Hamiltonian, H =3 ;. pjg; — L.

@ Momentum, p;

@ Kinetic energy, K = ZJ- aj(q)c']f. Total energy of the system,
H=K+V.

@ Hamilton's equations of motion, g—g = qj, oH _
J

9q; = ~Pi-
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Classical Mechanics-Liouvillian

o Classical mechanics occurs in phase space which consists of one
dimension (axe) for each coordinate and each momenta.

@ The state of a system is determined by a single point in its phase
space.

@ Joseph Liouville (1809-1882) was a French mathematician.

@ Liouville became a member of the Constituting Assembly in 1848.
However, after his defeat in the legislative elections in 1849, he turned
away from politics.

@ Every property, f, of the system is a function of coordinates, r, and
momenta, p.
e Dynamics: % = {f,H}

@ Poisson bracket: {f, g} = Zi(g(; gfi - gf’; gf,-)
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Quantum Mechanics-preamble

@ From the late 19th century people started to patch classical physics to
justify some observations including photoelectric effect and black body
radiation.

(]

Quantum mechanics was formally formulated in the 1920s.

Quantum mechanics lives in the Hilbert space where there is no hole.
A hole in a space occurs when the limit of a series cannot be found in
that space.

A vector, C, is denoted by a ket |C). Complex conjugate of such a
vector, CT, is denoted by a bra (C]|.

bra * ket = bracket, (D|C).
ket * bra = operator, |C)(D|.

Operator acts on a vector to produce another vector

Every observable in quantum mechanics is represented by an operator.
If we require that the expectation value of an operator A is real, then
A must be a Hermitian operator.
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Quantum Mechanics-operators

Observable  Observable Operator Operator Opera-

Name Symbol Symbol tion

Position r 4 Multiply by r

Momentum p P —ih (f% —i—f% + l?%)

Kinetic en- T 7 —% (88722 + 8‘9722 + 88—222)

ergy

Potential V(r) /(r) Multiply by V/(r)

energy

Total energy E A —% ((%22 + 88722 + 88—222)4-
V(r)

Angular I I ik (y% - z%)

momentum |/, /Ay —ih (Za% — x%)

I, I, —ih X% — ya%
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Quantum Mechanics

@ A density matrix is a matrix that describes the statistical state of a
system in quantum mechanics. The probability for any outcome of
any well-defined measurement upon a system can be calculated from
the density matrix for that system.

@ The extreme points in the set of density matrices are the pure states,
which can also be written as state vectors or wavefunctions. Density
matrices that are not pure states are mixed states.

@ Any mixed state can be represented as a convex combination of pure
states, and so density matrices are helpful for dealing with statistical
ensembles of different possible preparations of a quantum system, or
situations where a precise preparation is not known, as in quantum
statistical mechanics.

@ given a finite number of points x1, xo,..., X, in a real vector space, a
convex combination of these points is a point of the form
a1x1 + apxp + - -+ + apx, where the real numbers «; satisfy a; > 0
and a1 +as+ - +a, = 1.
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Quantum Mechanics

(]

e 6 6 o6 o
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Density matrix, g, contains all information that can be known about a
system.

For a pure state, p = [¢)(¢| in general p = )", ci|i) (il

Quantum Liouville equation determines quantum dynamics as

o) — i1p(t), A,

A B] = AB - BA
{3} e il

Formal solution: p(t) = e_”:’t/hﬁ(O)e"’:’t/ﬁ.

Every linear operator has a matrix representation.
Schrodinger equation for pure states: ih%hﬁ) = I-AI|¢)
(x|v) = (x, t)

For a time independent Hamiltonian assume

v(x,t) = p(x)0(t), 0=eF/"  Hp=Egp.



Quantum Mechanics

@ Wave function or state function, has the important property that
W*(r, t)W(r, t)dT is the probability that the particle lies in the volume
element d7 located at r at time t.

@ For the case of a single particle, the probability of finding it somewhere
is 1, we have the normalization condition [ W*(r, t)W(r, t)d7 = 1.

@ The wavefunction must also be single-valued, continuous, and finite.

@ In any measurement of the observable associated with operator A, the
only values that will ever be observed are the eigenvalues a, which
satisfy the eigenvalue equation AV = aV.

@ The values of dynamical variables can be quantized (although it is still
possible to have a continuum of eigenvalues).

o If the system is in an eigenstate of A with eigenvalue a, then any
measurement of the quantity A will yield a.
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Quantum Mechanics
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Although measurements must always yield an eigenvalue, the state
does not have to be an eigenstate of A initially. An arbitrary state can
be expanded in the complete set of eigenvectors of A ( Av; = aiV;)
as ¥ = Zln C,'\U,'

We only know that the measurement of A will yield one of the values
a;, but we don't know which one. However, we do know the
probability that eigenvalue a; will occur—it is the absolute value
squared of the coefficient, |c;|2.

After measurement of A on W yields some eigenvalue a;, the
wavefunction immediately “collapses” into the corresponding
eigenstate W; (in the case that a; is degenerate, then W is projected
onto the degenerate subspace of a;). Thus, measurement affects the
state of the system.



Stern-Gerlach experiment and Spin

@ Magnetic moment is a quantity that represents the magnetic strength
and orientation of a magnet.
@ Loops of electric current (such as electromagnets), permanent

magnets, elementary particles (such as electrons), various molecules,
and many astronomical objects poses magnetic dipole moment.

@ The magnetic dipole moment of an object is readily defined in terms
of the torque that object experiences in a given magnetic field.
T=mxB

@ The direction of the magnetic moment points from the south to north
pole of the magnet (inside the magnet).

@ A magnetic moment in an externally produced magnetic field has a
potential energy U = —m - B.
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Stern-Gerlach experiment and Spin

J— _Aannt _ "auint _ Aannt
em=-"X%g ~ Yo ~%0B, "

em=1/S, m=NIS.

om:;///rxjdv,
1%

@ Since the particles creating the current (by rotating around the loop)
have charge and mass, both the magnetic moment and the angular
momentum increase with the rate of rotation. The ratio of the two is
called the gyromagnetic ratio or v so that: m =L

@ The Stern—Gerlach experiment demonstrated that the spatial
orientation of angular momentum is quantized.
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Stern-Gerlach experiment and Spin

Ve

@ Silver atoms were sent through a spatially varying magnetic field,
which deflected them before they struck a detector screen, such as a
glass slide.
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Stern-Gerlach experiment and Spin

@ Particles with non-zero magnetic moment are deflected, due to the
magnetic field gradient, from a straight path.

@ The screen reveals discrete points of accumulation, rather than a
continuous distribution, owing to their quantized spin.

@ Spin is an intrinsic angular momentum of subatomic particles that is
closely analogous to the angular momentum of a classically spinning
object, but that takes only certain quantized values.
§z¢z+ = %w2+ §z¢zf = *%1#27

@ Only one component of a particle’s spin can be measured at one time,
meaning that the measurement of the spin along the z-axis destroys
information about a particle’s spin along the x and y axis.

@ Particles with half integral spin are called fermions while those with
integral spin are called bosons.
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Quantum Mechanics

@ Thus an atomic-scale system was shown to have intrinsically quantum
properties.

This experiment was decisive in convincing physicists of the reality of
angular-momentum quantization in all atomic-scale systems.

o Ux)=0 0<x<a 2
Particle in a box: { (x) T en = n?

: = gmazl
U(x) = oo otherwise. = 8m2

(]

If H= H; + H> then ¢ = ¢19, and E = E; + Ep.
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Quantum Mechanics

@ Harmonic oscillator is one of the few quantum-mechanical systems for
which an exact, analytical solution is known:

U(x) = 2kx? H_A—2+lk“2 ’3—2+1me£2 €n =
2 2m 2m = 2 ’

(n+ %)hw, = \/k/m.
o U (x) = N,,e—52x2/2Hn (Bx), n=0,1,2,3,..., 8= /mw/h,
Ho(y)=1  Hi(y)=2y

° Ha(y) = 4y* -2
Hs (v) = 8y° — 12y.
o o= ()1 gy = (2)/Bye 12
o Rigid rotor: H=—1 o (sin0%) + ﬁ%}, ¢ =
7J(J;,1)h2, wj = 2] + 1
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Particle in a box degeneracy

o For a single particle in 2-D, E = -1 (n2+ n2),

8ma?

o - raar
@ Convince yourself that the number of states with energy smaller than

. . . 2 .
€ is the area of circle of radius r? = 8’,’:—2"6 in the first quadrant.
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Particle in a box degeneracy

In 3-D, number of2 states with energy between € and € + Ae,
w(e, Ae) = %(8’;—2")3/260‘5A6 + O((Ae€)?)

N non-interacting particle: E = g > -7, n*.

We may define a coordinate system in an n-D space which is
analogous to the spherical coordinate system defined for 3-dimensional
Euclidean space, in which the coordinates consist of a radial

coordinate r, and n-1 angular coordinates ¢1, @2, -+ , ®pn—1, Where the
angles ¢1, ¢, -+ , on—2 range over [0, 7| radians and ¢,_1 ranges over
[0,27) radians.

X1 = rCos ¢, Xp = rsin ¢1 COS ¢o, X3 =

rsin ¢1 sin ¢ COS 3, -+ , X, = rsin¢gy---sing,_1.

V" = fSphere dr = an hfdr fOTr h1d¢1 e 027r hn—1d¢n—1 —
Jo Snr"tdr.

_ ,n—1
° fang/es dxy - -dx, = r"1S,dr
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Particle in a box degeneracy

@ In = ffooo e ffooo e_(X12+X22+m+X§)dX1 e an = (ffooo e_XZdX)n =

n/2

o In= [y e " r"1S,dr = 5, (n/2)/2.
o I'(x) = [;° e tt* 1dt, show that ['(n+ 1) = n!, show that

M(n+3) = g,’,’g‘, .
/2 n
° Vo= g @
_ 1 2mma®\3n/2 £3n/2—1
° W(E,AE) = rrmpmyrmar (UR5) 2 ENTIAE

e Partitionable Hamiltonian. H = Hy + Ho + -+, 1) = Y1ho - - -
o Parity operator.
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Thermodynamics

Universe:

System Environment

@ Zeroth law of thermodynamics, first law of thermodynamics, Second
law of thermodynamics.

State functions vs. path functions
dU = dq + dw = TdS — pdV U=U(Ss,V)

TZ(%)V? P:_(%)S

(]
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Thermodynamics

r;]_ |G
k.

@ Legendre transformation: F = F(x), s= ‘=5 G(s)=F —sx.
Generally, G(s) = F — 3_; sjx;.

o U(S,V), H(S,p)=? A(T,V)=U-(¥)S=
Uu-TSs, G(T,p)=?

@ A thermodynamic potential is a scalar quantity used to represent the
thermodynamic state of a system.
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Thermodynamics
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The concept of thermodynamic potentials was introduced by Pierre
Duhem in 1886. Josiah Willard Gibbs in his papers used the term
fundamental functions.
Internal energy U is the energy of configuration of a given system of
conservative forces and only has meaning with respect to a defined set
of references.
Expressions for all other thermodynamic energy potentials are
derivable via Legendre transforms from an expression for U.
For an open quantum system dU = TdS — pdV + udn where

_ (9U
Grand potential or Landau free energy is defined by
oe(T,V, ) ¥ FoyN=U-TS—uN
Fundamental equation:
dbg =dU — TdS — SdT — pudN — Ndy = —PdV — SdT — Ndp
When the system is in thermodynamic equilibrium, ®s is a minimum.



Thermodynamics

@ For homogeneous systems, one obtains Q2 = —PV.

@ Internal energy (U) is the capacity to do work plus the capacity to
release heat.

@ Gibbs energy (G) is the capacity to do non-mechanical work.

e Enthalpy (H) is the capacity to do non-mechanical work plus the
capacity to release heat.

@ Helmholtz energy (F) is the capacity to do mechanical plus
non-mechanical work.

o AU is the energy added to the system, AF is the total work done on
it, AG is the non-mechanical work done on it, and AH is the sum of
non-mechanical work done on the system and the heat given to it.

@ The principle of minimum energy follows from the first and second
laws of thermodynamics.

@ When the entropy S and "external parameters” (e.g. volume) of a
closed system are held constant, the internal energy U decreases and
reaches a minimum value at equilibrium.
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Thermodynamics

@ The following three statements are directly derivable from this
principle.

@ When the temperature T and external parameters of a closed system
are held constant, the Helmholtz free energy F decreases and reaches
a minimum value at equilibrium.

@ When the pressure p and external parameters of a closed system are
held constant, the enthalpy H decreases and reaches a minimum value
at equilibrium.

@ When the temperature T, pressure p and external parameters of a
closed system are held constant, the Gibbs free energy G decreases
and reaches a minimum value at equilibrium.

@ The variables that are held constant in this process are termed the
natural variables of that potential
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Thermodynamics
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If a thermodynamic potential can be determined as a function of its
natural variables, all of the thermodynamic properties of the system
can be found by taking partial derivatives of that potential with
respect to its natural variables and this is true for no other
combination of variables.

If there are D dimensions to the thermodynamic space, then there are
2P unique thermodynamic potentials.

Ulpil = U = wiNj, Fluj] = U = TS — piNj, Hlpl = U+ pV — ;N
and Gluj] = U+ pV — TS — u;N;

Fundamental equations: dH = dA= dG =

If the system has more external variables than just the volume that
can change, the fundamental thermodynamic relation generalizes to:

dU=TdS — ZX dx; + Z'“J dN;, X; are the generalized forces

corresponding to the external variables x;.
Maxwell relations, e.g., using dA=-pdV-SdT to derive
(%) = ().



Thermodynamics

Extensive vs. intensive.
du

e Fundamental relation can be written as, 57 = T(5,) — p, imposing

32/1

the constant temperature condition and using a Maxwell relation
yields (39)n, 7 — T(52)nv = —p.

U=U(V,T), thus dU = [T(22)y — p]dV + CvdT.

Cv=(59)v =T(57)v and Gy = (§9)p = T(57)p-

Thus, G, = C, = [p+ (50)71(57)p

Chemical potential,

G
(a/\/ )s.v.. (gN )S.p,... (aaT/)VT (g/v) T,.
Homogeneous of degree n, f(Axy, -+, Axny) = A"f(xq, - 7x/\/)
Euler's theorem: If f is a homogeneous function of degree n,
nf(xi, -+ ,xn) = XlaX1 + XZgXZ +- +XNdaxf\,
N
n(n - 1)f(X17 e XN) = Zij lxi)g(ax,ﬁ)g)

G(T,p,N;) = ZN(aN)Tp,~ ZJ'NJNJ'



Thermodynamics
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Find expressions for other thermodynamic potentials.
Gibbs-Duhem equation: ZJ- N;idp; =0

For a chemical reaction aA + bB = ¢C + dD, which can be
represented by > . vjA; =0, dG =3 pjdN; = (3, pjvj)dA.
At equilibrium: >~y = 0

Phase equilibrium

B = ,uj + RT In p{) :,uj + RT In p;

Apg = — RTMW’;%F —RTInK,



Ensembles

@ An experimenter repeating an experiment under the same macroscopic
conditions is unable to control microscopic details, thus he might
expect a range of outcomes.

@ A large number of identical (on a macroscopic level) systems
constitute an ensemble.

@ An ensemble is a collection of systems sharing one or more
macroscopic characteristics but each being in a unique microstate.

@ The complete ensemble is specified by giving all systems or
microstates consistent with the common macroscopic characteristics
of the ensemble.

@ The system may be specified by N, V, E, or N, V, T, while the
ensemble has A identical systems.

@ There is an enormous number of microstates, O(10"), consistent with
the systems specifications.

@ System properties depend on the microstate of the system.

@ Time independent Schrodinger equation determines allowed energy

levels £; and their corresponding degeneracies Q(E;).
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Canonical Ensemble: Definition

e Ensemble average of the mechanical property B, B = % Zil B;
where B; = [ By;dr.

@ Ergodic hypothesis states that time average of a mechanical property
equals ensemble average of the same thermodynamic property.

o Make a large collection of systems each having walls impermeable to
matter but heat conducting. Bring this collection in contact with a
heat bath of temperature T. After equilibration isolate the ensemble.

@ Each system is specified by N, V, T while the ensemble is specified by
AN, AV, and e.

@ Solve Schrodinger equation for the system specified by N V. Specify
states Ej, Ep, E3,--- such that E; < Ej;1. The number of systems
occupying each state, respectively, is a1, az, a3, - - -. Set of occupation
numbers a1, as, as, - - - is called a distribution.

@ Energy time uncertainty relation: AEAt > g
@ The principle of equal a priori probabilities.
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Canonical Ensemble: Averages

@ The number of ways the systems can take this distribution,

distribution multiplicity, is W (a1, a2, --) = % where
Zia,-:.A E,-a,-E,-:e.
= 2,3 W(a)
° 3= 5w
_a _ >,aW(a)
° Pj=% =5 w0
o M= ZJ MJ'PJ' .
@ What are unjustified assumptions in this treatment?
e Noting that W(a) is a multinomial distribution, and letting

_F Y, aW(a) _ ayW(a") ar
A—oo  P=%= Aza: W) = AW

° gyW(a) —agp(A=3a) — By (e~ 32 aiE) = 0
o grInar —agh (A= a) — Bk (e~ aE) =0
° %[AInA —A—-Xi(ailnaj — a;)] + (3, 05) + B3, 05Ei) = 0

L _77E ._a’.‘_ —a‘ﬂEj
olnaf+a+fE=0—a =e > Ph ThusPJ_BEj_%
@ Using the normalization of probabilities P; = Ee,ei‘é":'
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Canonical Ensemble: Partition function

o Canonical ensemble partition function, Q = 3. e #E is a bridge
between quantum mechanical energy levels and thermodynamic

functions.
— —BE; 0Q/9pB ,
° E= EjEje QJ = - /Q by _ _(alangQ)N,V
o Adiabatic process, PV work only dE; = —p;dV/, p; = —(%)N
OE; .
= (g )ne
o p=3;pP=—=E5—— = 55(50Ins = 5% ns
e Ensemble postulate of Gibbs. E = E p=p
E-eiBEJ'
0Ey (Mo ) = sFs_ 3E5
o (3v)swn =(—7v—)sn=—P+BEp—BEp
p ) (F)ne 5 = T
o ( z;f;) Nv = "33 ‘JQJZ“zif“““’ =Ep—Ep
. o5 .
o (55)sn +B(FHIny =~
0, 0
o (5v)Tn— T(5F)ny = —por (5o)Tn+ +(garm)ny = —p
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Canonical Ensemble: Value of 8

1
@ To prove the universality of k, construct an ensemble composed of

systems A and B paired, with number of particles and volume, Nj, V4
and Ng, Vg, respectively.

A B A B
A B A B
A B A B
A B A 5

Figure: A composite ensemble consisting of A and B systems.

38/1



Canonical Ensemble: Value of 8

@ The number of possible system distributions resulting in the
composite ensemble state ab, W(a, b) = =4 5!

Mja;! ﬂkbk
° > ;a=A > ;b=B 3 ;(aEa+ bjEg) =
P P _ b _ Zab aiW(a’b) Zab bj W(avb)
.A B A, W(a,b) BY ., W(a,b)
ar b}

@ Using maximum term method: Pj; = 5%

° a%, In W(a, b) — 0‘18%,(-’4 — %aj) — 0‘287,(8 — %:j b;j) — 68%/(5 -
Zj(aajEjA + bjEjg)) = % a5 INW(a,b) —a1g5 (A -3, 3)) —
25, (B =22 bj) — B3, (€ — >_;(ajEja + bjEjg)) = 0

—BEip o~ PEjB

) QAA : QBJ = PiaPjs

@ Thus two arbitrary systems in thermal contact have the same value of
5. Since 5 = kT they must have the same value of k.

@ Using the normalization condition Pj; =

@ k can be determined for any system including an ideal gas.
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Canonical Ensemble: Value of 8

o If the external parameters of the system remain constant then the
interaction is termed a purely thermal interaction. It is the
distribution of the systems in the ensemble over the various
microstates which is modified.

@ Suppose that the system A is thermally insulated from its
environment. The system A is still capable of interacting with its
environment via its external parameters. This type of interaction is
termed mechanical interaction, and any change in the average energy
of the system is attributed to work done on it by its surroundings.

@ On a microscopic level, the energy of the system changes because the
energies of the individual microstates are functions of the external
parameters. Thus, if the external parameters are changed then, in
general, the energies of all of the systems in the ensemble are modified
(since each is in a specific microstate).

o Consider (8, E1,Ez,--+) =InQ, B
df = (55)EdB + Yk (FE)s.E, dEk = —EdB — B3, PrdEx
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Canonical Ensemble: interpretation of work and heat

o d(f + BE) = B(dE — 3", PxdEy)
@ Molecular interpretation of reversible work is a change in the energy of
levels without an accompanying change in the population of levels.

@ Since dE = Zj E;dP; + Zj PidE; = 6qrev + OWrev

L 6qrev = Zj Ede_]

>« PxdEj is the ensemble average of the reversible work done by the
system.

d(f + BE) = B8 qye, is derivative of a state function.
[ is an integrating factor of dqye, .

According to the second law, integrating factor of dq,e, is constant/T.

95 = d(f + BE). Thus .
_ Eef

S= %—i—kln Q+-constant = kin}_; e_Ef/kT—F%%—Fconstant
J
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Canonical Ensemble: Thermodynamic connection

@ Partition function in terms of levels:
Q(Nv Vv T) = ZE Q(N7 V, E)e_E(va)/kT
e By setting Eg =0, lim7_,0S = lim7_o(kIn > Q(N, V, E)e E/kT +

—E/KT
%ZZE ‘;2((",’\;‘(;’2;6_5/” ) = kInQ(N, V, Ey) which is very small. Thus
E_ El El

S=L£+knQ.

E=kT*(28)n,v and p = kT(ZR2)n
S=kT(% )y +kInQ

AN,V, T)=E—-TS=—kTInQ(N,V,T)
To derive the second law

T

)

consider spontaneous process of going from state 1 to state 2 involves
removal of a constraint or barrier. Thus for an isolated system
Q2(N7 Vv, E) > Ql(N¢ Vv, E)
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Second law

E.g., expansion of an ideal gas where

_ 1 2rM\3N N/2—1y/N
Q(E’AE)_W( B2 PNRENTIVNAE,
Or addition of a catalyst to a kinetically stable non-equilibrium

mixture.

@ — Q=S (N, V,E) - Qi(N, V, E))e  EWNVI/KT

@ Thus, AA= —kTIn(%) < 0 for an spontaneous process, at constant
volume and temperature.
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Grand Canonical Ensemble

@ Walls are heat conducting and permeable to the passage of molecules.

44/1

Each system is specified by V, T and p.
For each value of N the system has energy states {Enj(V)}. ap; is the
number of systems in the ensemble with N particles and in energy
state j.
The number of ways to achieve any distribution,
W({an;}) = nN%;NJl
Prj = % _ %aaNjW({aN_j}) _ anW({a'Yj}l*

> W(Han}) AW ({an;})
Recourse to the maximum term method, W(a) should be maximized
subject to constraints } > an; = A, >y D_; anjEnj = € and

ZNZjaNjN:N-

= e_ae_ﬂENj(V)e_’YN

*
any

' Ay e PEN](V) g—yN
PNJ(V?B?’Y) - A — ZNZ_e—ﬁENj(V)equ
j

Z(V.B3,7) =y X e VeV




Grand Canonical Ensemble

o E(V,B,7) =2 L2 Enj(V)e PEuVIe N = _(aénﬁz)vﬁf
_ OEpN;(V _ . _ n=
o B(V,B,7) = L Ly L2 e PEuVIe N = L(2nZ),

7 _ 1 —BENj(V) o=yN _ _ (8In=

o N(V,B,7) = £ Xy > Ne PEnlVIemN = —(82),

@ Make the walls impermeable to molecules to derive a collection of
canonical ensembles. For all these ensembles 5 = %

o F(5.7 (Ew(V)}) =In= = In T 55y e PEu) oM

o df = (§5).1£3dB + (5)p.ag1d7 + Xon 32 (58y )5 Es sy IEN
o df = —Edp — Ndy — By Y, PrjdEn

o Ensemble average reversible work is >y >~ Pn;dEn;

@ Assuming only PV work df = —EdS — Ndvy + BpdV

o d(f + BE +~yN) = BdE + BpdV + ~vdN
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Grand Canonical Ensemble

o WHAENN) — yE | 5dV + 1dR
e TdS = dE + pdV — udN
oy=7# S=E-Miknz
@ Grand canonical partition function
=V, T,pn)=>n Zj e—Enj(V)/KT guN/kT

o Absolute activity, A = e*/kT.

@ The relative activity of a species i: a; = e™ RT .

e =(V,T,u)= Z,OVO:O Q(N, V, T))\N.
E |4 N
o G=puN=E+pV-TS = S==+E0 - =
o By equating statistical and thermodynamic entropies:
pV =kTIn=(V, T, pu).
@ In cases where the constant N constraint make calculation of Q

awkward, one resorts to the calculation of =.
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Isothermal-lsobaric Ensemble

@ Walls are flexible and heat permeable, while particles cannot pass
them (N,T,p).

@ Most chemical reactions are performed under these conditions.

o W({ay}) = ﬁ shall be maximized constrained by

v 2ijavi = A sz ayiEyj=&and )y > jayV =V.
@ Every partition function can be constructed from Q(N, V, E)

multiplied by the appropriate exponential and summed over the

quantities which can pass through the walls of each system.

@ Isothermal-isobaric partition function
A — ZEZ (N Vv, E) —E/KT o—pV/kT _
o\//\g 7pV/kTZ Q(N Vv, E) —E/kT _ deefpV/kTQ(N V, T)
~BEj—BPV
o Py=FK—

o G(N,T,p)=—kTInA(N, T, p)
o dG = —SdT + VdP + pudN
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Micro-canonical Ensemble

@ An isolated system, Q(N, V, E).

@ The whole of a grand canonical ensemble is a microcanonical system.

—BEN;(V) g—yN

—_ e eiﬁE ]
= kInZ+ k(X p BB Ty N e

e*rBENj(V)e—'yN

- KIn= kX (BB + 7 N) &

' B ay; _ e PEN(V) g—yN
) Usmg PNj(V7 ﬁf)/) - AJ - ENZ,e*/BE’VJ(V)e—WN
j

o Soc = kIn= — kY y (Inaj, +In= —In A)2 —
kS Ak Inan; + kin A
°® Smc = AS = klIn W(ay;)
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Micro-canonical Ensemble

S =kInQ(N, V,E) for an spontaneous process

AS = kIn(Q2(N, V,E)/Q (N, V,E))

@ Second law for a system at constant volume and energy.
For an ideal gas S = Nkln[(%;,"#PpVETm]

Since dS = +dE + 2dV — £dN we have £ = (22)n ¢
pV=NKT, thus k = R/Na.
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Fluctuation Theory: Canonical ensemble

@ Deviation of a mechanical property from its mean is called fluctuation,
investigation of such deviations is called fluctuation theory.

@ In the thermodynamic limit the possibility of observing any value
other than the mean value is extremely remote.

@ All ensembles are equivalent for all practical purposes.
00} =(E—EP=F>—E*=3,E?P;— E?
—BE; 19 —BE; 1 0 (F
° Z EZP =g B e = g et = —535(EQ) =
_9ot _ E@InQ _ kT23E + E2

35
o 02 = kT? (g;) v =kT2C,
(kT2C)'/?
°E="TF
o For an ideal gas ¥ = O(N~Y2) thus E ~ E*
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Fluctuation Theory: Canonical ensemble

o P(E) = cQ(E)e E/¥T

o (P )e—p = (%) e —B=0
° (GZEP)_(BBEQ) at E = E7, (82?29):(‘65*):ﬁ21q
o InP(E)=InP(E) - 2kT2C 4
o P(E) = P(E)exp|- 7))
o 02 =p?—p?
o?:apﬁe QZ( So)2e P =
L2 Ao E) + L (G )e ) =
T (50) — (5, (e 8T — AT(E + 5248 — T

oV
° Zk(5 )

° CaIcuIate 2 for an ideal gas?
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Fluctuation Theory: Grand canonical ensemble

o ZZW— _2:ZNjN2PNj_,\_I2
o Yo NPy =13y N2ePEuiem N = L0 5~ Ne FEne= N =

—_laa’y(N_):_ai’y_Naln- _k-,—(aN) N2

° o = kT(3)
@ A is homogeneous of degree one, A(T AV, )\N) =MA(T,V,N)
@ According to Euler's theorem, N( o)+ V( 2)=A(1)

o Further, N2(24) 4 2NV(-24) + V2(2A4) =0 (2)

ON?2 ONOV oVv?2
o (1) = NV(24,) + V3(4A4) =0

2 2
o (1) = N2(52) + NV(524y) =0

oV
)

2 2

° Nz(gNé\) VZ(gvé)

° —V2(W)T,N = N2(ﬁ)T,v
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Fluctuation Theory: Grand canonical ensemble

0 V2 N2kT
O(BKI)VT (OV)NT ThusaN: VK.
e Isothermal compressibility, xk = 7> (%‘;)er
o % = (e

e Typical fluctuations in statistical thermodynamics are O(N~1/2).
9p — IN — (@)1/2
%

o (Pyy_ne = (2 nen- + Bu=0
8%In P 92| 0,
o (T In=n- = CguIn—n- = ~(FHIN-n" = ~F0m/5m90 T
(
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Equivalence of various ensembles

QIN,V,T) =Yg QN, V,E)e E/KT = Q(N, V,E)e E/¥T.

A= —kTInQ=E —kTInQ(N,V,E). Thus S = kInQ(N, V, E).
==Yy QN,V, T)eN =3\ Q(N, V, E)e PESN

== Q(N, V, T)ePrN = Q(N, v, E)e PEeuN
kTINZ=kTInQ+uN =kTInQ—E + uN
kTInZ=—-A4+G=TS—E+G=pV
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Ideal gas
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_ —Eo /KT _ —(e2+ebteS+-) /KT _

QIN,V, T) =3, e E/ =D ijko € (Frereic T <
a _eb c

S e /KT > /KT S e /KT ... = q.qpqc - - - where molecular
partition function g(V, T) = >, e /KT
For N distinguishable identical particles Q(N, V, T) = [q(v, T)]V,
e.g., sites in a solid crystal are distinguishable.
Partitioning of the molecular Hamiltonian,
H = Hirans + Hrota + Hyipr + Heject, lead to the division of molecular
partition function. Gmolecula = Gtranslational Grotational QuibrationQelectronic
The unrestricted sum for partition function is not valid for fermions as
it allows repeated indices, i.e., more than one particle in the same
energy state.
The unrestricted sum for partition function is not valid for Bosons as
it over-counts states with repeated indices, i.e., states where more
than one particle is in the same energy state.



Ideal gas
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Number of qugntum states with energy < ¢,

O(c) = F(5mEe)/2 = 5(Sm)32Y

If the number of available molecular states is much greater than the
number of molecules in the system, two molecules in the same state is
a rare event.

Thus the only problem with Q(N, V, T) = g" is indistinguishability of
molecules, partition function can be corrected as:
Q(N,V,T)=gq"/NI

Valid when ®(e) > N — Z(12mkT)3/2 5

Boltzmann statistics or classical limit become a better approximation
by increasing mass or temperature or decreasing density.

al a1 —<j/ kT _
= kT2 %) ny = NkT2(%59) = N e4—— = Ne
e J/kT
E=D) ¢
- . . . —ej/kT
Probability of a molecule being in the j'th energy state 7; = € ;



Ideal gas
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For a non-interacting gas one can consider the container to be an
ensemble and each molecule to be a system.

Label each molecular state with 1,2,3,--- such that ¢; < €j41.

Consider N as the total number of molecules and n; as the number of
molecules in the state i.

Derive probability of state occupation similar to the last section by
maximizing ways of distributing molecules over energy states
W({n;}) = % subject to Y . nj = N and >, nje; = E.

A ! —e; /KT . o
m=R="0=2¢ o in the Boltzmann statistics.

Exact partition function for fermions is

a b c
QN,V,T)= Z?;éj#k;ém e (TG Tat)/kT \yhere * denotes that
€ +e+---=E.

For bosons Q(N, V, T) =377, . e (FHFHEA /KT \yhere * also

denotes that any term with repeated indices is counted just once.




Fermi-Dirac and Bose-Einstein statistics
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Ei=>,exncand N =3, ng.

QIN,V,T)=Y ;e b = > e P2icin where * signifies
Zk ng = N

Due to difficulty of performing this sum, we turn to the grand
canonical partition function:

=V, Tom) =30 e NQ(N,V,T) = N=0 AN Z?nk} e AXicn —
ZC;\/O -0 Z?n })‘Z me=P G = 3% >y e (Ae™Pex) e =
an OZnQ Xo TRy (AemPex)me

(V. To) = Yolp(e @) S (e Py . =

M, an Xo()‘efﬁek)"k

Zrp = M52 (1 + Ae P

=g = My (X o —o(Ae™74)™) = TRZ, (1= Ae™P9)71), demo <
1, el <1, (n—e)<0— p<e.



Fermi-Dirac and Bose-Einstein statistics
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ZER =32 (14 Ae Fen)El

_ —Be —
NZN—kT(aln_)VT A(aln_) v,T Zk 1i)\e ﬁkfk 2k i
- e P

ng = m

Aege Pk
E =200 kel = g 18y
pV = kTIn= = +kT Y, In[1 £ Xe™F]

In quantum statistics even non-interacting particles are not
independent (through symmetry requirement), thus molecular
partition function q is irrelevant.

In the limit of classical statistics iy — 0. This requires A — 0
meaning N/V — 0 for constant T or T — oo for constant N/V.



Fermi-Dirac and Bose-Einstein statistics

o Forsmall A 7 = e P — N = \q

- e

o £ — > Aeje=fe

@ €= % = zjge Eje:;:?
Zje J

pV = +kT Y, In[1 + Ae P%] = (£KT)(£A Y ;e P9) = AkTq
e BpV =In==X\g=N
o Z=eM=Y0 0 ihus QN V, T) =9

@ Thus Boltzmann statistics is valid in the limit of small \.
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Ideal monatomic gas
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q(V, T) = QtransYelect9nucl
Translational energy

_ K 2 2 2 _
€ng,ny,n; = 8m2(nx +ny + nz) ne,ng,n,=17273".-.
o0 —pe 50 B (M) _
— nx,ny,nz —
Qtrans = an,ny,nzzl € e = an,ny,nz_l € ~8ma
Bh2n2 Bh2n2 Bh2n2 BH2n2

sz:]_ eim Zoj—l e 8m32 an—l e 8ma? — (Z(;O:]- ei 8ma2 )3
qtrans(V T = (fo e Sma2 dn) (277;7771(7—)3/2\/

Qtrans = fO 7’860'6 where w(e)de = %(8%)3/251/20'6
Qtrans = %(87:23 )3/2foo 1/2 ﬁfdez(%)?’/z\/: /\7‘/3

- 8' rans 3
€trans — kT2(7rg%t— = kT = p

A is the thermal De Broglle wavelength of the particle.



Ideal monatomic gas

@ Condition for applicability of classical or Boltzmann statistics
NV <1
@ (elect = Zi weieiﬁei = Wel + We2€7ﬁA€e12 + -

Some atomic energy levels®

Electron Term Degeneracy 5
Alom configuration symbol g, =2J+1 energylem ™'
H 1 Sin 2 0.
p =P|'_,: 2 §2258.907
2s 8 2 §2258.942
2p P, 4 §2259.272
He 15 e I 0.
152p 28 3 159850.318
'8, I 166271.70
Li 1525 8 " 2 0.
1s%2p 2P 2 14903.66
P, 4 14904.00
1535 8 n 2 27206.12
F 1s°25*2p° o 4 0.
J i 2 404.0
157257 2p*3s J A= 6 102 406.50
Jid= 4 102681.24
2 102 841.20

5
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Ideal monatomic gas thermodynamic functions

o k=0.695 cm~!/deg-molecule, 1 eV=8065.73 cm~!

@ Nuclear levels are separated by millions of eV'’s. Nuclear states do not
contribute in thermodynamic change.

@ dnucl = Z,'Wnie_ﬁei = Wn1 + 0Jn2e_/BA€":l2 + -

© A=—kTInQ = —NKT In[(2ZBEL)3/2¥e] — NKT In(wey +wepe™PA€12)

o E=KT2(2Q)y y = JNKT + Nemhce 22

e p= kT(aan)Nj = NKT

o S =3Nk+ NklIn[(ZZmEL)3/2Xe] 4 Nk In(wer + wepe™PA412) +
NkwepBBeze P12 pyjnre 2mmkT)3/2VeP2) | g 1, which is the

Gelect
Sackur-Tetrode equation.

o 1(T,p)=—kT(Z2)v, 7 = —kTIn g = —kT In[(Z=BEL)3/2 ] —
kT Ingeqn = _len[(zﬂhka)3/2 k,;r] kT Ingeqn =
—KT In[(2ZBEL)3/2kT] — kT Inqeqn + kT Inp = pio(T) + kT Inp
o 11o(T) = —kT In[(2=BL)3/2kT] — kT In gegn
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Atomic term symbols

@ Term symbol is an abbreviated description of the angular momentum
quantum numbers in a multi-electron atom.

@ Each energy level of an atom with a given electron configuration is
described by not only the electron configuration but also its own term
symbol, as the energy level also depends on the total angular
momentum including spin.

@ The usual atomic term symbols assume LS coupling (also known as
Russell-Saunders coupling or spin-orbit coupling). The ground state
term symbol is predicted by Hund's rules.

@ Hund'’s rule of maximum multiplicity states that the electron
configuration maximizing spin multiplicity is more stable.

° Multielectron atomic Hamiltonian,

H= _% Zjvf_ZjZTf+Zi<j%j+ZjC('j)lj'5j = H0+Hee+Hso

@ Hs, represent the interaction between the magnetic moment
associated with an electrons spin with the magnetic field generated by
its own orbital motion.
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Atomic term symbols

@ Russell-Saunders or L-S coupling: For Z < 40, Hs, can be treated as
a small perturbation. Then [I-Alo + Aee, [] = [I-Alo + Hee, §] =0.So0S
and L are good quantum numbers.

o [Py =1L(L+1)h% 5% =S(S+1)r%

o L and S are the vector sums of /; and s; respectively. For electrons,
L=h+hh+hb-1,--- ,‘/1—/2| and
S=s51+s,51+s—1,--- ,‘51—52|

@ Terms with L =0,1,2,--- are denoted by S, P, D, ...

@ When H., is taken into account only [I:I,JA] =0. Only J=10[+Sis
conserved. Eigenvalues of J2 = (L + )2 are J(J + 1)h? with
wj = 2J + 1 corresponding to 2J+1 eigenvalues of J, which are
Jh,(J—1)h,--- ,—Jh

o Allowed values of Jare L+ S,L+S—1,---,|L—S|. Term symbol is
written as 2°H1[ .
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Atomic term symbols

@ For heavier atoms j-j coupling is used. Total angular momenta for
each electron is defined as j; = s; + /;. Total angular momentum, J, is
derived by coupling the j's. Term symbol is written as 25+1[ .

@ For molecules, Greek letters are used to designate the component of
orbital angular momenta along the molecular axis.
@ For a given electron configuration:

@ The combination of an S value and an L value is called a term, and
has a statistical weight (i.e., number of possible microstates) equal to
(25+1)(2L+1);

@ A combination of S, L and J is called a level. A given level has a
statistical weight of (2J+1), which is the number of microstates
associated with this level in the corresponding term;

@ A combination of S, L, J and M, determines a single state.
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Atomic term symbols

@ The product (25+1)(2L+1) as the number of possible microstates
|S, ms, L, m) with given S and L is also the number of basis states in
the uncoupled representation, where S, mg, L, m; are good quantum
numbers whose corresponding operators mutually commute.

e With given S and L, the eigenstates |S, ms, L, m;) in this
representation span function space of dimension (25+1)(2L+1).

@ In the coupled representation where total angular momentum is

treated, the associated microstates are |J, M, S, L) and these states
Jmax:L+5

span the function space with dimension of Z (24+1) as

J:Jmin:|L75|
My=J,J—1,..—J+1,—J.
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Adiabatic approximation
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Adiabatic, Born-Oppenheimer approximation.

Adiabatic means not passing through and in thermodynamics refers to
a condition imposed on a system that prevents any passage of heat
into or out of the system.

In quantum dynamics, adiabatic refers to an inherent property of a
process, i.e., its tendency to occur without any change in quantum
state.

Ehrenfest showed that when the parameters of a system in a particular
quantum state are changed slowly, the system remains in the same
quantum state (adiabatic theorem).



Adiabatic approximation
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Now, adiabatic implies that there are two sets of variables which
describe the system of interest and the system can be characterized by
the eigenstates defined at each fixed value of one set of variables,
which change slowly compared to the other set.

In the first step of the adiabatic approximation, the electronic
Schrodinger equation is solved, yielding the wave-function ejectronic
depending on electrons only.

During this solution the nuclei are fixed in a certain configuration,
very often the equilibrium configuration.

In the second step of the BO approximation this function serves as a
potential in a Schrodinger equation containing only the nuclei.

The success of the BO approximation is due to the difference between
nuclear and electronic masses.



Adiabatic approximation
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Molecular Hamlltonlan
=> 2M,+Z: 1 2me+zl<_j =71 5| i<y %—Z;,/ |,§'_82,~,‘ =
Tot Tet Vet Vot Vie
Tot Ted Ve+ Vo + Veo| W(r,R) = EV(r,R)
V(r,R) = ¢(r; R)x(R),

where x(R) is a nuclear wave function and ¢(r; R) is an electronic
wave function that depends parametrically on the nuclear positions.

The difference in the nuclear and electronic mass also results in a
difference in their momenta, i.e., nuclear momenta are greater, which
in turn causes the nuclear wave function (coordinate amplitude) to
change more steeply than the electronic wave function.

Vix(R) > Vié(r; R)



Adiabatic approximation

o Tu(o(riRIX(R) =~ X1 [(b(r; R)VIX(R) +2V6(r: R) -
Vix(R) + x(R)V2¢(r; R)} ~ —%2 | Mi,‘b(r; R)V2x(R)

o [Tt Tot Vet Vi + Ven| 6(r RIX(R) = Eo(r: RIX(R)
[TetVe(n)+Ven(RN]O(rR) _ £ [TatVa(R)X(R)

] #(r:R) - x(R)

o | Tet Velr) + Venlr, R)| 6(r; R) = (R)o(r: R)

o [T+ Va(R) +=i(R)| X(R) = Ex(R).

@ The physical interpretation is that the electrons respond
instantaneously to the nuclear motion, therefore, it is sufficient to
obtain a set of instantaneous electronic eigenvalues and eigenfunctions
at each nuclear configuration, R (hence the parametric dependence of
¢i(r; R) and ;(R) on R)

E
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Distance dependent potential

[Tt Va(R) + =i(R)| (R, £) = iigex(R, ¢),
ei(R) give rise to BO hypersurfaces.

This equation describes the nuclear dynamics and vibronic states.

Breaking down the motion of nuclei:

In 2D consider two particles with a distance dependent potential.
E= 2105 +y7) + B35 +y3) + Ulxi — x2, 1 — ¥2)

o Center of mass and relative coordinates are defined as

X = 7’"1,212?2 Y = MU =X — X Y12 = Y1 — )
o x; =X + m1+m2 xi2 y1 =Y+ -y Xy =

X - m1+m2 X12 =Y - m1n-;'-1m2y12
° E= W(Xz + YZ) + %(Xlzz +)./122) + U(xa2, y12) =

%()@ +Y2)+ (x5 + vi) + U(xa2, y12) = Ecm + Evel
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Distance dependent potential

@ Thus the center of mass motion can be separated from relative motion
of a two particle system.
@ Mapping the relative motion into polar coordinates r and 6 where
X12 = rcosf yip =rsinf xip = Fcost — r0sin 6 Yip =
Fsin@ + rf cos b:
Erel = 4(F2 4+ r202) + U(r) = 472 + U(r) + 41?62 = Eip + Eyor
@ Similarly in 3D consider two partlcles with a distance dependent
potential.
E=50¢+7+2)+ 3035 +y3 +23) + Ul —xe, 01— y2, 21— 22)
@ Center of mass and relative coordinates are defined as

_ mixitmexo _ Mmiyit+mey _ mzit+myz _
X = mi+mo - mit+m Z= my+my X12 =
X1 —=X2 Yi2=Y1—)Y2 Z12=21 22
e =X+ m1+m2X12 =Y+ m1+m2y12 z1 = e
Z + m1r;|7-1m2212 - X - m1+sz12 =Y - amye 2=
Z - my+mp £12
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Distance dependent potential

02 -2 .
° m1X142rm2X2 _ (m1+m2)X2 mnlvh_mrilezz
o E= (X2+Y2+Zz) (X12+Y12+212)+U(X127y127212) Ecm+Erel

° Finally transform the relative coordinates into spherical polar

coordinates.

° x12_rsm9cos¢—|—r0cos€cos¢—rqﬁsm&smqb Yio =
Fsinfsin ¢ + r<9cosc95|nqb+ rqum@cong) Z10 = Fcos — rfsinf

o X% +y2 + 2% = 2+ r?6% + r?¢?sin? 0

74/1



Diatomic molecule
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Erel = %(r + 1262 + r2¢?sin?0) + U(r)

E,ip = §r + U(r) Eot = §(r2<92 + r2¢? sin? 0)
Hpn = Hirans + Hint, €n = €trans + €ints Gn = QtransQine
Gerans = [27erT]3/2V Q(N V T) M

Relative motion of the two nuclei consists of rotary motion about the
center of mass and vibratory motion about the equilibrium
internuclear distance re.
Small amplitude of the vibratory motion allows treatment of the
rotary motion as the rotation of a rigid dumbbell.

2
U(r) = U(re) + (r = re)(% ) r=re + 3(r — re)* (58 )r=re + -+
u(re) + %k(r —re)? -
Rigid rotor-Harmonic oscillator approximation: Hiot vib = Hror + Huip,

€rot,vib = €rot T+ €vib, Grot,vib = GrotQuib



Diatomic molecule
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For a rigid rotor,

y=BE) g 01,2, wy=2041  I=pr?
For a harmonic oscillator
cvib=hv(n+1/2) n=0,1,2,--  wy=1 v= (52

Selection rule for radiation induced rotational transition: 1) Possession
of permanent dipole moment. 2) AJ = +1

V:6j+1h*5j:Fh2l(J+1) J=0,1,2,---

B =ghr &(em™) = BJ(J+1)
Selection rule for radiation induced vibrational transition: 1) Change
of dipole moment by the respective vibration. 2) An = +1

i —es K
U= 61+1h & %(p)1/2

Assume: H = Hyrans + Hrot + Hyib + Helec + Hnuers thus
€ = €trans + €rot 1 €vib + €elec T €nuci-



Diatomic molecule: vibrational partition function
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N
_ _ (qtransGrot Quib Gelec dnuc!
4 = Qtrans9rotQvibelec Gnucl: Q(N, Vv, T) — (GransGrer N cec Inuct)

Zero of rotational energy taken as the energy of J = 0 state.

Zero of vibrational energy taken as the bottom of the internuclear
potential well of ground electronic state.

Zero of the electronic energy is separated ground state atoms.
Qelec = QeleDe/kT + Qe2eiez/k—r + -

Quin(T) = Ypge P = e P2 3700 e=Fhvn — f:jﬁyﬁ/hi

If kT > b quip(T) = e Phv/2 [ e=Bhvngn = KT g=Bhv/2

E, = NkT2d(|;TqV Nk(S + ﬁ) in terms of vibrational
temperature.

Oy, /T
Cvvib = (%5 ) = Nk(%)? @ Ty




Diatomic molecule: vibrational partition function

e Bhw(nt1/2) _ —pBhv\,—pBhvn
° fr= Quib __(1 € )e

Molecule Qi (K) 0. (K) v(x10P s g De(kJ mol™) | Do(kJ mol™)
H, 6215 85.3 12.960 1 457.6 432.1
Cl, 808 0.351 1.683 1 2423 2392
I, 308 0.0537 0.642 1 150.3 148.8
CcO 3103 2707 6.471 1 1085 1070
NO 2719 245 5.670 2 638.1 626.8

° HCI1 4227 15.02 8.814 1 4452 427.8

0 Grot(T) = 3257 (2J + 1) #BIU+Y)

o Characteristic temperature of rotation §, = B/k
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Diatomic molecule: rotational partition function
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Grot(T) =[5 (20 + 1) /INITd) = [0 e IDITd () +1) =
T 8m2IkT
97, = h2 er << T

At small temperatures g,oi(T) =1+ 3e20/T 4 5e=00/T 4 ...

For intermediate temperatures Euler-MacLaurin summation formula:
Z::a f(n) =

I3 F(n)dn+3{F(b) + ()} + 5252, (~ 1V i { FE D () — FE1 (b))}
The formula was discovered independently by Leonhard Euler and
Colin Maclaurin around 1735 (and later generalized as Darboux'’s
formula). Euler needed it to compute slowly converging infinite series
while Maclaurin used it to calculate integrals.

Bernoulli numbers, B; =1/6,B, =1/30,B3 =1/42,---

Use to calculate Y27 e~ .

Euler-MacLaurin formula is applied to grot(T) with
FU)=(J+1)eF/UH), 220, b=oo



Diatomic molecule: rotational partition function

o ol T) = F{1+3(5) + B2 + st () +

0 InGror(T) =In 7 +In{1+ 3(%) + (%) + 515 (F)° + -}

° Emt NKT?(20 ey — NKT 4 - -

(2J+1) e—0rJ(J+1)/T

qrot(T)

@ Jmax = (575—)1/2 1/2 ~ (7)1/2

@ If the nuclei have integer spin they are Bosons and the molecular
wavefunction must be symmetric with respect to interchange of the
two nuclei.

@ If the nuclei have half odd integer spin they are Fermions and the
molecular wavefunction must be antisymmetric with respect to
interchange of the two nuclei.

@ For a homonuclear diatomic molecule symmetry requirement most be
considered.

o If temperature is fairly large
qrot(T) = rg,{l =+ %(6%) + %(9*75)2 + %(975)3 +oee }
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Diatomic molecule: rotational partition function

81/1

Symmetry number o is the number of indistinguishable orientations of
a molecule.

H /
Exclusive of the nuclear part ¥} ,.; = Vtrans¥rotvibWelec

Consider the interchange of nuclei as first inverting the molecule
followed by an inversion of only electrons.

Translational partition function is unaffected by inversion.
Vibrational partition function is unaffected by inversion.

Most molecules electronic ground state is Zz,r which is symmetric
under both inverting the molecule and an inversion of only electrons.

Thus rotational wavefunction controls the symmetry of ¢} .,

Rigid rotor wavefunctions are the same functions as the angular
functions of the hydrogen atom.



Spherical harmonics

o /=0m=0— Y07o:

Var
Yp, = (Z2)2sinf cos ¢
o /=1,m=1,0-1-<Yp =(2)/?sinfsing
Yp, = (%)1/2 cos 6

(Y, = (12)?(3cos? 6 — 1)
Ya, = (£2)Y2(sin 6 cos 0 cos ¢)

° /=2,m=210-1,-2—1¢Ya, = (3 )1/2(S|n9cos¢95|n ®)

Ya, = ( )1/2(S|n95|n 2¢)

= (1165,r)1/2(sm0c052¢)
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Diatomic molecule: rotational partition function

o Effect of inversion on the orientation of the diatomic molecule is
0,0) > (m— 0,0+ m)

e 1} .., remains unchanged for even J and changes sign for odd J.

@ Symmetric spin wavefunctions for spin-1/2 nuclei are aer, 5 and
272(a + fa)

@ Antisymmetric spin wavefunctions for spin-1/2 nuclei is
2712(af ~ fo)

@ Odd J levels have a statistical weight of 3 compared to a statistical
weight of 1 for even J levels.

@ Nuclei of spin | has 2I+1 spin states with eigenfunctions
1,02, , 02)41

@ There are (2/ + 1)? nuclear wavefunctions.

@ (2/ 4 1)/ antisymmetric spin functions are
ai(1)ej(2) — i(2)aj(1), 1 <i,j<2/+1

e Remaining (2/ +1)2 — (2/ + 1)/ = (2] + 1)(/ + 1) are symmetric
nuclear functions.
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Diatomic molecule: rotational partition function

For X1 states and integral spin

(2141)1 antisymmetric nuclear spin functions couple with odd J
(214-1)(14+1) symmetric nuclear spin functions couple with even J
For Z; states and half integral spin

(2141)1 antisymmetric nuclear spin functions couple with even J
(21+1)(141) symmetric nuclear spin functions couple with odd J

These results apply to polyatomic linear molecules as well.

®© 6 6 6 o6 o o o

Homonuclear diatomic molecule with integral spin:

Grot nuci(T) = (| +1)(21 + 1) 37 ¢,en(2J +1)eOIIDT (21 +
1) 3 gaa(2d + 1)@ UFD/T

@ Homonuclear diatomic molecule with half integer spin:

Grot,nuct(T) =121 +1) 3 o en (2 + 1)e™OUHD/T 4 (1 4 1)(21 +
1) 32 gaa(2d + 1)e= O UHD/T
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Diatomic molecule: rotational partition function

85/1

O, < T =Y qa(2d+ 1)e—e,J(J+1)/T ~
S even(2d + 1)e O T 17557 (24 4 1)eOIUHD/T ~
1/2 fow(zj + 1)ef@rJ(J+l)/TdJ — 25

2/4+1)°T
Qrot,nucl(T) = % = qrot(T)Qnucl where Qrot(T) = fgr and

Anucl = (2I + 1)2
Grot(T) & 87r2IkT ZJ 0(2J+ l)e—BBJ J+1) 0,<T

Spin isomers of hydrogen

r

Hydrogen with opposite nuclear spins, singlet hydrogen, is called
para-Hydrogen.

Hydrogen with parallel nuclear spins, triplet, is called ortho-Hydrogen.
The para form is more stable than the ortho form by 1.06 kJ/mol.

For Ha Gnuc,rot =
) even(2J + 1)@ JUAD/T L35~ (20 +1)e=OJUFD/T



Diatomic molecule: rotational partition function

o For H, Gnuc,rot = ZJ even(2J + l)eierJ(JJrl)/T +
o—1060J/molk/RT 3 S oaa(20+ 1)e=©J(+1)/T

@ The conversion between ortho and para hydrogen in the absence of a
catalyst (e.g., Fe'"" or activated charcoal) is very slow.

o Notho — o—1060J/molk/RT 3% oqg(2J+1)e” St/ T

—©,rJ(J+1)/T
Npara > even(2J+1)e=OrJU+1)/
w} N
3001 i o o
|l | \ equilibrium
o ‘ |
& - ’
;Q 200+ E |
g ST
E 150 . |
@ 3 2 {
5 =
5
9‘3 100) E J
k 5
§ equifibrium para é b ‘
sof- F j
o L = | i ] i i I
50 100 10 200 280 300 o L4
Temperature, . 100 200 300

Temperature, 'K,

86/1 Figure: Energy and heat capacity for spin isomers of hvdrogen taken from



Diatomic molecule: Thermodynamic functions

@ Predict the H, heat capacity at very low temperatures.
@ Try the same analysis on D.

® Eror = NKT[1— £ — E(@f)z +o]
-]

o Cyror = NK[1+ &(%)? +

® Sior = kT(259=t )y v + kiIn Gror = NK[1 — In(22) — &(S)2 + -]
@ Harmonic oscillator-rigid rotor approximation:

q(T) = (27erT)3/2 V87r21kT —th//2( e—ﬂhu)—lweleDe/kT
e Ing(T)=

3 In(27erT) FinV 4 In 8THT b (1 — e B 4 Inwey + De/kT

E hu/kT De
® NkT T 2 3+ 2kT t /i1 kT
C, . 2 hV/kT
° Nk = 2+(kT) (T
52 hy _
o 7 = In[ZMT|3/2 Vel 4 BT Te | ur— —in(1—e /KT 4Inwe
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Diatomic molecule: Thermodynamic functions

o p=—NkT(%2) — pV = NkT

0T
o “:(ng,V _kT(aan) —_kﬂ”% ? Mk(T) =
TMkT o kT ™ lkT "y D.
In[23<T 12 — In i85 — In 80h2 + o +In(l — e M/KT) — 2

@ Centrifugal distortion effects, anharmonic effects can be included.

@ X state has zero total angular momentum. In other cases electronic
and rotational angular momentum must be coupled. l.e., the
electronic and rotational partition functions do not separate.

@ At T > O, electronic and rotational partition functions separate.
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Classical statistical mechanics

o q — Z e_ﬁ(energy) — qclass ~ f “ e f e_BH(pvq)dpdq
@ Available (effective) number of states vs. available (effective) volume

of phase space.
@ For a monatomic ideal gas H= ﬁ(pﬁ + P}z, + p2). Thus

(P2+p2+p2)
Getass ~ [+ [ €7~ 20 dp.dgxdp,dq,dp.dq; =
V[[° e BP*/2mdp]3 = (2rmkT)3/2V
(27rz;kT)3/2v

o Compare with qeans(V, T) =
Ps

@ For a linear rigid rotor H = 2i(p9 + 57 9)

2
B Pe
@ Qrot ™~ ff; dpy fix;o dp f27r (ﬁfoﬂ dee_2’(p§+sin20) — 812 kT

T _ 8m2IkT
0,

e Compare with gro:(T) = TR

89/1



Classical statistical mechanics

. ) 2
@ For a harmonic oscillator H = g—u + §x2

2
o quin ~ [, dp [, dxe PG = KT where 1 = L (£)1/2
@ Compare with the high temperature limit
qvib(T) — e—,Bhy/2 fOOO e Bhvngn — %
e Conjecture: g = #f~-‘fe_/3”|'lj:1dpjdqj
@ A weighted area of h in phase space is equivalent to one weighted
quantum mechanical state.

@ This seem to be intimately related to space-momentum uncertainty
relation, AxAp > % And to the Wigner transform

Aw(Q, P) = /dZ(Q — §|A|Q+ §>eiPZ/h
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Classical statistical mechanics

0 Q== mNfs [+ [ e M dpjydg;

Q = g [ -+ [ € P>, dpidg; =

Mme feBHn ﬁbdm

e Conjecture: Q = Wf---fe*ﬁH(P’q)dpdq

@ For monatomic gas
H(p, q) = 25 > jeq (P + PG+ P3) + Ula, v, 21, X, yws 2n)

@ Thus Quas = N,(zﬁka)3N/2ZN where the classical configuration
integral Zy = [|, e~ Ubay—zn)/kT dxy - - dzpy

@ For a molecule H = Hejass + Hquant — @ = QclassQquant Where
Gelass = 7= [ e Heass PO/ KT dpy dgy - - - dpsdqs

o For entire system H = Hejass + Hquant = Q@ = Qclass Qquant =
Qquant f einaSS(p q)/depcIassdqc/ass
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Phase space and the Liouville equation

@ Each system is represented by a phase point in the phase space and a
microcanonical ensemble is represented by a cloud of phase points in
the phase space.

@ Each phase point evolves according to

. oH . OH : _
qj:Tmand pf:_TCIj J:1727"'7/_SN

@ The postulate of equal a priori probabilities states that the density of
points is uniform over the constant energy hyper surface.

@ Number of systems that have phase point in dpdq about the point p,
q at time t is f(p,q,t)dpdq. [--- [ f(p,q,t)dpdg = A

@ Ensemble average of a function of coordinate and momenta,
¢=2% [ [o(p.q)f(p,q,t)dpdg

@ Gibbs postulate equates ¢ with the corresponding thermodynamic
function.
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Phase space and the Liouville equation

@ The number of phase points inside the volume element
6p1---0pidqy---0q; about the point p1,--- ,p;, g1, ,qis
SN = f(p1,--- PG, -, q1, t)0pL---0pidgy--- 6q,

@ Remember divergence: The flow going through a differential volume

Z

‘//////////TQ i
per unit time is: x
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Phase space and the Liouville equation

@ Consider a hyper rectangular differential volume dpy ---dp;dqy ---dqy
around the pOint P15 P1,qL, 541

@ Number of phase points entering through the face perpendicular to
the g1 axis and located at g1 is fg10p1---dpjdga---dq
@ The number passing through the opposite face is
f(p1,--- P, qu+0q1,---,q, t)gi(pr, -+, pr, g1+
5q1, G2, . q)op1 - 6pidga -+ Og =
(f + %5671)(5/1 + g

0q1)0py- -+ 6pi0q2 -+ 6y

@ net flow in the g; direction —(%éyl + f%)épl < OpiogL--0qp e
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Phase space and the Liouville equation

@ Similarly, net flow in the p; direction is

—(FEpr+ F5)opr -+ Opidaqy -+ gy + - -

@ Thus total flow of phase points is

94 ap d(5N
— S (BEe+ F5l + BLpy+ F52)0p -+ dpidaqy - - 5y = LG
04 | 0B _
° SL 432 =0
of _ I (Of - | Of - I (Of OH _ Of OH
® 5t =~ j:1(aqjqj+a*pjpj) - 1(37,1071—37137,1)

@ In terms of Poisson bracket, {A, B} = 2}:1(3—32—5 - g—gg—é),
of
ot T {f,H} =0

@ In terms of the Liouville operator, at fLilf =0.

e Equivalent to Hamiltonian equations of motion.

o SN LV f+ SN F V=0
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Phase space and the Liouville equation

. . - . - df _
@ Liouville equation is equivalent to & = 0.

@ Principle of the conservation of density in phase space: density in the
neighborhood of any moving phase point is a constant along the
trajectory of that point. Implies that f(p, g;t) = f(po, qo; to)-

o p=p(po,qo; t) and g = q(po, qo; t).

@ The existence and uniqueness theorem implies that no two trajectories
can pass through the same point, i.e. they never cross.

@ Conservation of extension in phase space: dpdqg = dppdqo or Jacobian
of (p.q) to (po, qo) is unity.

@ In general if we are given two sets of momenta and their conjugate
coordinate dqidqy - - - dq3pdpy - - - dp3p = dQq - - - dQ3,dPy - - - dP3,
e.g., dpxdp,dp,dxdydz = dp.dpgdpydrdfid¢. This is a reason for
using momenta and not velocities for describing classical systems.
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Equipartition of energy

[+ [ He=PHdqy---dgsdps - dps
S+ [e=PHdqy---dgsdps ---dps
(p17p27"' 7qS) =

m 2 n 2
Ej:l ajp_, + zj:l quj + H(pm+17 5 Ps;dn+1, 00, qS)
g = f f(zjm:l aijQ-i-ZJ'-]:l quj?“rH(Perl:'“ »Ps,dn+1,"" 7q5)e_Bqu1"'dqsdpl"'dps o

o [ [ e=PHdgy--dgsdp:---dps -
Sy [ [ ple PHdai--dgsdpi--dps+327_; by [+ [ q?ePHdau---dgsdpi---dps n

T [ e PHdqydqsdps-—dps
[ H(pm+1,+ P51, ,as)e” P day---dgsdpy---dps
[~ [e=Pfdqy-dqsdp1-—dps

Principle of the equipartition of energy state that each of the quadratic
terms contribute kT /2 to the energy and k/2 to the heat capacity.

Y
Il

I

e E.g., for monatomic ideal gas
2 2 2
H=BIPrP: 3T/ C, =3k/2

2m

@ aj and b; can be functions of the variables not involved in the
quadratic terms, i.e., Pm41, " 5 Ps; Gn+1s°* » Gs-
2
o E.g., for a linear rigid rotor H = ;(p3 + —%;), E=kT, C,=k.
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Equipartition of energy
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Equipartition is a classical concept thus a small Ae/kT between levels
is required for its validity.

. . 2000/
For a diatomic molecule C, = 3 Nk + %

The most general form of the equipartition theorem states that under
suitable assumptions, for a physical system with Hamiltonian energy
function H and degrees of freedom x,, the following equipartition
formula holds in thermal equilibrium for all indices m and n:

(xm38) = dmaks T

The general equipartition theorem is an extension of the virial
theorem, which states that

(Seandit) = (Lumeit) = ( Dumel) = ~(Luat)



Ideal polyatomic gas
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Start by applying the adiabatic or Born-Oppenheimer approximation
thus separating electronic and nuclear degrees of freedom.

Then Huyue = Hirans + Hint  €nuc = €trans + €int  Gnuc = QtransGint
__ [20MkT13/2
where Qtrans = [TFT] / 4

N N
Q(N, V, T) — Qtraﬁ!qint
3n coordinates are required to specify the location of all atoms. 3
coordinates are to specify the center of mass while 2 or 3 (for linear or
non-linear molecule) are needed to specify its orientation. The
remaining 3n -5 or 3n-6 internal coordinates are needed for specifying
the relative position of the nuclei.

Use a rigid rotor-harmonic oscillator approximation to write
(?(IV7 V, T) — (qt'3"5qfth\,/(;)!qelecqnucl)N

Consider all atoms separated in their ground electronic state as the
zero of energy




Vibrational partition function
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Potential energy of the molecule is a function of &« = 3n—6 (3n — 5)
relative coordinate. At equilibrium configuration its gradient is zero.

U(7) = V(%) + Sm1 301 = 1) (g 1y = o) +

are elements of a matrix called Hessian which at the point ry

22U
or;or;
equals k;;.

If the Hessian is positive definite at x, then U attains an isolated local
minimum at x. If the Hessian is negative definite at x, then U attains
an isolated local maximum at x. If the Hessian has both positive and

negative eigenvalues then x is a saddle point for U. Otherwise the test
is inconclusive.

Assuming molecular vibrations to be small we truncate this expansion
at the third term

(F) ZI,_/ 172 ( r;o)(l'j - rJO)

The problem is o coupled harmonic oscillators.



Vibrational partition function

@ To practically deal with this problem assume all molecular motions as

X1
vibrations and write Mdt2X = —KX where X = : , M=
X3n
m --- 0 ki1 - kign
o . 0 |.K= : L
0 - mz, kani -+ kK3n3n
@ To solve this equation, we put it into complex form: j—;Z = _-M1Kz
o Try solutions of the form ZU) = AU)e iwt)e
e Yields eigenvalue equation M~1KAU) = (wU))zAU).
° I\/I_1/2KM—1/2(/\/11/2AU)) - (w(j))2(M1/2A(j))
@ A real symmetric 3n x 3n matrix has 3n real eigenvalues and

correspondingly 3n real orthogonal eigenvectors.
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Vibrational partition function

Thus there are 3n eigenmodes characterized by eigenfrequency wt)
and eigenvector MY/2AU), where (A(K))T MAU) = §,;.

This is the origin of mass weighted coordinate in computational
chemistry.

@ Each molecular position can be described as Qle/zAU)
@ Coordinate corresponding to the set of smallest frequencies represent

102/1

center of mass motion while the next set of small frequencies
represent rotational motion.

2 o2 k:
Hyip = — Z;‘l:l %aaiqz + Z}Izl 7JQ12
e=>%1(n+1/2)hy; nj=0,1,2,---, where v; = 2 (k;)/?

] ™
—0,:/2T hu;

L= e =2

Quib = njzl(l_e—ew-/T)' where ©,; = 7

©,;/T

(e} er/' B
Evip = Nk} 1(©u;/2 + u,f—iew»/r))

eu' —@V-/T
Cvvib = Nk 354 [( Tj)zm]




Rotational partition function

«'lForlinearmoleculesQ:J({;;igl)h2 wy=2J+1 J=0,12,---

where moment of inertia | = Z;:l mjdj2

8m2IkT T
@ (Jrot = oh2  — 70,

L = Z m;[(y ycm +(zj — Zcm)z]
ly = Z m;[(x; Xcm +(z — Zcm)z]
Iz = Z m;[(x; Xcm + (v — }/cm)2]

e Also I, = ch'yzl mj[(Xj - Xcm)(zj - Zcm)]
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Rotational partition function
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There is a particular set of coordinates called the principal axes
passing through the center of mass of the body such that the inertia
matrix become diagonal.

Moments of inertia about these axes Ixx, lyy, |7z are called the
principal moments of inertia. They are customarily denoted by

Ia, Is, Ic

principal axes often coincide with molecular axis of symmetry.
Moments of inertia about principal axes are often found
experimentally and tabulated in terms of rotational constants as

A_ _h 5_ _h ~_ _h ; -1

A—W B—BTIBC Cfmlnunltsofcm .
Ipo = Ig = Ic: Spherical top, e.g., CH4, CCly.

Ip = Ig # Ic: Symmetric top, e.g., CH3Cl, NHs;.

Ip # Ig # Ic: Asymmetric top, e.g., HoO, NOs.



Rotational partition function
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For a spherical top: €; = J(J%,l)# wy=J+1)? J=0,1,2,---

Grot = %IOOO(QJ + 1)2e—J(J+1)h2/2ldeJ

Symmetry number o is the number of ways a molecule can be rotated
into itself. For H,O, o = 2, for NH3 ¢ = 3, for CH4 o = 12, for

G Hy 0 = 4 and for CgHg 0 = 12.

Symmetry number avoids over counting indistinguishable
configurations in phase space.

o is the number of pure rotational elements in the point group of a
nonlinear molecule.

1 (00 4 2 —J2R2/2IKT 1/2 812 IkT \3/2
Grot = 5 Jo 42e AT d) = T (BT

Any molecule with an n > 3-fold axis of symmetry is at least a
symmetric top.



Rotational partition function

e For a symmetric top €5 = J(JH) + K2(,C )} J=
0,1,2,”-;K:—J,—J+1 J 1,J wJK—2J+1.

@ J is a measure of total rotational angular momentum of the molecule.

@ K is component of rotational angular momentum along the axes C of
symmetric top.

® Grot = 2X7°4(2J + 1)e/UtDaay)  e—(ac—onk? o — 25;;?

_ w2 8r2UakT \( 872 IckT \1/2
@ Jrot = T( h2 )( h? ) /

(ps— PwCOSH) Py
+ 2/A5|n 0 + 2lc

@ Asymmetric top is the most common type of molecule.

@ For a symmetric top: K = 2,A

@ Hamiltonian for an asymmetric top
H= 2IAsm20[(p¢ — py cos ) cosyp — pgsin Osinp]? + m[(pﬁb -

py cos 0) sin 1) + pgsin 6 cos 1] + ﬁpfb
e 0<<h<m 0<op <27 0 < < 27 are Euler angles.
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Polyatomic thermodynamic functions

@ For asymmetric top

1/2  8r2 I, kT 8m2IgkT 8m2IckT wl/2 73
Groe = = (ST (BT 2 (OT 1 2 = 2 (g g Y1
1/2 303
® Erot = 3NKT  Cy ot = 3Nk Syt = Nkln[%(—@@s@c)l/zl
@ Linear polyatomic molecule:
U-/2T
q= (2#24kT)3/2VJgr{HJ 1ﬁ}weleDe/kT
A _

® TNKkT T

|n[(27erT)3/2 Ve]_Hn(Uer) Za - 2_’_ +|n( @”j/T)]-i‘,%e--f—lnwel

E V/T D

° mir=3t+3+IL (5% Racrrary 2 o

Oy

o S=342470,(0,/T)—5

(1—evi/T)2
S _
® Wk > 5/2 T
In[(z’Th%)yzVET]—Hn(UT@e )+ZO‘ 1[ ;’f/T 1—|n(1—e_@vJ/T)]+|nwel
o pV=NKT
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Polyatomic thermodynamic functions

@ For nonlinear polyatomic molecules:
_ (27MKT\3/2\/x2( T3 \1)2 —Owi/2T De/kT
q = (EMT /2y w1 yiang € O oD

©4050¢ _euj/T
| 2anT 3/2 Ve In ml/2 73 1/2y _ya S
b NkT'_ nK ) v+ In(F- (@A@B@c) ) j:l[zT
In(1 — VJ/T)] + £+ Inwer
E _ vi/ T De
o mir=3t3+ j:1[2T + e@ujJ/T_l] ~ kT
G)W-
C _ 3.3 2 T
° mr=3+t3+X(0,/T) (I_ZOIJ/T)z
S 5/2 1/2,.3/2 3
° o = |n[(27rl\/lkT)3/2 VeN ]+|n(7r Ue (@Agg@c)lp)—’_
| o "J//TTI In(1 — e ©%/T)] + Inwes
° prNkT

o Dy = De— X;ihy;
@ Residual entropy for CO and CH3D.
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Hindered rotation

(]
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Rotation about a single bond.
U = 3 Vo(1 — cos3¢)

2
— a5 2% + $Vo(1 — cos 30)y = ey

I, is effective moment of inertia.

At extremes of temperature this motion is a vibration or a rotation.

Numerically solving Schrodinger equation for different values of Vj,
one can tabulate € as a function of Vy/kT.

Partition function and thus thermodynamic properties can be derived
from tables of . Comparing calculated and experimental values of
thermodynamic functions one can deduce V.



Chemical equilibrium

o V3 A(g) +vgB(g) = v.C(g) + vpD(g).
Nag—Na _ Ng,—Ng _ Nc—Ng,  Np—Np,

o )\ == o = i == o - Y

A B C D
o v.C(g)+vpD(g) +vaA(g) +veB(g) =0
[*] de = de)\

o dA=—-5dT — pdV + ZJ- pjdN;. At constant volume and
temperature dA = ZJ- pidN; = (ZJ pivi)dA.
o At equilibrium
(%‘)T,V =0=)_;pujvj = Vepic + VDD + Vapia + VB LB
® Q(Na,Ng,Nc,Np,V,T) =
Qa(Na. V, T)Qg(Ng, V, T)Qc(Nc. V, T)Qp(Np, V, T) =
qa(V,T)Na qB(V,7I')’VB CIC(VJI—)NC ap(Vv,T)"p

Nl Ng! NC! Np!
L 0lnQ _ dln Q; _
o i =—kT(GuINv,T = —kT (G INv,T =
dIn(ql/N;1)

—kT( ON; )Nj;£i7V7T = —kTIn qi%’T)
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Chemical equilibrium

@ Derive the equilibrium constant expression.

vc \vYD vc YD
o Mo Np _ d¢ 9p
NAAN B qAAqBB

V)¥ V)Y
» AT~ 52 = R

vc VD
® pj = pjkT thus KP(T) = I;EA/Ing = (kT)retvomra=ve K (T)

o E.g., Association of alkali metal vapor,
2Na(g) = Nao(g) Kp(T) = jamse — (KT) =M

Pmonomer (qNa/V)
° qNa(Ta V) = (27rmNakT)3/2 qulec(T)
2 2 KT 2 —Bhv /2
CINaz(T V) _ ( 7rml/1vQ )3/2V87r2lg<T 1e W De/kT _

(2”’"2/;2”)3/2\/%(1 e fhr)=1gDo/kT

dNa 7 Nay 9
o v ! v —f
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Chemical equilibrium

@ Isotopic exchange reaction, Hr + D>, = 2HD. Born-Oppenheimer
approximation implies that H», D>, HD have the same internuclear
potential, k and Dk..

2 2 2
P P q
° K(T)= KP(T) = Ke(T) = pHHPDD - PHHPDD - qHH(ll)D -
»PD; 2P > 9D,
2rmypkT T Ou,Hp/2T
( HD )3( )2( i 7ey HD/T)Q 2De/kT B
2mmpy kT 2mmp, kT UHQ uDQ/2T -
( 22 )3/2( h22 )3/2(4(9’ H2 oS )( e VHZ/T)( o5, /T)ezDe/kT
T T
mi,  40,1,0,p, (1—e OvHs/ )(1—e v,/ )e—(2e,,1HD—®,,,H2—@,,,DQ)/2T
(muymp, )32 ©7 (1—e OvHD/TY:
OvHp _ VHD HHy _ (3\1/2
o G2 = U = ([2)1/2. Thus O,.1p = (§) 120, p,.

e For this reaction K(T) = 4(1.06)exp=2-L.
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Chemical equilibrium

For diatomic isotopic exchange reactions like Ny +15 Np = 214 N1 N

K(T)=4(1+ 8%422) Aze"”vw’b/”"”zﬂ where A is the mass difference

between isotopes and M is mass of the heavier isotope

PCH3DPHBr __ 9CH3DAHBr

o CH. DBr = CH3D + HBr K(T)==—/"2 = =3 =

CHa + CHsD + (T) PCHy PDBr qcH, 90Br

1/2
OCH, O DBr (MCH3DMHBr )3/2 I, A1BIC) Cris b Guib, cHy D Gvib, HEr
0cHyDOHBr © Mcr, Mpg, Ipsr (/A/B/C)IC/: Quib, CHy Guib,DBr
CH3D

o Jvib,CH3DQuib HBr B 2okt @yj @D,“Jgr]

Quib, CHy Qvib,DBr P J 2 T

O CHy O DBy 12x1
o = e

O CH3 DO HBr 3x1 4
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Chemical equilibrium

@ Teller—Redlich product rule for isotopically substituted compounds:
/ / / o ! .
(M)3/2L =nn_ 1(%)3/2I'I3” 5V—f for linear molecules and

M’ \3/2 UAIBIE) > 3/2[3n—6Yf
) ey = i (5 e, u,-

@ Diatomic molecules: H> + b = 2HI

_ (am/V? a9y
K(T) = (any / V) (an,v) — qH2HtIl/2 -

My@a=e ®»R/Ty (2Df~D;?-DP)

exp RT

( My )3/2(46,7,.,2@,,,2)(17(9 Ovta

2 e T
M, Mi, S (1—e v/ Ty

Compare with d(In K) = =58 d(1)
Polyatomic molecules:

| . qH. O/V
Hy + 502 = H, 0 Kp(T) = (kT)l/?(quV)(CIOz/V)l/2

° qH2 _ (27‘("7;1221(7—)3/2(2@:’-/2 )(1 _ e— U,HQ/T)_leDO,HQ/RT
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Chemical equilibrium
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90, _ (27””02“—)3/2( T )(1— e_eu,02/T)_13eD0,02/RT

v h2 2@,,02
dH,0 27rmH20kT 3/2 71/2 T3 3 .
v ( h? ) o (@A,HQO@B,HQO@C,HZO) j:1(1

e_euj,HzO/T)_]- ePo.H0/RT

Restricted internal rotation: Ethylene-Ethane equilibrium

G Hy + Hy 2 Gy Hg, one should find the value of V

For the equilibrium 3 vju; = 0 substitute (T, p) = po(T) + kT Inp
to get InK, = —%

p=—kTIn(L) = —kTIn[(L)F] = —kT In[(L)kT] + kT Inp

11o(T) = —kT In[({5)kT] depends on the unit of pressure.

CI(V, T) = qtrans(\/> T)qrot(T)qvib(T)qelec(T)



Chemical equilibrium

116/1

Zero of energy conventions enters in calculation of
qelec( ) = wele_eel/kT + WeZE_eeZ/kT + -

De/kT(w 1 +weze_A€12/kT) _ eDe/kqulec(T)
C/(Va T) = qtrans(v> T)qrot(T)qwb( )qelec(T) eDe/KT =
Gtrans(V T)qrot( T){N;(1 — 6O/ T) "1} g0, (T)elPe1/2 2 M)/KT —
qfra”S(V7 T)qFOf(T)qeib(T)qglec(T)eDo/kT
g(V, T) = q°(V, T)ePo/kT = ¢0(V, T)eS/kT partition as the product
of an internal part ¢°(V, T) and a scaling factor accounting for the
arbitrary zero of energy

p—e€y= —kTIn[( )kT] + kT Inp

limy_op= 60

Convention: Energy of an element is zero at 0°K if it is in the physical
state characteristic of 25°C and 1 bar. For a molecule 68 represents
the energy of a molecule at 0°K relative to the elements, i.e., heat of
formation.



Chemical equilibrium

0

o GY— EQ = —RT In[(%)kT] where EJ is the standard free energy at
0°K.

e E)=H)=¢}

o (GO — Eg)/T varies slower with T compared to (G% — E?).

o —RInk, =28 4 A(SE)

H298T E0 )— (GZQST—EO )

° 5298 = (
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Hashemi
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Crystals, 11-1:11-3

Chemical Equilibrium
Crystals, 11-4:11-6

Quantum Statistics, 10-1:10-4
Quantum Statistics, 10-5:10-7
Simple theories of liquids
Polymers

Ideal systems in electric and mag-
netic fields

Imperfect gases

Distribution functions in
monatomic liquids
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23 Tir 3 pm

24 Tir 3:15 pm
24 Tir 4:30 pm



Table of physico-chemical constants

Quantity Symbol Value (SI units)

atomic mass constant my=1u 1.6605389 x 10~27 kg
Avogadro’s number Na, L 6.0221417 x 1023
Boltzmann constant k =R/Na 1.3806505 x 10~23JK !
Faraday constant F = Npe 96485.338 Cmol?

gas constant R 8.314472 JKmolt,

0.08205 L atm mol1K1,

8.20573 m3 atm mol 1K1
molar Planck constant Nah 3.99031 x 10710 J s mol!
electric constant (vacuum eg = 1/(upc®) 8.854187817 x 10712
permittivity) Fmt
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Table of physico-chemical constants

Quantity Symbol Value (SI units)
magnetic constant (vacuum g 12.56637061 x 10~" NA™
permeability)
Newtonian constant of gravitation G 6.67408x107 1! m3kgls2
Planck constant h 6.626070040 x 10734 Js
reduced Planck constant h 1.054571800 x 10734 Js
c
e

speed of light in vacuum 299792458 m/s
electronic charge 1.60219 x 1071°C
electron mass Me 9.10956 x 10731Kg
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