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Aim

Your most valuable asset is your learning ability.

This course is a practice in learning and specially improves your
deduction skills.

This course provides you with tools applicable in understanding many
natural, societal or financial phenomena.

End of semester objective: You should become able to calculate any
equilibrium thermodynamic property of a system given intermolecular
interactions in that system.
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Aim

Statistical mechanics is about deducing macroscopic properties of a
system from microscopic properties of the constituents of that same
system (molecules).

Equilibrium statistical mechanics aims at calculating equilibrium
properties of the system, e.g., energy, entropy and free energy.

Non-equilibrium statistical mechanics aims at calculating
non-equilibrium (transport) properties of the system, e.g., electrical
conduction, heat conduction, absorption spectra and viscosity.

This course will cover equilibrium statistical mechanics and leaves
non-equilibrium statistical mechanics to another course.
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Course structure

Midterm exam 16 Ordibehesht
11 AM

Ch. 1-4 35%

Final exam 12 Tir 3:30 pm Ch. 5 - 8 45%
Class presentation 15 Tir-22 Tir 20%

Raise your question and concern as it might be the question or
concern of your classmates.

Always remember that equations are the language of science but they
never do suffice.
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Topics

Preamble

Ensembles

Classical and quantum statistics

Monatomic and diatomic gases

Classical statistical mechanics

Polyatomic gases

Chemical equilibrium

Crystals
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Classical Mechanics-Newton formalism

In the absence of external forces, motion will continue with a constant
speed. ~F = m~a. If body A exert a force on body B, then B exerts the
same force in the opposite direction on A.

Two dimensional motion under coulombic attraction to a fixed center.
~F = −k~r/r3, break down into components.

mẍ = Fx = − Kx
(x2+y2)3/2 and mÿ = Fy = − Ky

(x2+y2)3/2

Use polar coordinate system x = r cos θ and y = r sin θ to derive.

mr2θ̇ = constant and mr̈ = − k
r2 + l2

mr3
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Classical Mechanics-Lagrangian

Joseph-Louis Lagrange (1736-1813) was an Italian enlightenment era
mathematician and astronomer with significant contributions to
analysis, number theory, and both classical and celestial mechanics.

Lagrange succeeded Euler as the director of mathematics at the
Prussian Academy of Sciences in Berlin, where he stayed for over
twenty years, producing volumes of work and winning several prizes of
the French Academy of Sciences.

Lagrange’s treatise on analytical mechanics offered the most
comprehensive treatment of classical mechanics since Newton and
formed a basis for the development of mathematical physics in the
nineteenth century.

Lagrangian, L ≡ K − U, where K =
∑

i
mi
2 ẋ2

i .

Lagrangian dynamics: d
dt

∂L
∂q̇j

= ∂L
∂qj

, the form of this equation is

invariant under the change of coordinates.

Two dimensional motion under coulombic attraction to a fixed center.
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Classical Mechanics-Hamiltonian

Sir William Rowan Hamilton (1805–1865) was an Irish mathematician,
astronomer, and mathematical physicist, who made important
contributions to classical mechanics, optics, and algebra.

His studies of mechanical and optical systems led him to discover new
mathematical concepts and techniques.

His reformulation of Newtonian mechanics, now called Hamiltonian
mechanics has proven central to the modern study of classical field
theories such as electromagnetism, and to the development of
quantum mechanics.

Momentum, pj = ∂L
∂q̇j

.

Hamiltonian, H =
∑

j pj q̇j − L.

Kinetic energy, K =
∑

j aj(q)q̇2
j . Total energy of the system,

H = K + V .

Hamilton’s equations of motion, ∂H
∂pj

= q̇j ,
∂H
∂qj

= −ṗj .
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Classical Mechanics-Liouvillian

Classical mechanics occurs in phase space which consists of one
dimension (axe) for each coordinate and each momenta.

The state of a system is determined by a single point in its phase
space.

Joseph Liouville (1809–1882) was a French mathematician.

Liouville became a member of the Constituting Assembly in 1848.
However, after his defeat in the legislative elections in 1849, he turned
away from politics.

Every property, f, of the system is a function of coordinates, r, and
momenta, p.

Dynamics: ∂f
∂t = {f ,H}

Poisson bracket: {f , g} =
∑

i (
∂f
∂qi

∂g
∂pi
− ∂f

∂pi
∂g
∂qi

)
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Quantum Mechanics-preamble

From the late 19th century people started to patch classical physics to
justify some observations including photoelectric effect and black body
radiation.

Quantum mechanics was formally formulated in the 1920s.

Quantum mechanics lives in the Hilbert space where there is no hole.
A hole in a space occurs when the limit of a series cannot be found in
that space.

A vector, C, is denoted by a ket |C 〉. Complex conjugate of such a
vector, C †, is denoted by a bra 〈C |.
bra * ket = bracket, 〈D|C 〉.
ket * bra = operator, |C 〉〈D|.
Operator acts on a vector to produce another vector

Every observable in quantum mechanics is represented by an operator.
If we require that the expectation value of an operator Â is real, then
Â must be a Hermitian operator.
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Quantum Mechanics-operators

Observable
Name

Observable
Symbol

Operator
Symbol

Operator Opera-
tion

Position r r̂ Multiply by r

Momentum p p̂ −i~
(
î ∂∂x + ĵ ∂∂y + k̂ ∂

∂z

)
Kinetic en-
ergy

T T̂ − ~2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
Potential
energy

V (r) V̂ (r) Multiply by V (r)

Total energy E Ĥ − ~2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
+

V (r)

Angular lx l̂x −i~
(
y ∂
∂z − z ∂

∂y

)
momentum ly l̂y −i~

(
z ∂
∂x − x ∂

∂z

)
lz l̂z −i~

(
x ∂
∂y − y ∂

∂x

)
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Quantum Mechanics

A density matrix is a matrix that describes the statistical state of a
system in quantum mechanics. The probability for any outcome of
any well-defined measurement upon a system can be calculated from
the density matrix for that system.

The extreme points in the set of density matrices are the pure states,
which can also be written as state vectors or wavefunctions. Density
matrices that are not pure states are mixed states.

Any mixed state can be represented as a convex combination of pure
states, and so density matrices are helpful for dealing with statistical
ensembles of different possible preparations of a quantum system, or
situations where a precise preparation is not known, as in quantum
statistical mechanics.

given a finite number of points x1, x2, . . . , xn in a real vector space, a
convex combination of these points is a point of the form
α1x1 + α2x2 + · · ·+ αnxn where the real numbers αi satisfy αi ≥ 0
and α1 + α2 + · · ·+ αn = 1.
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Quantum Mechanics

Density matrix, ρ̂, contains all information that can be known about a
system.

For a pure state, ρ̂ = |ψ〉〈ψ| in general ρ̂ =
∑

i ci |ψi 〉〈ψi |
Quantum Liouville equation determines quantum dynamics as
∂ρ̂(t)
∂t = i

~ [ρ̂(t), Ĥ].

[Â, B̂] = ÂB̂ − B̂Â.

{·, ·} ↔ i
~ [·, ·].

Formal solution: ρ̂(t) = e−i Ĥt/~ρ̂(0)e i Ĥt/~.

Every linear operator has a matrix representation.

Schrodinger equation for pure states: i~ ∂
∂t |ψ〉 = Ĥ|ψ〉

〈x |ψ〉 = ψ(x , t)

For a time independent Hamiltonian assume
ψ(x , t) = φ(x)θ(t), θ = e iEt/~, Ĥφ = Eφ.
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Quantum Mechanics

Wave function or state function, has the important property that
Ψ∗(r, t)Ψ(r, t)dτ is the probability that the particle lies in the volume
element dτ located at r at time t.

For the case of a single particle, the probability of finding it somewhere
is 1, we have the normalization condition

∫∞
−∞Ψ∗(r, t)Ψ(r, t)dτ = 1.

The wavefunction must also be single-valued, continuous, and finite.

In any measurement of the observable associated with operator Â, the
only values that will ever be observed are the eigenvalues a, which
satisfy the eigenvalue equation ÂΨ = aΨ.

The values of dynamical variables can be quantized (although it is still
possible to have a continuum of eigenvalues).

If the system is in an eigenstate of Â with eigenvalue a, then any
measurement of the quantity A will yield a.
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Quantum Mechanics

Although measurements must always yield an eigenvalue, the state
does not have to be an eigenstate of Â initially. An arbitrary state can
be expanded in the complete set of eigenvectors of Â ( ÂΨi = aiΨi )
as Ψ =

∑n
i ciΨi

We only know that the measurement of A will yield one of the values
ai , but we don’t know which one. However, we do know the
probability that eigenvalue ai will occur–it is the absolute value
squared of the coefficient, |ci |2.

After measurement of A on Ψ yields some eigenvalue ai , the
wavefunction immediately “collapses” into the corresponding
eigenstate Ψi (in the case that ai is degenerate, then Ψ is projected
onto the degenerate subspace of ai ). Thus, measurement affects the
state of the system.
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Stern-Gerlach experiment and Spin

Magnetic moment is a quantity that represents the magnetic strength
and orientation of a magnet.

Loops of electric current (such as electromagnets), permanent
magnets, elementary particles (such as electrons), various molecules,
and many astronomical objects poses magnetic dipole moment.

The magnetic dipole moment of an object is readily defined in terms
of the torque that object experiences in a given magnetic field.
τ = m× B

The direction of the magnetic moment points from the south to north
pole of the magnet (inside the magnet).

A magnetic moment in an externally produced magnetic field has a
potential energy U = −m · B.
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Stern-Gerlach experiment and Spin

m = −x̂∂Uint
∂Bx
− ŷ ∂Uint

∂By
− ẑ∂Uint

∂Bz
.

m = IS , m = NIS.

m = 1
2

∫∫∫
V
r × jdV ,

Since the particles creating the current (by rotating around the loop)
have charge and mass, both the magnetic moment and the angular
momentum increase with the rate of rotation. The ratio of the two is
called the gyromagnetic ratio or γ so that: m = γL

The Stern–Gerlach experiment demonstrated that the spatial
orientation of angular momentum is quantized.
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Stern-Gerlach experiment and Spin

Silver atoms were sent through a spatially varying magnetic field,
which deflected them before they struck a detector screen, such as a
glass slide.
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Stern-Gerlach experiment and Spin

Particles with non-zero magnetic moment are deflected, due to the
magnetic field gradient, from a straight path.

The screen reveals discrete points of accumulation, rather than a
continuous distribution, owing to their quantized spin.

Spin is an intrinsic angular momentum of subatomic particles that is
closely analogous to the angular momentum of a classically spinning
object, but that takes only certain quantized values.
Ŝzψz+ = ~

2ψz+ Ŝzψz− = −~
2ψz−

Only one component of a particle’s spin can be measured at one time,
meaning that the measurement of the spin along the z-axis destroys
information about a particle’s spin along the x and y axis.

Particles with half integral spin are called fermions while those with
integral spin are called bosons.
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Quantum Mechanics

Thus an atomic-scale system was shown to have intrinsically quantum
properties.

This experiment was decisive in convincing physicists of the reality of
angular-momentum quantization in all atomic-scale systems.

Particle in a box:

{
U(x) = 0 0 < x < a,

U(x) =∞ otherwise.
εn = h2

8ma2 n
2

If H = H1 + H2 then ψ = ψ1ψ2 and E = E1 + E2.
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Quantum Mechanics

Harmonic oscillator is one of the few quantum-mechanical systems for
which an exact, analytical solution is known:

U(x) = 1
2kx

2, Ĥ =
p̂2

2m
+

1

2
kx̂2 =

p̂2

2m
+

1

2
mω2x̂2 , εn =

(n + 1
2 )~ω, ω =

√
k/m.

ψn (x) = Nne
−β2x2/2Hn (βx) , n = 0, 1, 2, 3, ..., β =

√
m ω/},

H0 (y) = 1 H1 (y) = 2y
H2 (y) = 4y2 − 2

H3 (y) = 8y3 − 12y .

ψ0 = (απ )1/4e−y
2/2 ψ1 = (απ )1/4

√
2ye−y

2/2

Rigid rotor: H = −~2

2I

{
1

sin θ
∂
∂θ (sin θ ∂

∂θ ) + 1
sin2 θ

∂2

∂φ2

}
, εj =

J(J+1)~2

2I , ωj = 2j + 1.
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Particle in a box degeneracy

For a single particle in 2-D, E = h2

8ma2 (n2
x + n2

y ),

Convince yourself that the number of states with energy smaller than
ε is the area of circle of radius r2 = 8ma2

h2 ε in the first quadrant.
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Particle in a box degeneracy

In 3-D, number of states with energy between ε and ε+ ∆ε,
ω(ε,∆ε) = π

4 ( 8ma2

h2 )3/2ε0.5∆ε+ O((∆ε)2)

N non-interacting particle: E = h2

8ma2

∑3N
j=1 n

2
j .

We may define a coordinate system in an n-D space which is
analogous to the spherical coordinate system defined for 3-dimensional
Euclidean space, in which the coordinates consist of a radial
coordinate r, and n-1 angular coordinates φ1, φ2, · · · , φn−1, where the
angles φ1, φ2, · · · , φn−2 range over [0, π] radians and φn−1 ranges over
[0, 2π) radians.

x1 = r cosφ1, x2 = r sinφ1 cosφ2, x3 =
r sinφ1 sinφ2 cosφ3, · · · , xn = r sinφ1 · · · sinφn−1.

Vn =
∫
Sphere dτ =

∫ a
0 hrdr

∫ π
0 h1dφ1 · · ·

∫ 2π
0 hn−1dφn−1 =∫ a

0 Snr
n−1dr .∫

angles dx1 · · · dxn = rn−1Sndr
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Particle in a box degeneracy

In =
∫∞
−∞ · · ·

∫∞
−∞ e−(x2

1 +x2
2 +···+x2

n )dx1 · · · dxn = (
∫∞
−∞ e−x

2
dx)n =

πn/2.

In =
∫∞

0 e−r
2
rn−1Sndr = SnΓ(n/2)/2.

Γ(x) =
∫∞

0 e−ttx−1dt, show that Γ(n + 1) = n!, show that

Γ(n + 1
2 ) = (2n)!

22nn!

√
π.

Vn = πn/2

Γ(n/2+1)a
n

ω(E ,∆E ) = 1
Γ(n+1)Γ(3n/2) ( 2πma2

h2 )3n/2E 3n/2−1∆E

Partitionable Hamiltonian. H = H1 + H2 + · · · , ψ = ψ1ψ2 · · ·
Parity operator.
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Thermodynamics

Universe: '

&

$

%

'
&

$
%

System Environment

Zeroth law of thermodynamics, first law of thermodynamics, Second
law of thermodynamics.

State functions vs. path functions

dU = dq + dw = TdS − pdV U = U(S ,V )

T = (∂U∂S )V , p = −( ∂U∂V )S .

26/1



Thermodynamics

Legendre transformation: F = F (x), s = F−G
x−0 G (s) = F − sx .

Generally, G (s) = F −
∑

j sjxj .

U(S ,V ), H(S , p) =?, A(T ,V ) = U − (∂U∂S )VS =
U − TS , G (T , p) =?

A thermodynamic potential is a scalar quantity used to represent the
thermodynamic state of a system.
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Thermodynamics

The concept of thermodynamic potentials was introduced by Pierre
Duhem in 1886. Josiah Willard Gibbs in his papers used the term
fundamental functions.

Internal energy U is the energy of configuration of a given system of
conservative forces and only has meaning with respect to a defined set
of references.

Expressions for all other thermodynamic energy potentials are
derivable via Legendre transforms from an expression for U.

For an open quantum system dU = TdS − pdV + µdn where
µ = (∂U∂n )S ,V .

Grand potential or Landau free energy is defined by

ΦG (T ,V , µ)
def
= Ω

def
= F − µN = U − TS − µN

Fundamental equation:
dΦG = dU − TdS − SdT − µdN − Ndµ = −PdV − SdT − Ndµ

When the system is in thermodynamic equilibrium, ΦG is a minimum.
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Thermodynamics

For homogeneous systems, one obtains Ω = −PV .

Internal energy (U) is the capacity to do work plus the capacity to
release heat.

Gibbs energy (G) is the capacity to do non-mechanical work.

Enthalpy (H) is the capacity to do non-mechanical work plus the
capacity to release heat.

Helmholtz energy (F) is the capacity to do mechanical plus
non-mechanical work.

∆U is the energy added to the system, ∆F is the total work done on
it, ∆G is the non-mechanical work done on it, and ∆H is the sum of
non-mechanical work done on the system and the heat given to it.

The principle of minimum energy follows from the first and second
laws of thermodynamics.

When the entropy S and ”external parameters” (e.g. volume) of a
closed system are held constant, the internal energy U decreases and
reaches a minimum value at equilibrium.
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Thermodynamics

The following three statements are directly derivable from this
principle.

When the temperature T and external parameters of a closed system
are held constant, the Helmholtz free energy F decreases and reaches
a minimum value at equilibrium.

When the pressure p and external parameters of a closed system are
held constant, the enthalpy H decreases and reaches a minimum value
at equilibrium.

When the temperature T, pressure p and external parameters of a
closed system are held constant, the Gibbs free energy G decreases
and reaches a minimum value at equilibrium.

The variables that are held constant in this process are termed the
natural variables of that potential
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Thermodynamics

If a thermodynamic potential can be determined as a function of its
natural variables, all of the thermodynamic properties of the system
can be found by taking partial derivatives of that potential with
respect to its natural variables and this is true for no other
combination of variables.
If there are D dimensions to the thermodynamic space, then there are
2D unique thermodynamic potentials.
U[µj ] = U − µjNj , F [µj ] = U − TS − µjNj , H[µj ] = U + pV − µjNj

and G [µj ] = U + pV − TS − µjNj .
Fundamental equations: dH = dA = dG =
If the system has more external variables than just the volume that
can change, the fundamental thermodynamic relation generalizes to:

dU = T dS −
∑
i

Xi dxi +
∑
j

µj dNj , Xi are the generalized forces

corresponding to the external variables xi .
Maxwell relations, e.g., using dA=-pdV-SdT to derive
( ∂S∂V )T = ( ∂p∂T )V .
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Thermodynamics

Extensive vs. intensive.

Fundamental relation can be written as, dU
dV = T ( dS

dV )− p, imposing
the constant temperature condition and using a Maxwell relation
yields ( ∂U∂V )N,T − T ( ∂p∂T )N,V = −p.

U=U(V,T), thus dU = [T ( ∂p∂T )V − p]dV + CV dT .

CV = ( ∂U∂T )V = T ( ∂S∂T )V and Cp = (∂H∂T )p = T ( ∂S∂T )p.

Thus, Cp − Cv = [p + ( ∂U∂V )T ](∂V∂T )p

Chemical potential,
µj = ( ∂U∂Nj

)S ,V ,... = ( ∂H∂Nj
)S ,p,... = ( ∂A∂Nj

)V ,T ,... = ( ∂G∂Nj
)p,T ,....

Homogeneous of degree n, f (λx1, · · · , λxN) = λnf (x1, · · · , xN)

Euler’s theorem: If f is a homogeneous function of degree n,
nf (x1, · · · , xN) = x1

∂f
∂x1

+ x2
∂f
∂x2

+ · · ·+ xN
∂f
∂xN

n(n − 1)f (x1, · · · , xN) =
∑N

i ,j=1 xixj(
∂2f
∂xi∂xj

)

G (T , p,Ni ) =
∑

j Nj(
∂G
∂Nj

)T ,p,··· =
∑

j Njµj
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Thermodynamics

Find expressions for other thermodynamic potentials.

Gibbs-Duhem equation:
∑

j Njdµj = 0

For a chemical reaction aA + bB � cC + dD, which can be
represented by

∑
j νjAj = 0, dG =

∑
j µjdNj = (

∑
j µjνj)dλ.

At equilibrium:
∑

j µjνj = 0

Phase equilibrium

µj = µ0
j + RT ln

pj
p0 = µ0

j + RT ln p′j

∆µ0 = −RT ln[
(P′c )νc (P′d )νd

(P′a)νa (P′b)νb ] = −RT lnKp
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Ensembles

An experimenter repeating an experiment under the same macroscopic
conditions is unable to control microscopic details, thus he might
expect a range of outcomes.
A large number of identical (on a macroscopic level) systems
constitute an ensemble.
An ensemble is a collection of systems sharing one or more
macroscopic characteristics but each being in a unique microstate.
The complete ensemble is specified by giving all systems or
microstates consistent with the common macroscopic characteristics
of the ensemble.
The system may be specified by N, V, E, or N, V, T, while the
ensemble has A identical systems.
There is an enormous number of microstates, O(10N), consistent with
the systems specifications.
System properties depend on the microstate of the system.
Time independent Schrodinger equation determines allowed energy
levels Ej and their corresponding degeneracies Ω(Ej).
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Canonical Ensemble: Definition

Ensemble average of the mechanical property B, B̄ = 1
A
∑A

i=1 Bi

where Bi =
∫
ψ∗i B̂ψidτ .

Ergodic hypothesis states that time average of a mechanical property
equals ensemble average of the same thermodynamic property.

Make a large collection of systems each having walls impermeable to
matter but heat conducting. Bring this collection in contact with a
heat bath of temperature T. After equilibration isolate the ensemble.

Each system is specified by N, V, T while the ensemble is specified by
AN, AV, and ε.

Solve Schrodinger equation for the system specified by N V. Specify
states E1,E2,E3, · · · such that Ei ≤ Ei+1. The number of systems
occupying each state, respectively, is a1, a2, a3, · · · . Set of occupation
numbers a1, a2, a3, · · · is called a distribution.

Energy time uncertainty relation: ∆E∆t ≥ ~
2

The principle of equal a priori probabilities.
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Canonical Ensemble: Averages

The number of ways the systems can take this distribution,
distribution multiplicity, is W (a1, a2, · · · ) = A!

Πiai !
where∑

i ai = A
∑

i aiEi = ε.

āj =
∑

a ajW (a)∑
a W (a)

Pj =
āj
A =

∑
a ajW (a)

A
∑

a W (a)

M̄ =
∑

j MjPj

What are unjustified assumptions in this treatment?
Noting that W (a) is a multinomial distribution, and letting

A →∞ Pj =
āj
A =

∑
a ajW (a)

A
∑

a W (a) =
a∗j W (a∗)

AW (a∗) =
a∗j
A

∂
∂aj

W (a)− α ∂
∂aj

(A−
∑

i ai )− β
∂
∂aj

(ε−
∑

i aiEi ) = 0
∂
∂aj

ln A!
Πiai !
− α ∂

∂aj
(A−

∑
i ai )− β

∂
∂aj

(ε−
∑

i aiEi ) = 0
∂
∂aj

[A lnA−A− Σi (ai ln ai − ai )] + α(
∑

i δij) + β(
∑

i δijEi ) = 0

ln a∗j + α + βEj = 0→ a∗j = e−α−βEj . Thus Pj =
a∗j
A = e−αe−βEj

A .

Using the normalization of probabilities Pj = e
−βEj∑
i e
−βEi

.
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Canonical Ensemble: Partition function

Canonical ensemble partition function, Q =
∑

i e
−βEi , is a bridge

between quantum mechanical energy levels and thermodynamic
functions.

Ē =
∑

j Ej
e
−βEj
Q = − (∂Q/∂β)N,V

Q = −(∂ lnQ
∂β )N,V

Adiabatic process, PV work only dEj = −pjdV , pj = −(
∂Ej

∂V )N

p̄ =
∑

j pjPj = −
∑

j (
∂Ej
∂V

)Ne
−βEj

Q = 1
βQ (∂Q∂V )N,β = 1

β (∂ lnQ
∂V )N,β

Ensemble postulate of Gibbs. E = Ē p = p̄

( ∂Ē∂V )β,N = (
∂(

Ej e
−βEj

Q
)

∂V )β,N = −p̄ + βEp − βĒ p̄

( ∂p̄∂β )N,v = − ∂
∂β

(
∂Ej
∂V

)Ne
−βEj

Q = Ē p̄ − Ep

( ∂Ē∂V )β,N + β( ∂p̄∂β )N,V = −p̄

( ∂E∂V )T ,N − T ( ∂p∂T )N,V = −p or ( ∂E∂V )T ,N + 1
T ( ∂p

∂(1/T ) )N,V = −p
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Canonical Ensemble: Value of β

β = 1
kT

To prove the universality of k, construct an ensemble composed of
systems A and B paired, with number of particles and volume, NA,VA

and NB ,VB , respectively.

Figure: A composite ensemble consisting of A and B systems.
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Canonical Ensemble: Value of β

The number of possible system distributions resulting in the
composite ensemble state ab, W (a, b) = A!

Πjaj !
B!

Πkbk !∑
j aj = A,

∑
j bj = B,

∑
j(ajEjA + bjEjB) = E

Pij = āi
A

b̄j
B =

∑
ab aiW (a,b)

A
∑

ab W (a,b)

∑
ab bjW (a,b)

B
∑

ab W (a,b)

Using maximum term method: Pij =
a∗i
A

b∗j
B

∂
∂al

lnW (a, b)− α1
∂
∂al

(A−
∑

j aj)− α2
∂
∂al

(B −
∑

j bj)− β
∂
∂al

(E −∑
j(ajEjA + bjEjB)) = 0 ∂

∂bl
lnW (a, b)− α1

∂
∂bl

(A−
∑

j aj)−
α2

∂
∂bl

(B −
∑

j bj)− β
∂
∂bl

(E −
∑

j(ajEjA + bjEjB)) = 0

Using the normalization condition Pij = e−βEiA
QA

e
−βEjB
QB

= PiAPjB

Thus two arbitrary systems in thermal contact have the same value of
β. Since β = 1

kT they must have the same value of k.

k can be determined for any system including an ideal gas.
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Canonical Ensemble: Value of β

If the external parameters of the system remain constant then the
interaction is termed a purely thermal interaction. It is the
distribution of the systems in the ensemble over the various
microstates which is modified.

Suppose that the system A is thermally insulated from its
environment. The system A is still capable of interacting with its
environment via its external parameters. This type of interaction is
termed mechanical interaction, and any change in the average energy
of the system is attributed to work done on it by its surroundings.

On a microscopic level, the energy of the system changes because the
energies of the individual microstates are functions of the external
parameters. Thus, if the external parameters are changed then, in
general, the energies of all of the systems in the ensemble are modified
(since each is in a specific microstate).

Consider f (β,E1,E2, · · · ) = lnQ,
df = ( ∂f∂β )Ej

dβ +
∑

k( ∂f
∂Ek

)β,Ei 6=k
dEk = −Ēdβ − β

∑
k PkdEk
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Canonical Ensemble: interpretation of work and heat

d(f + βĒ ) = β(dĒ −
∑

k PkdEk)

Molecular interpretation of reversible work is a change in the energy of
levels without an accompanying change in the population of levels.

Since dĒ =
∑

j EjdPj +
∑

j PjdEj = δqrev + δwrev

δqrev =
∑

j EjdPj∑
k PkdEk is the ensemble average of the reversible work done by the

system.

d(f + βĒ ) = βδqrev is derivative of a state function.

β is an integrating factor of δqrev .

According to the second law, integrating factor of δqrev is constant/T.
dS
k = d(f + βĒ ). Thus

S = Ē
T +k lnQ+constant = k ln

∑
j e
−Ej/kT + 1

T

∑
j Eje

−Ej/kT∑
j e
−Ej/kT

+constant
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Canonical Ensemble: Thermodynamic connection

Partition function in terms of levels:
Q(N,V ,T ) =

∑
E Ω(N,V ,E )e−E(N,V )/kT

By setting E0 = 0, limT→0 S = limT→0(k ln
∑

E Ω(N,V ,E )e−E/kT +
1
T

∑
E Ω(N,V ,E)Ee−E/kT∑
E Ω(N,V ,E)e−E/kT ) = k ln Ω(N,V ,E0) which is very small. Thus

S = Ē
T + k lnQ.

E = kT 2(∂ lnQ
∂T )N,V and p = kT (∂ lnQ

∂V )N,T

S = kT (∂ lnQ
∂T )N,V + k lnQ

A(N,V ,T ) = E − TS = −kT lnQ(N,V ,T )

To derive the second law

consider spontaneous process of going from state 1 to state 2 involves
removal of a constraint or barrier. Thus for an isolated system
Ω2(N,V ,E ) ≥ Ω1(N,V ,E ).
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Second law

E.g., expansion of an ideal gas where
Ω(E ,∆E ) = 1

Γ(N+1)Γ(3N/2) ( 2πM
h2 )3N/2E 3N/2−1VN∆E .

Or addition of a catalyst to a kinetically stable non-equilibrium
mixture.

Q2 − Q1 =
∑

E (Ω2(N,V ,E )− Ω1(N,V ,E ))e−E(N,V )/kT .

Thus, ∆A = −kT ln(Q2
Q1

) < 0 for an spontaneous process, at constant
volume and temperature.
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Grand Canonical Ensemble

Walls are heat conducting and permeable to the passage of molecules.
Each system is specified by V, T and µ.

For each value of N the system has energy states {ENj(V )}. aNj is the
number of systems in the ensemble with N particles and in energy
state j.

The number of ways to achieve any distribution,
W ({aNj}) = A!

ΠNΠjaNj !
.

PNj =
āNj
A =

∑
a aNjW ({aNj})
A

∑
a W ({aNj}) =

a∗NjW ({aNj})∗

AW ({aNj})∗

Recourse to the maximum term method, W(a) should be maximized
subject to constraints

∑
N

∑
j aNj = A,

∑
N

∑
j aNjENj = E and∑

N

∑
j aNjN = N .

a∗NJ = e−αe−βENj (V )e−γN

PNj(V , β, γ) =
a∗Nj
A = e

−βENj (V )
e−γN∑

N

∑
j e
−βENj (V )

e−γN

Ξ(V , β, γ) =
∑

N

∑
j e
−βENj (V )e−γN
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Grand Canonical Ensemble

Ē (V , β, γ) = 1
Ξ

∑
N

∑
j ENj(V )e−βENj (V )e−γN = −(∂ ln Ξ

∂β )V ,γ

p̄(V , β, γ) = 1
Ξ

∑
N

∑
j(−

∂ENj (V )
∂V )e−βENj (V )e−γN = 1

β (∂ ln Ξ
∂V )β,γ

N̄(V , β, γ) = 1
Ξ

∑
N

∑
j Ne

−βENj (V )e−γN = −(∂ ln Ξ
∂γ )β,V

Make the walls impermeable to molecules to derive a collection of
canonical ensembles. For all these ensembles β = 1

kT .

f (β, γ, {ENj(V )}) = ln Ξ = ln
∑

N

∑
j e
−βENj (V )e−γN

df = ( ∂f∂β )γ,{Ej}dβ + ( ∂f∂γ )β,{Ej}dγ +
∑

N

∑
j(

∂f
∂ENj

)β,γ,{ES 6=j}dENj

df = −Ēdβ − N̄dγ − β
∑

N

∑
j PNjdENj

Ensemble average reversible work is
∑

N

∑
j PNjdENj

Assuming only PV work df = −Ēdβ − N̄dγ + βp̄dV

d(f + βĒ + γN̄) = βdĒ + βp̄dV + γdN̄
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Grand Canonical Ensemble

d(f +βĒ+γN̄)
β = dĒ + p̄dV + γ

βdN̄

TdS = dE + pdV − µdN
γ = −µ

kT , S = Ē
T −

N̄µ
T + k ln Ξ

Grand canonical partition function
Ξ(V ,T , µ) =

∑
N

∑
j e
−ENj (V )/kT eµN/kT

Absolute activity, λ = eµ/kT .

The relative activity of a species i: ai = e
µi−µ

	
i

RT .

Ξ(V ,T , µ) =
∑∞

N=0 Q(N,V ,T )λN .

G = µN = E + pV − TS → S = E
T + pV

T −
Nµ
T .

By equating statistical and thermodynamic entropies:
pV = kT ln Ξ(V ,T , µ).

In cases where the constant N constraint make calculation of Q
awkward, one resorts to the calculation of Ξ.
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Isothermal-Isobaric Ensemble

Walls are flexible and heat permeable, while particles cannot pass
them (N,T,p).

Most chemical reactions are performed under these conditions.

W ({aVj}) = A!
ΠV ΠjaVj !

shall be maximized constrained by∑
V

∑
j aVj = A,

∑
V

∑
j aVjEVj = E and

∑
V

∑
j aVjV = V.

Every partition function can be constructed from Ω(N,V ,E )
multiplied by the appropriate exponential and summed over the
quantities which can pass through the walls of each system.

Isothermal-isobaric partition function
∆ =

∑
E

∑
v Ω(N,V ,E )e−E/kT e−pV /kT =∫

dV
V0

e−pV /kT
∑

E Ω(N,V ,E )e−E/kT =
∫

dV
V0

e−pV /kTQ(N,V ,T ).

PVj = e
−βEj−βPV

∆

G (N,T , p) = −kT ln ∆(N,T , p)

dG = −SdT + VdP + µdN
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Micro-canonical Ensemble

An isolated system, Ω(N,V ,E ).

The whole of a grand canonical ensemble is a microcanonical system.

SGC = k(βĒ + γN̄ + ln Ξ)

= k ln Ξ + k(
∑

N,j βEN,j
e
−βENj (V )

e−γN

Ξ +
∑

N,j γN
e
−βENj (V )

e−γN

Ξ )

= k ln Ξ + k
∑

N,j(βEN,j + γN) e
−βENj (V )

e−γN

Ξ

Using PNj(V , β, γ) =
a∗Nj
A = e

−βENj (V )
e−γN∑

N

∑
j e
−βENj (V )

e−γN

SGC = k ln Ξ− k
∑

N,j(ln a∗Nj + ln Ξ− lnA)
a∗Nj
A =

− k
A
∑

N,j a
∗
N,j ln a∗N,j + k lnA

SMC = AS = k lnW (a∗Nj)

48/1



Micro-canonical Ensemble

S = k ln Ω(N,V ,E ) for an spontaneous process
∆S = k ln(Ω2(N,V ,E )/Ω1(N,V ,E ))

Second law for a system at constant volume and energy.

For an ideal gas S = Nk ln[( 2πmkT
h2 )3/2 Ve5/2

N ]

Since dS = 1
T dE + p

T dV − µ
T dN we have p

T = ( ∂S∂V )N,E

pV=NkT, thus k = R/NA.
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Fluctuation Theory: Canonical ensemble

Deviation of a mechanical property from its mean is called fluctuation,
investigation of such deviations is called fluctuation theory.

In the thermodynamic limit the possibility of observing any value
other than the mean value is extremely remote.

All ensembles are equivalent for all practical purposes.

σ2
E = (E − Ē )2 = E 2 − Ē 2 =

∑
j E

2
j Pj − Ē 2∑

j E
2
j Pj = 1

Q

∑
j E

2
j e
−βEj = − 1

Q
∂
∂β

∑
j Eje

−βEj = − 1
Q

∂
∂β (ĒQ) =

−∂Ē
∂β − Ē ∂ lnQ

∂β = kT 2 ∂Ē
∂T + Ē 2

σ2
E = kT 2( ∂Ē∂T )N,V = kT 2Cv

σE
Ē

= (kT 2Cv )1/2

Ē

For an ideal gas σE
Ē

= O(N−1/2) thus Ē ≈ E ∗
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Fluctuation Theory: Canonical ensemble

P(E ) = cΩ(E )e−E/kT

(∂ lnP
∂E )E=E∗ = (∂ ln Ω

∂E )E=E∗ − β = 0

(∂
2 lnP
∂E2 ) = (∂

2 ln Ω
∂E2 ) at E = E ∗, (∂

2 ln Ω
∂E2 ) = ( ∂β

∂E∗ ) = −1
kT 2Cv

lnP(E ) = lnP(Ē )− (E−Ē)2

2kT 2Cv
+ · · ·

P(E ) = P(Ē ) exp [− (E−Ē)2

2kT 2Cv
]

σ2
p = p2 − p̄2

p2 =
∑

j p
2
j
e
−βEj
Q = 1

Q

∑
j(−

∂Ej

∂V )2e−βEj =

1
Q [ 1

β
∂
∂V

∑
j((
−∂Ej

∂V )e−βEj ) + 1
β

∑
j(
∂2Ej

∂V 2 )e−βEj ] =

kT
Q ( ∂

∂V (p̄Q)− (
∑

j(
∂pj
∂V )e−Ej/kT )) = kT ( ∂p̄∂V + p̄ ∂ lnQ

∂V − ∂p
∂V )

σ2
p = kT ( ∂p̄∂V −

∂p
∂V )

Calculate
σp
p̄ for an ideal gas?
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Fluctuation Theory: Grand canonical ensemble

σ2
N = N2 − N̄2 =

∑
N,j N

2PNj − N̄2∑
N,j N

2PNj = 1
Ξ

∑
N,j N

2e−βENj e−γN = −1
Ξ

∂
∂γ

∑
N,j Ne

−βENj e−γN =
−1
Ξ

∂
∂γ (N̄Ξ) = −∂N̄

∂γ − N̄ ∂ ln Ξ
∂γ = kT (∂N̄∂µ ) + N̄2

σ2
N = kT (∂N̄∂µ )

A is homogeneous of degree one, A(T , λV , λN) = λA(T ,V ,N)

According to Euler’s theorem, N( ∂A∂N ) + V ( ∂A∂V ) = A (1)

Further, N2( ∂
2A
∂N2 ) + 2NV ( ∂2A

∂N∂V ) + V 2( ∂
2A

∂V 2 ) = 0 (2)

(1) → NV ( ∂2A
∂N∂V ) + V 2( ∂

2A
∂V 2 ) = 0

(1) → N2( ∂
2A
∂N2 ) + NV ( ∂2A

∂N∂V ) = 0

N2( ∂
2A
∂N2 ) = V 2( ∂

2A
∂V 2 )

−V 2( ∂p∂V )T ,N = N2( ∂µ∂N )T ,V
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Fluctuation Theory: Grand canonical ensemble

( ∂µ
∂N̄

)V ,T = −V 2

N2 ( ∂p∂V )N,T . Thus σ2
N = N̄2kTκ

V .

Isothermal compressibility, κ = −1
V (∂V∂p )N,T

σN
N̄

= (kTκV )1/2

Typical fluctuations in statistical thermodynamics are O(N−1/2).
σρ
ρ̄ = σN

N̄
= (kTκV )1/2

P(N) = CQ(N,V ,T )eβµN

(∂ lnP
∂N )N=N∗ = (∂ lnQ

∂N )N=N∗ + βµ = 0

(∂
2 lnP
∂N2 )N=N∗ = (∂

2 lnQ
∂N2 )N=N∗ = −(∂βµ∂N )N=N∗ = − 1

kT (∂N̄/∂µ)V ,T

P(N) = P(N̄) exp[ −(N−N̄)2

2kT (∂N̄/∂µ)V ,T
]
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Equivalence of various ensembles

Q(N,V ,T ) =
∑

E Ω(N,V ,E )e−E/kT = Ω(N,V , Ē )e−Ē/kT .

A = −kT lnQ = Ē − kT ln Ω(N,V , Ē ). Thus S = k ln Ω(N,V , Ē ).

Ξ =
∑

N Q(N,V ,T )eβµN =
∑

E ,N Ω(N,V ,E )e−βEeβµN

Ξ = Q(N̄,V ,T )eβµN̄ = Ω(N̄,V , Ē )e−βĒeβµN̄

kT ln Ξ = kT lnQ + µN̄ = kT ln Ω− Ē + µN̄

kT ln Ξ = −A + G = TS − Ē + G = pV
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Ideal gas

Q(N,V ,T ) =
∑

α e
−Eα/kT =

∑
i ,j ,k,··· e

−(εai +εbj +εck+··· )/kT =∑
i e
−εai /kT

∑
j e
−εbj /kT

∑
k e
−εck/kT · · · = qaqbqc · · · where molecular

partition function q(V ,T ) =
∑

i e
−εi/kT

For N distinguishable identical particles Q(N,V ,T ) = [q(v ,T )]N ,
e.g., sites in a solid crystal are distinguishable.

Partitioning of the molecular Hamiltonian,
H = Htrans + Hrota + Hvibr + Helect , lead to the division of molecular
partition function. qmolecula = qtranslationalqrotationalqvibrationqelectronic

The unrestricted sum for partition function is not valid for fermions as
it allows repeated indices, i.e., more than one particle in the same
energy state.

The unrestricted sum for partition function is not valid for Bosons as
it over-counts states with repeated indices, i.e., states where more
than one particle is in the same energy state.
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Ideal gas

Number of quantum states with energy ≤ ε,
Φ(ε) = π

6 ( 8ma2ε
h2 )3/2 = π

6 ( 8mε
h2 )3/2V

If the number of available molecular states is much greater than the
number of molecules in the system, two molecules in the same state is
a rare event.

Thus the only problem with Q(N,V ,T ) = qN is indistinguishability of
molecules, partition function can be corrected as:
Q(N,V ,T ) = qN/N!.

Valid when Φ(ε)� N → π
6 ( 12mkT

h2 )3/2 � N
V

Boltzmann statistics or classical limit become a better approximation
by increasing mass or temperature or decreasing density.

E = kT 2(∂ lnQ
∂T )N,V = NkT 2(∂ ln q

∂T ) = N
∑

j εj
e
−εj/kT

q = N ε̄

ε̄ =
∑

j εj
e
−εj/kT

q

Probability of a molecule being in the j’th energy state πj = e
−εj/kT

q
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Ideal gas

For a non-interacting gas one can consider the container to be an
ensemble and each molecule to be a system.

Label each molecular state with 1, 2, 3, · · · such that εi ≤ εi+1.

Consider N as the total number of molecules and ni as the number of
molecules in the state i.

Derive probability of state occupation similar to the last section by
maximizing ways of distributing molecules over energy states
W ({nj}) = N!

Πini !
subject to

∑
i ni = N and

∑
i niεi = E .

πi = n̄i
N =

n∗i
N = e−εi/kT

q in the Boltzmann statistics.

Exact partition function for fermions is

Q(N,V ,T ) =
∑∗

i 6=j 6=k 6=··· e
−(εai +εbj +εck+··· )/kT where * denotes that

εi + εj + · · · = E .

For bosons Q(N,V ,T ) =
∑∗

i ,j ,k,··· e
−(εai +εbj +εck+··· )/kT where * also

denotes that any term with repeated indices is counted just once.
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Fermi-Dirac and Bose-Einstein statistics

Ej =
∑

k εknk and N =
∑

k nk .

Q(N,V ,T ) =
∑

j e
−βEj =

∑∗
{nk} e

−β
∑

i εini where * signifies∑
k nk = N.

Due to difficulty of performing this sum, we turn to the grand
canonical partition function:

Ξ(V ,T , µ) =
∑∞

N=0 e
βµNQ(N,V ,T ) =

∑∞
N=0 λ

N
∑∗
{nk} e

−β
∑

i εini =∑∞
N=0

∑∗
{nk} λ

∑
ni e−β

∑
j εjnj =

∑∞
N=0

∑∗
{nk}Π∞k=1(λe−βεk )nk =∑nmax

1
n1=0

∑nmax
2

n2=0 · · ·Π∞k=1(λe−βεk )nk

Ξ(V ,T , µ) =
∑nmax

1
n1=0(λe−βε1)n1

∑nmax
2

n2=0(λe−βε2)n2 · · · =

Π∞k=1

∑nmax
k

nk=0(λe−βεk )nk

ΞFD = Π∞k=1(1 + λe−βεk )

ΞBE = Π∞k=1(
∑∞

nk=0(λe−βεk )nk ) = Π∞k=1((1−λe−βεk )−1), λe−βεk <

1, eβ(µ−εk ) < 1, (µ− εk) < 0→ µ < ε0.
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Fermi-Dirac and Bose-Einstein statistics

ΞFD
BE = Π∞k=1(1± λe−βεk )±1

N̄ = N = kT (∂ ln Ξ
∂µ )V ,T = λ(∂ ln Ξ

∂λ )V ,T =
∑

k
λe−βεk

1±λe−βεk =
∑

k n̄k

n̄k = λe−βεk
1±λe−βεk

Ē =
∑

k n̄kεk =
∑

k
λεke

−βεk

1±λe−βεk

pV = kT ln Ξ = ±kT
∑

k ln[1± λe−βεk ]

In quantum statistics even non-interacting particles are not
independent (through symmetry requirement), thus molecular
partition function q is irrelevant.

In the limit of classical statistics n̄k → 0. This requires λ→ 0
meaning N/V → 0 for constant T or T →∞ for constant N/V.
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Fermi-Dirac and Bose-Einstein statistics

For small λ n̄k = λe−βεk → N̄ = λq
n̄k
N̄

= e−βεk
q

Ē →
∑

j λεje
−βεj

ε̄ = Ē
N̄

=
∑

j εje
−βεj∑

j e
−βεj

pV = ±kT
∑

k ln[1± λe−βεk ] = (±kT )(±λ
∑

j e
−βεj ) = λkTq

βpV = ln Ξ = λq = N̄

Ξ = eλq =
∑∞

N=0
(λq)N

N! thus Q(N,V ,T ) = qN

N! .

Thus Boltzmann statistics is valid in the limit of small λ.
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Ideal monatomic gas

q(V ,T ) = qtransqelectqnucl

Translational energy
εnx ,ny ,nz = h2

8ma2 (n2
x + n2

y + n2
z) nx , ny , nz = 1, 2, 3, · · ·

qtrans =
∑∞

nx ,ny ,nz=1 e
−βεnx ,ny ,nz =

∑∞
nx ,ny ,nz=1 e

−β h2

8ma2 (n2
x+n2

y+n2
z ) =∑∞

nx=1 e
−βh

2n2
x

8ma2
∑∞

ny=1 e
−
βh2n2

y

8ma2
∑∞

nz=1 e
−βh

2n2
z

8ma2 = (
∑∞

n=1 e
−βh

2n2

8ma2 )3

qtrans(V ,T ) = (
∫∞

0 e−
βh2n2

8ma2 dn)3 = ( 2πmkT
h2 )3/2V

qtrans =
∫∞

0 ω(ε)e−βεdε where ω(ε)dε = π
4 ( 8ma2

h2 )3/2ε1/2dε

qtrans = π
4 ( 8ma2

h2 )3/2
∫∞

0 ε1/2e−βεdε = ( 2πmkT
h2 )3/2V = V

Λ3

ε̄trans = kT 2(∂ ln qtrans
∂T ) = 3

2kT = p2

2m

Λ is the thermal De Broglie wavelength of the particle.
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Ideal monatomic gas

Condition for applicability of classical or Boltzmann statistics
Λ3/V � 1
qelect =

∑
i ωeie

−βεi = ωe1 + ωe2e
−β∆εe12 + · · ·
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Ideal monatomic gas thermodynamic functions

k=0.695 cm−1/deg-molecule, 1 eV=8065.73 cm−1.

Nuclear levels are separated by millions of eV’s. Nuclear states do not
contribute in thermodynamic change.

qnucl =
∑

i ωnie
−βεi = ωn1 + ωn2e

−β∆εn12 + · · ·
A = −kT lnQ = −NkT ln[( 2πmkT

h2 )3/2 Ve
N ]−NkT ln(ωe1 +ωe2e

−β∆ε12)

E = kT 2(∂ lnQ
∂T )N,V = 3

2NkT + Nωe2∆εe12e−β∆εe12

qelect

p = kT (∂ lnQ
∂V )N,T = NkT

V

S = 3
2Nk + Nk ln[( 2πmkT

h2 )3/2 Ve
N ] + Nk ln(ωe1 + ωe2e

−β∆ε12) +
Nkωe2β∆ε12e−β∆ε12

qelect
= Nk ln[( 2πmkT

h2 )3/2 Ve5/2

N ] + Select , which is the
Sackur-Tetrode equation.

µ(T , p) = −kT (∂ lnQ
∂N )V ,T = −kT ln q

N = −kT ln[( 2πmkT
h2 )3/2 V

N ]−
kT ln qeqn = −kT ln[( 2πmkT

h2 )3/2 kT
p ]− kT ln qeqn =

−kT ln[( 2πmkT
h2 )3/2kT ]− kT ln qeqn + kT ln p = µ0(T ) + kT ln p

µ0(T ) = −kT ln[( 2πmkT
h2 )3/2kT ]− kT ln qeqn
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Atomic term symbols

Term symbol is an abbreviated description of the angular momentum
quantum numbers in a multi-electron atom.

Each energy level of an atom with a given electron configuration is
described by not only the electron configuration but also its own term
symbol, as the energy level also depends on the total angular
momentum including spin.

The usual atomic term symbols assume LS coupling (also known as
Russell-Saunders coupling or spin-orbit coupling). The ground state
term symbol is predicted by Hund’s rules.

Hund’s rule of maximum multiplicity states that the electron
configuration maximizing spin multiplicity is more stable.

Multielectron atomic Hamiltonian,
Ĥ = − ~2

2m

∑
j ∇2

j −
∑

j
Ze2

rj
+
∑

i<j
e2

rij
+
∑

j ζ(rj)lj · sj = H0 +Hee +Hso

Hso represent the interaction between the magnetic moment
associated with an electrons spin with the magnetic field generated by
its own orbital motion.
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Atomic term symbols

Russell-Saunders or L-S coupling: For Z < 40, Ĥso can be treated as
a small perturbation. Then [Ĥ0 + Ĥee , L̂] = [Ĥ0 + Ĥee , Ŝ ] = 0. So S
and L are good quantum numbers.

L̂2ψ = L(L + 1)~2ψ Ŝ2ψ = S(S + 1)~2ψ

L and S are the vector sums of lj and sj respectively. For electrons,
L = l1 + l2, l1 + l2 − 1, · · · , |l1 − l2| and
S = s1 + s2, s1 + s2 − 1, · · · , |s1 − s2|
Terms with L = 0, 1, 2, · · · are denoted by S, P, D, ...

When Ĥso is taken into account only [Ĥ, Ĵ] = 0. Only Ĵ = L̂ + Ŝ is
conserved. Eigenvalues of Ĵ2 = (L̂ + Ŝ)2 are J(J + 1)~2 with
ωj = 2J + 1 corresponding to 2J+1 eigenvalues of Ĵz which are
J~, (J − 1)~, · · · ,−J~
Allowed values of J are L + S , L + S − 1, · · · , |L− S |. Term symbol is
written as 2S+1LJ .
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Atomic term symbols

For heavier atoms j-j coupling is used. Total angular momenta for
each electron is defined as ji = si + li . Total angular momentum, J, is
derived by coupling the j’s. Term symbol is written as 2S+1LJ .

For molecules, Greek letters are used to designate the component of
orbital angular momenta along the molecular axis.

For a given electron configuration:

The combination of an S value and an L value is called a term, and
has a statistical weight (i.e., number of possible microstates) equal to
(2S+1)(2L+1);

A combination of S, L and J is called a level. A given level has a
statistical weight of (2J+1), which is the number of microstates
associated with this level in the corresponding term;

A combination of S, L, J and MJ determines a single state.
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Atomic term symbols

The product (2S+1)(2L+1) as the number of possible microstates
|S ,mS , L,mL〉 with given S and L is also the number of basis states in
the uncoupled representation, where S, mS , L, mL are good quantum
numbers whose corresponding operators mutually commute.

With given S and L, the eigenstates |S ,mS , L,mL〉 in this
representation span function space of dimension (2S+1)(2L+1).

In the coupled representation where total angular momentum is
treated, the associated microstates are |J,MJ , S , L〉 and these states

span the function space with dimension of
Jmax=L+S∑

J=Jmin=|L−S|

(2J + 1) as

MJ = J, J − 1, ...− J + 1,−J.
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Adiabatic approximation

Adiabatic, Born-Oppenheimer approximation.

Adiabatic means not passing through and in thermodynamics refers to
a condition imposed on a system that prevents any passage of heat
into or out of the system.

In quantum dynamics, adiabatic refers to an inherent property of a
process, i.e., its tendency to occur without any change in quantum
state.

Ehrenfest showed that when the parameters of a system in a particular
quantum state are changed slowly, the system remains in the same
quantum state (adiabatic theorem).
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Adiabatic approximation

Now, adiabatic implies that there are two sets of variables which
describe the system of interest and the system can be characterized by
the eigenstates defined at each fixed value of one set of variables,
which change slowly compared to the other set.

In the first step of the adiabatic approximation, the electronic
Schrodinger equation is solved, yielding the wave-function ψelectronic

depending on electrons only.

During this solution the nuclei are fixed in a certain configuration,
very often the equilibrium configuration.

In the second step of the BO approximation this function serves as a
potential in a Schrodinger equation containing only the nuclei.

The success of the BO approximation is due to the difference between
nuclear and electronic masses.
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Adiabatic approximation

Molecular Hamiltonian,

Ĥ =
∑Nn

I=1
P̂2
I

2MI
+
∑Ne

i=1
p̂2
i

2me
+
∑

i<j
e2

|~ri−~rj |+
∑

I<J
ZIZJe

2

|~RI−~RJ |
−
∑

i ,I
ZI e

2

|~RI−~ri |
=

T̂n + T̂e + Ve + Vn + Vne[
T̂n + T̂e + Ve + Vn + Ven

]
Ψ(r ,R) = EΨ(r ,R)

Ψ(r ,R) = φ(r ;R)χ(R),

where χ(R) is a nuclear wave function and φ(r ;R) is an electronic
wave function that depends parametrically on the nuclear positions.

The difference in the nuclear and electronic mass also results in a
difference in their momenta, i.e., nuclear momenta are greater, which
in turn causes the nuclear wave function (coordinate amplitude) to
change more steeply than the electronic wave function.

∇Iχ(R)� ∇Iφ(r ;R)
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Adiabatic approximation

T̂n

(
φ(r ;R)χ(R)

)
= −~2

2

∑
I

1
MI

[
φ(r ;R)∇2

I χ(R) + 2∇Iφ(r ;R) ·

∇Iχ(R) + χ(R)∇2
I φ(r ;R)

]
≈ −~2

2

∑
I

1
MI
φ(r ;R)∇2

I χ(R)[
T̂n + T̂e + Ve + Vn + Ven

]
φ(r ;R)χ(R) = Eφ(r ;R)χ(R)

[T̂e+Ve(r)+Ven(R,r)]φ(r ;R)

φ(r ;R) = E − [T̂n+Vn(R)]χ(R)

χ(R) .[
T̂e + Ve(r) + Ven(r ,R)

]
φ(r ;R) = ε(R)φ(r ;R)[

T̂n + Vn(R) + εi (R)
]
χ(R) = Eχ(R).

The physical interpretation is that the electrons respond
instantaneously to the nuclear motion, therefore, it is sufficient to
obtain a set of instantaneous electronic eigenvalues and eigenfunctions
at each nuclear configuration, R (hence the parametric dependence of
φi (r ;R) and εi (R) on R)
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Distance dependent potential

[
T̂n + Vn(R) + εi (R)

]
χ(R, t) = i~ ∂

∂tχ(R, t).

εi (R) give rise to BO hypersurfaces.

This equation describes the nuclear dynamics and vibronic states.

Breaking down the motion of nuclei:

In 2D consider two particles with a distance dependent potential.
E = m1

2 (ẋ2
1 + ẏ2

1 ) + m2
2 (ẋ2

2 + ẏ2
2 ) + U(x1 − x2, y1 − y2)

Center of mass and relative coordinates are defined as
X = m1x1+m2x2

m1+m2
Y = m1y1+m2y2

m1+m2
x12 = x1 − x2 y12 = y1 − y2

x1 = X + m2
m1+m2

x12 y1 = Y + m2
m1+m2

y12 x2 =
X − m1

m1+m2
x12 y2 = Y − m1

m1+m2
y12

E = m1+m2
2 (Ẋ 2 + Ẏ 2) + m1m2

2(m1+m2) (ẋ2
12 + ẏ2

12) + U(x12, y12) =
M
2 (Ẋ 2 + Ẏ 2) + µ

2 (ẋ2
12 + ẏ2

12) + U(x12, y12) = Ecm + Erel
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Distance dependent potential

Thus the center of mass motion can be separated from relative motion
of a two particle system.

Mapping the relative motion into polar coordinates r and θ where
x12 = r cos θ y12 = r sin θ ẋ12 = ṙ cos θ − r θ̇ sin θ ẏ12 =
ṙ sin θ + r θ̇ cos θ:
Erel = µ

2 (ṙ2 + r2θ̇2) + U(r) = µ
2 ṙ

2 + U(r) + µ
2 r

2θ̇2 = Evib + Erot

Similarly in 3D consider two particles with a distance dependent
potential.
E = m1

2 (ẋ2
1 + ẏ2

1 + ż2
1 ) + m2

2 (ẋ2
2 + ẏ2

2 + ż2
2 ) +U(x1− x2, y1− y2, z1− z2)

Center of mass and relative coordinates are defined as
X = m1x1+m2x2

m1+m2
Y = m1y1+m2y2

m1+m2
Z = m1z1+m2z2

m1+m2
x12 =

x1 − x2 y12 = y1 − y2 z12 = z1 − z2

x1 = X + m2
m1+m2

x12 y1 = Y + m2
m1+m2

y12 z1 =
Z + m2

m1+m2
z12 x2 = X − m1

m1+m2
x12 y2 = Y − m1

m1+m2
y12 z2 =

Z − m1
m1+m2

z12
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Distance dependent potential

m1ẋ2
1 +m2ẋ2

2
2 = (m1+m2)

2 Ẋ 2 + m1m2
m1+m2

ẋ2
12

E = M
2 (Ẋ 2+Ẏ 2+Ż 2)+ µ

2 (ẋ2
12+ẏ2

12+ż2
12)+U(x12, y12, z12) = Ecm+Erel

Finally transform the relative coordinates into spherical polar

coordinates.

ẋ12 = ṙ sin θ cosφ+ r θ̇ cos θ cosφ− r φ̇ sin θ sinφ ẏ12 =
ṙ sin θ sinφ+ r θ̇ cos θ sinφ+ r φ̇ sin θ cosφ ż12 = ṙ cos θ − r θ̇ sin θ

ẋ2
12 + ẏ2

12 + ż2
12 = ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ
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Diatomic molecule

Erel = µ
2 (ṙ2 + r2θ̇2 + r2φ̇2 sin2 θ) + U(r)

Evib = µ
2 ṙ

2 + U(r) Erot = µ
2 (r2θ̇2 + r2φ̇2 sin2 θ)

Hn = Htrans + HInt , εn = εtrans + εint , qn = qtransqint

qtrans = [ 2πMkT
h2 ]3/2V , Q(N,V ,T ) =

qNtransq
N
int

N!

Relative motion of the two nuclei consists of rotary motion about the
center of mass and vibratory motion about the equilibrium
internuclear distance re .

Small amplitude of the vibratory motion allows treatment of the
rotary motion as the rotation of a rigid dumbbell.

U(r) = U(re) + (r − re)(dUdr )r=re + 1
2 (r − re)2(d

2U
dr2 )r=re + · · · =

u(re) + 1
2k(r − re)2 + · · ·

Rigid rotor-Harmonic oscillator approximation: Hrot,vib = Hrot + Hvib,
εrot,vib = εrot + εvib, qrot,vib = qrotqvib
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Diatomic molecule

For a rigid rotor,

εJ = ~2J(J+1)
2I J = 0, 1, 2, · · · ωJ = 2J + 1 I = µr2

e

For a harmonic oscillator
εvib = hν(n + 1/2) n = 0, 1, 2, · · · ωn = 1 ν = 1

2π ( kµ)1/2

Selection rule for radiation induced rotational transition: 1) Possession
of permanent dipole moment. 2) ∆J = ±1

ν =
εj+1−εj

h = h
4π2I

(J + 1) J = 0, 1, 2, · · ·
B̄ = h

8π2Ic
, ε̄J(cm−1) = B̄J(J + 1)

Selection rule for radiation induced vibrational transition: 1) Change
of dipole moment by the respective vibration. 2) ∆n = ±1

ν =
εj+1−εj

h = 1
2π ( kµ)1/2

Assume: H = Htrans + Hrot + Hvib + Helec + Hnucl ; thus
ε = εtrans + εrot + εvib + εelec + εnucl .
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Diatomic molecule: vibrational partition function

q = qtransqrotqvibqelecqnucl , Q(N,V ,T ) = (qtransqrotqvibqelecqnucl )
N

N!

Zero of rotational energy taken as the energy of J = 0 state.

Zero of vibrational energy taken as the bottom of the internuclear
potential well of ground electronic state.

Zero of the electronic energy is separated ground state atoms.

qelec = Ωe1e
De/kT + Ωe2e

−ε2/kT + · · ·
qvib(T ) =

∑∞
n=0 e

−βεn = e−βhν/2
∑∞

n=0 e
−βhνn = e−βhν/2

1−e−βhν

If kT � hν qvib(T ) = e−βhν/2
∫∞

0 e−βhνndn = kT
hν e
−βhν/2

Eν = NkT 2 d ln qv
dT = Nk( Θv

2 + Θv

eΘv /T−1
) in terms of vibrational

temperature.

CV ,vib = (∂Ev
∂T )N = Nk( θνT )2 eΘv /T

(eΘv /T−1)2
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Diatomic molecule: vibrational partition function

fn = e−βhν(n+1/2)

qvib
= (1− e−βhν)e−βhνn

qrot(T ) =
∑∞

J=0(2J + 1)e−βB̄J(J+1)

Characteristic temperature of rotation θr = B̄/k
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Diatomic molecule: rotational partition function

qrot(T ) =
∫∞

0 (2J + 1)e−θrJ(J+1)/TdJ =
∫∞

0 e−θrJ(J+1)/TdJ(J + 1) =
T
θr

= 8π2IkT
h2 θr � T

At small temperatures qrot(T ) = 1 + 3e−2θr/T + 5e−6θr/T + · · ·
For intermediate temperatures Euler-MacLaurin summation formula:∑b

n=a f (n) =∫ b
a f (n)dn+ 1

2{f (b) + f (a)}+
∑∞

j=1(−1)j
Bj

(2j)!{f
(2j−1)(a)− f (2j−1)(b)}

The formula was discovered independently by Leonhard Euler and
Colin Maclaurin around 1735 (and later generalized as Darboux’s
formula). Euler needed it to compute slowly converging infinite series
while Maclaurin used it to calculate integrals.

Bernoulli numbers, B1 = 1/6,B2 = 1/30,B3 = 1/42, · · ·
Use to calculate

∑∞
j=0 e

−αj .

Euler-MacLaurin formula is applied to qrot(T ) with

f (J) = (2J + 1)e−
Θr
T
J(J+1), a = 0, b =∞
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Diatomic molecule: rotational partition function

qrot(T ) = T
θr
{1 + 1

3 ( θrT ) + 1
15 ( θrT )2 + 4

315 ( θrT )3 + · · · }
ln qrot(T ) = ln T

θr
+ ln{1 + 1

3 ( θrT ) + 1
15 ( θrT )2 + 4

315 ( θrT )3 + · · · }
Erot = NkT 2(∂ ln qrot

∂T ) = NkT + · · ·
Nj

N = (2J+1)e−θr J(J+1)/T

qrot(T ) .

Jmax = (kT
2B̄

)1/2 − 1/2 ≈ ( T
2θr

)1/2.

If the nuclei have integer spin they are Bosons and the molecular
wavefunction must be symmetric with respect to interchange of the
two nuclei.

If the nuclei have half odd integer spin they are Fermions and the
molecular wavefunction must be antisymmetric with respect to
interchange of the two nuclei.

For a homonuclear diatomic molecule symmetry requirement most be
considered.

If temperature is fairly large
qrot(T ) = T

σθr
{1 + 1

3 ( θrT ) + 1
15 ( θrT )2 + 4

315 ( θrT )3 + · · · }
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Diatomic molecule: rotational partition function

Symmetry number σ is the number of indistinguishable orientations of
a molecule.

Exclusive of the nuclear part ψ′total = ψtransψrotψvibψelec

Consider the interchange of nuclei as first inverting the molecule
followed by an inversion of only electrons.

Translational partition function is unaffected by inversion.

Vibrational partition function is unaffected by inversion.

Most molecules electronic ground state is Σ+
g which is symmetric

under both inverting the molecule and an inversion of only electrons.

Thus rotational wavefunction controls the symmetry of ψ′total
Rigid rotor wavefunctions are the same functions as the angular
functions of the hydrogen atom.
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Spherical harmonics

l = 0,ml = 0→ Y0,0 = 1√
4π

l = 1,ml = 1, 0,−1→


YPx = ( 3

4π )1/2 sin θ cosφ

YPy = ( 3
4π )1/2 sin θ sinφ

YPz = ( 3
4π )1/2 cos θ

l = 2,ml = 2, 1, 0,−1,−2→



Ydz2 = ( 5
16π )1/2(3 cos2 θ − 1)

Ydxz = ( 15
4π )1/2(sin θ cos θ cosφ)

Ydyz = ( 15
4π )1/2(sin θ cos θ sinφ)

Ydxy = ( 15
16π )1/2(sin θ sin 2φ)

Ydx2−y2 = ( 15
16π )1/2(sin θ cos 2φ)
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Diatomic molecule: rotational partition function

Effect of inversion on the orientation of the diatomic molecule is
(θ, φ)→ (π − θ, φ + π)

ψ′total remains unchanged for even J and changes sign for odd J.

Symmetric spin wavefunctions for spin-1/2 nuclei are αα, ββ and
2−1/2(αβ + βα)

Antisymmetric spin wavefunctions for spin-1/2 nuclei is
2−1/2(αβ − βα)

Odd J levels have a statistical weight of 3 compared to a statistical
weight of 1 for even J levels.

Nuclei of spin I has 2I+1 spin states with eigenfunctions
α1, α2, · · · , α2I+1

There are (2I + 1)2 nuclear wavefunctions.

(2I + 1)I antisymmetric spin functions are
αi (1)αj(2)− αi (2)αj(1), 1 ≤ i , j ≤ 2I + 1

Remaining (2I + 1)2 − (2I + 1)I = (2I + 1)(I + 1) are symmetric
nuclear functions.
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Diatomic molecule: rotational partition function

For Σ+
g states and integral spin

(2I+1)I antisymmetric nuclear spin functions couple with odd J

(2I+1)(I+1) symmetric nuclear spin functions couple with even J

For Σ+
g states and half integral spin

(2I+1)I antisymmetric nuclear spin functions couple with even J

(2I+1)(I+1) symmetric nuclear spin functions couple with odd J

These results apply to polyatomic linear molecules as well.

Homonuclear diatomic molecule with integral spin:
qrot,nucl(T ) = (I + 1)(2I + 1)

∑
J even(2J + 1)e−ΘrJ(J+1)/T + I (2I +

1)
∑

J odd(2J + 1)e−ΘrJ(J+1)/T

Homonuclear diatomic molecule with half integer spin:
qrot,nucl(T ) = I (2I + 1)

∑
J even(2J + 1)e−ΘrJ(J+1)/T + (I + 1)(2I +

1)
∑

J odd(2J + 1)e−ΘrJ(J+1)/T
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Diatomic molecule: rotational partition function

If Θr � T →
∑

J odd(2J + 1)e−ΘrJ(J+1)/T ≈∑
J even(2J + 1)e−ΘrJ(J+1)/T ≈ 1/2

∑
J(2J + 1)e−ΘrJ(J+1)/T ≈

1/2
∫∞

0 (2J + 1)e−ΘrJ(J+1)/TdJ = T
2Θr

qrot,nucl(T ) = (2I+1)2T
2Θr

= qrot(T )qnucl where qrot(T ) = T
2Θr

and

qnucl = (2I + 1)2

qrot(T ) ≈ 8π2IkT
σh2 ≈ 1

σ

∑∞
J=0(2J + 1)e−βB̄J(J+1) Θr � T

Spin isomers of hydrogen

Hydrogen with opposite nuclear spins, singlet hydrogen, is called
para-Hydrogen.

Hydrogen with parallel nuclear spins, triplet, is called ortho-Hydrogen.

The para form is more stable than the ortho form by 1.06 kJ/mol.

For H2 qnuc,rot =∑
J even(2J + 1)e−ΘrJ(J+1)/T + 3

∑
J odd(2J + 1)e−ΘrJ(J+1)/T

85/1



Diatomic molecule: rotational partition function

For H2 qnuc,rot =
∑

J even(2J + 1)e−ΘrJ(J+1)/T +
e−1060J/molk/RT3

∑
J odd(2J + 1)e−ΘrJ(J+1)/T

The conversion between ortho and para hydrogen in the absence of a
catalyst (e.g., FeIII or activated charcoal) is very slow.
Northo
Npara

= e−1060J/molk/RT 3
∑

J odd(2J+1)e−Θr J(J+1)/T∑
J even(2J+1)e−Θr J(J+1)/T

Figure: Energy and heat capacity for spin isomers of hydrogen taken from
Wikipedia
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Diatomic molecule: Thermodynamic functions

Predict the H2 heat capacity at very low temperatures.

Try the same analysis on D2.

Erot = NkT [1− Θr
3T −

1
45 ( Θr

T )2 + · · · ]
CV ,rot = Nk[1 + 1

45 ( Θr
T )2 + · · · ]

Srot = kT (∂ ln qrot
∂T )N,V + k ln qrot = Nk[1− ln(σΘr

T )− 1
90 ( Θr

T )2 + · · · ]
Harmonic oscillator-rigid rotor approximation:
q(T ) = ( 2πMkT

h2 )3/2V 8π2IkT
σh2 e−βhν/2(1− e−βhν)−1ωe1e

De/kT

ln q(T ) =
3
2 ln( 2πMkT

h2 ) + lnV + ln 8π2IkT
σh2 − hν

2kT − ln(1− e−βhν) + lnωe1 +De/kT

E
NkT = 5

2 + hν
2kT + hν/kT

ehν/kT−1
− De

kT

Cv
Nk = 5

2 + ( hν
kT )2 ehν/kT

(ehν/kT−1)2

S
Nk = ln[ 2πMkT

h2 ]3/2 Ve5/2

N +ln 8π2IkTe
σh2 +

hν
kT

ehν/kT−1
− ln(1−e−hν/kT )+lnωe
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Diatomic molecule: Thermodynamic functions

p = −NkT (∂ ln q
∂V )→ pV = NkT

µ = ( ∂A∂N )T ,V = −kT (∂ lnQ
∂N )T ,V = −kT ln q

N →
µ0(T )
kT =

− ln[ 2πMkT
h2 ]3/2 − ln kT

P0 − ln 8π2IkT
σh2 + hν

2kT + ln(1− e−hν/kT )− De
kT

Centrifugal distortion effects, anharmonic effects can be included.

Σ state has zero total angular momentum. In other cases electronic
and rotational angular momentum must be coupled. I.e., the
electronic and rotational partition functions do not separate.

At T � Θr electronic and rotational partition functions separate.
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Classical statistical mechanics

q =
∑

e−β(energy) → qclass ∼
∫
· · ·
∫
e−βH(p,q)dpdq

Available (effective) number of states vs. available (effective) volume
of phase space.

For a monatomic ideal gas H = 1
2m (p2

x + p2
y + p2

z ). Thus

qclass ∼
∫
· · ·
∫
e−β

(p2
x+p2

y +p2
z )

2m dpxdqxdpydqydpzdqz =

V [
∫∞

0 e−βp
2/2mdp]3 = (2πmkT )3/2V

Compare with qtrans(V ,T ) = ( 2πmkT
h2 )3/2V

For a linear rigid rotor H = 1
2I (p2

θ +
p2
φ

sin2 θ
)

qrot ∼
∫∞
−∞ dpθ

∫∞
−∞ dpφ

∫ 2π
0 dφ

∫ π
0 dθe−

β
2I

(p2
θ+

p2
φ

sin2 θ
) = 8π2IkT

Compare with qrot(T ) = T
θr

= 8π2IkT
h2
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Classical statistical mechanics

For a harmonic oscillator H = p2

2µ + k
2x

2

qvib ∼
∫∞
−∞ dp

∫∞
−∞ dxe−β( p2

2µ
+ k

2
x2) = kT

ν where ν = 1
2π ( kµ)1/2

Compare with the high temperature limit
qvib(T ) = e−βhν/2

∫∞
0 e−βhνndn = kT

hν

Conjecture: q = 1
hs

∫
· · ·
∫
e−βHΠs

j=1dpjdqj

A weighted area of h in phase space is equivalent to one weighted
quantum mechanical state.

This seem to be intimately related to space-momentum uncertainty
relation, ∆x∆p ≥ ~

2 . And to the Wigner transform

Aw (Q,P) =

∫
dZ 〈Q − Z

2
|Â|Q +

Z

2
〉e iPZ/~

.
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Classical statistical mechanics

Q = qN

N! = 1
N! ΠN

j=1
1
hs

∫
· · ·
∫
e−βHj Πs

i=1dpjidqji

Q = 1
N!hsN

∫
· · ·
∫
e−β

∑
j Hj ΠsN

i=1dpidqi =
1

N!hsN

∫
· · ·
∫
e−βHΠsN

i=1dpidqi

Conjecture: Q = 1
N!hsN

∫
· · ·
∫
e−βH(p,q)dpdq

For monatomic gas
H(p, q) = 1

2m

∑N
j=1(p2

xj + p2
yj + p2

zj) + U(x1, y1, z1, · · · , xN , yN , zN)

Thus Qclas = 1
N! ( 2πmkT

h2 )3N/2ZN where the classical configuration

integral ZN =
∫
V e−U(x1,··· ,zN)/kTdx1 · · · dzN

For a molecule H = Hclass + Hquant → q = qclassqquant where
qclass = 1

hs

∫
e−Hclass(p,q)/kTdp1dq1 · · · dpsdqs

For entire system H = Hclass + Hquant → Q = QclassQquant =
Qquant

hsN

∫
e−Hclass(p,q)/kTdpclassdqclass
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Phase space and the Liouville equation

Each system is represented by a phase point in the phase space and a
microcanonical ensemble is represented by a cloud of phase points in
the phase space.

Each phase point evolves according to
q̇j = ∂H

∂pj
and ṗj = − ∂H

∂qj
j = 1, 2, · · · , l = sN

The postulate of equal a priori probabilities states that the density of
points is uniform over the constant energy hyper surface.

Number of systems that have phase point in dpdq about the point p,
q at time t is f(p,q,t)dpdq.

∫
· · ·
∫
f (p, q, t)dpdq = A

Ensemble average of a function of coordinate and momenta,
φ̄ = 1

A
∫
· · ·
∫
φ(p, q)f (p, q, t)dpdq

Gibbs postulate equates φ̄ with the corresponding thermodynamic
function.
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Phase space and the Liouville equation

The number of phase points inside the volume element
δp1 · · · δplδq1 · · · δql about the point p1, · · · , pl , q1, · · · , ql is
δN = f (p1, · · · , pl , q1, · · · , ql , t)δp1 · · · δplδq1 · · · δql
Remember divergence: The flow going through a differential volume

per unit time is:
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Phase space and the Liouville equation

Consider a hyper rectangular differential volume δp1 · · · δplδq1 · · · δql
around the point p1, · · · , pl , q1, · · · , ql
Number of phase points entering through the face perpendicular to
the q1 axis and located at q1 is f q̇1δp1 · · · δplδq2 · · · δql
The number passing through the opposite face is
f (p1, · · · , pl , q1 + δq1, · · · , ql , t)q̇1(p1, · · · , pl , q1 +
δq1, q2, · · · , ql)δp1 · · · δplδq2 · · · δql =
(f + ∂f

∂q1
δq1)(q̇1 + ∂q̇1

∂q1
δq1)δp1 · · · δplδq2 · · · δql

net flow in the q1 direction −( ∂f∂q1
q̇1 + f ∂q̇1

∂q1
)δp1 · · · δplδq1 · · · δql + · · ·
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Phase space and the Liouville equation

Similarly, net flow in the p1 direction is
−( ∂f∂p1

ṗ1 + f ∂ṗ1
∂p1

)δp1 · · · δplδq1 · · · δql + · · ·
Thus total flow of phase points is

−
∑l

j=1( ∂f∂qj q̇j + f
∂q̇j
∂qj

+ ∂f
∂pj

ṗj + f
∂ṗj
∂pj

)δp1 · · · δplδq1 · · · δql = d(δN)
dt

∂q̇j
∂qj

+
∂ṗj
∂pj

= 0

∂f
∂t = −

∑l
j=1( ∂f∂qj q̇j + ∂f

∂pj
ṗj) = −

∑l
j=1( ∂f∂qj

∂H
∂pj
− ∂f

∂pj
∂H
∂qj

)

In terms of Poisson bracket, {A,B} =
∑l

j=1( ∂A∂qj
∂B
∂pj
− ∂B

∂qj
∂A
∂pj

),
∂f
∂t + {f ,H} = 0

In terms of the Liouville operator, ∂f
∂t + iLf = 0.

Equivalent to Hamiltonian equations of motion.

∂f
∂t +

∑N
j=1

~Pj

mj
· ∇rj f +

∑N
j=1

~Fj · ∇pj f = 0.
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Phase space and the Liouville equation

Liouville equation is equivalent to df
dt = 0.

Principle of the conservation of density in phase space: density in the
neighborhood of any moving phase point is a constant along the
trajectory of that point. Implies that f (p, q; t) = f (p0, q0; t0).

p = p(p0, q0; t) and q = q(p0, q0; t).

The existence and uniqueness theorem implies that no two trajectories
can pass through the same point, i.e. they never cross.

Conservation of extension in phase space: δpδq = δp0δq0 or Jacobian
of (p,q) to (p0, q0) is unity.

In general if we are given two sets of momenta and their conjugate
coordinate dq1dq2 · · · dq3ndp1 · · · dp3n = dQ1 · · · dQ3ndP1 · · · dP3n

e.g., dpxdpydpzdxdydz = dprdpθdpφdrdθdφ. This is a reason for
using momenta and not velocities for describing classical systems.
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Equipartition of energy

ε̄ =
∫
···

∫
He−βHdq1···dqsdp1···dps∫

···
∫
e−βHdq1···dqsdp1···dps

H(p1, p2, · · · , qs) =∑m
j=1 ajp

2
j +

∑n
j=1 bjq

2
j + H(pm+1, · · · , ps , qn+1, · · · , qs)

ε̄ =
∫
···

∫
(
∑m

j=1 ajp
2
j +

∑n
j=1 bjq

2
j +H(pm+1,··· ,ps ,qn+1,··· ,qs)e−βHdq1···dqsdp1···dps∫
···

∫
e−βHdq1···dqsdp1···dps

=∑m
j=1 aj

∫
···

∫
p2
j e
−βHdq1···dqsdp1···dps+

∑n
j=1 bj

∫
···

∫
q2
j e
−βHdq1···dqsdp1···dps∫

···
∫
e−βHdq1···dqsdp1···dps

+∫
···

∫
H(pm+1,··· ,ps ,qn+1,··· ,qs)e−βHdq1···dqsdp1···dps∫

···
∫
e−βHdq1···dqsdp1···dps

Principle of the equipartition of energy state that each of the quadratic
terms contribute kT/2 to the energy and k/2 to the heat capacity.

E.g., for monatomic ideal gas

H =
p2
x+p2

y+p2
z

2m E = 3kT/2 Cv = 3k/2

aj and bj can be functions of the variables not involved in the
quadratic terms, i.e., pm+1, · · · , ps ; qn+1, · · · , qs .

E.g., for a linear rigid rotor H = 1
2I (p2

θ +
p2
φ

sin2 θ
), E = kT , Cv = k .
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Equipartition of energy

Equipartition is a classical concept thus a small ∆ε/kT between levels
is required for its validity.

For a diatomic molecule Cv = 5
2Nk + Nk(Θv/T )2eΘv /T

(eΘv /T−1)2

The most general form of the equipartition theorem states that under
suitable assumptions, for a physical system with Hamiltonian energy
function H and degrees of freedom xn, the following equipartition
formula holds in thermal equilibrium for all indices m and n:〈
xm

∂H
∂xn

〉
= δmnkBT .

The general equipartition theorem is an extension of the virial
theorem, which states that〈∑

k qk
∂H
∂qk

〉
=
〈∑

k pk
∂H
∂pk

〉
=
〈∑

k pk
dqk
dt

〉
= −

〈∑
k qk

dpk
dt

〉
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Ideal polyatomic gas

Start by applying the adiabatic or Born-Oppenheimer approximation
thus separating electronic and nuclear degrees of freedom.

Then Hnuc = Htrans + Hint εnuc = εtrans + εint qnuc = qtransqint
where qtrans = [ 2πMkT

h2 ]3/2V

Q(N,V ,T ) =
qNtransq

N
int

N!

3n coordinates are required to specify the location of all atoms. 3
coordinates are to specify the center of mass while 2 or 3 (for linear or
non-linear molecule) are needed to specify its orientation. The
remaining 3n -5 or 3n-6 internal coordinates are needed for specifying
the relative position of the nuclei.

Use a rigid rotor-harmonic oscillator approximation to write

Q(N,V ,T ) = (qtransqrotqvibqelecqnucl )
N

N!

Consider all atoms separated in their ground electronic state as the
zero of energy
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Vibrational partition function

Potential energy of the molecule is a function of α = 3n − 6 (3n − 5)
relative coordinate. At equilibrium configuration its gradient is zero.

U(~r) = U(~r0) +
∑α

i ,j=1
1
2 (ri − ri0)( ∂2U

∂ri∂rj
)r0(rj − rj0) + · · ·

∂2U
∂ri∂rj

are elements of a matrix called Hessian which at the point r0
equals kij .

If the Hessian is positive definite at x, then U attains an isolated local
minimum at x. If the Hessian is negative definite at x, then U attains
an isolated local maximum at x. If the Hessian has both positive and
negative eigenvalues then x is a saddle point for U. Otherwise the test
is inconclusive.

Assuming molecular vibrations to be small we truncate this expansion
at the third term.

U(~r) =
∑α

i ,j=1
kij
2 (ri − ri0)(rj − rj0).

The problem is α coupled harmonic oscillators.
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Vibrational partition function

To practically deal with this problem assume all molecular motions as

vibrations and write M d2

dt2X = −KX where X =

 x1
...

x3n

 , M =

 m1 · · · 0

0
. . . 0

0 · · · m3n

 , K =

 k1,1 · · · k1,3n
...

. . .
...

k3n,1 · · · k3n,3n

.

To solve this equation, we put it into complex form: d2

dt2Z = −M−1KZ

Try solutions of the form Z (j) = A(j)e iω
(j)t .

Yields eigenvalue equation M−1KA(j) = (ω(j))2A(j).

M−1/2KM−1/2(M1/2A(j)) = (ω(j))2(M1/2A(j))

A real symmetric 3n × 3n matrix has 3n real eigenvalues and
correspondingly 3n real orthogonal eigenvectors.
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Vibrational partition function

Thus there are 3n eigenmodes characterized by eigenfrequency ω(j)

and eigenvector M1/2A(j), where (A(k))TMA(j) = δkj .

This is the origin of mass weighted coordinate in computational
chemistry.

Each molecular position can be described as QjM
1/2A(j)

Coordinate corresponding to the set of smallest frequencies represent
center of mass motion while the next set of small frequencies
represent rotational motion.

Hvib = −
∑α

j=1
~2

2
∂2

∂Q2
j

+
∑α

j=1
kj
2 Q

2
j

ε =
∑α

j=1(nj + 1/2)hνj nj = 0, 1, 2, · · · , where νj = 1
2π (kj)

1/2

qvib = Πα
j=1

e
−Θνj/2T

(1−e−Θνj/T )
, where Θνj =

hνj
kB

Evib = Nk
∑α

j=1(Θνj/2 +
Θνje

−Θνj/T

(1−e−Θνj/T )
)

CV ,vib = Nk
∑α

j=1[(
Θνj
T )2 e

−Θνj/T

(1−e−Θνj/T )2
]
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Rotational partition function

For linear molecules εj = J(J+1)h2

8π2I
ωJ = 2J + 1 J = 0, 1, 2, · · ·

where moment of inertia I =
∑n

j=1 mjd
2
j

qrot = 8π2IkT
σh2 = T

σΘr

Ixx =
α∑

j=1

mj [(yj − ycm)2 + (zj − zcm)2]

Iyy =
α∑

j=1

mj [(xj − xcm)2 + (zj − zcm)2]

Izz =
α∑

j=1

mj [(xj − xcm)2 + (yj − ycm)2]

Also Ixz =
∑α

j=1 mj [(xj − xcm)(zj − zcm)]
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Rotational partition function

There is a particular set of coordinates called the principal axes
passing through the center of mass of the body such that the inertia
matrix become diagonal.

Moments of inertia about these axes IXX , IYY , IZZ are called the
principal moments of inertia. They are customarily denoted by
IA, IB , IC

principal axes often coincide with molecular axis of symmetry.

Moments of inertia about principal axes are often found
experimentally and tabulated in terms of rotational constants as
Ā = h

8πIAc
B̄ = h

8πIBc
C̄ = h

8πIC c
in units of cm−1.

IA = IB = IC : Spherical top, e.g., CH4, CCl4.

IA = IB 6= IC : Symmetric top, e.g., CH3Cl, NH3.

IA 6= IB 6= IC : Asymmetric top, e.g., H2O, NO2.
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Rotational partition function

For a spherical top: εj = J(J+1)~2

2I ωJ = (2J + 1)2 J = 0, 1, 2, · · ·
qrot = 1

σ

∫∞
0 (2J + 1)2e−J(J+1)~2/2IkTdJ

Symmetry number σ is the number of ways a molecule can be rotated
into itself. For H2O, σ = 2, for NH3 σ = 3, for CH4 σ = 12, for
C2H4 σ = 4 and for C6H6 σ = 12.

Symmetry number avoids over counting indistinguishable
configurations in phase space.

σ is the number of pure rotational elements in the point group of a
nonlinear molecule.

qrot = 1
σ

∫∞
0 4J2e−J

2~2/2IkTdJ = π1/2

σ ( 8π2IkT
h2 )3/2

Any molecule with an n ≥ 3-fold axis of symmetry is at least a
symmetric top.
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Rotational partition function

For a symmetric top εJK = ~2

2 {
J(J+1)

IA
+ K 2( 1

IC
− 1

IA
)} J =

0, 1, 2, · · · ; K = −J,−J + 1, · · · , J − 1, J ωJK = 2J + 1.

J is a measure of total rotational angular momentum of the molecule.

K is component of rotational angular momentum along the axes C of
symmetric top.

qrot = 1
σΣ∞j=0(2J + 1)e−J(J+1)αAΣJ

K=−Je
−(αC−αA)K2

αj = ~2

2IjkT
.

qrot = π1/2

σ ( 8π2IAkT
h2 )( 8π2ICkT

h2 )1/2

For a symmetric top: K =
p2
θ

2IA
+

(pφ−pψ cos θ)2

2IA sin2 θ
+

p2
ψ

2Ic

Asymmetric top is the most common type of molecule.

Hamiltonian for an asymmetric top
H = 1

2IA sin2 θ
[(pφ − pψ cos θ) cosψ − pθ sin θ sinψ]2 + 1

2IB sin2 θ
[(pφ −

pψ cos θ) sinψ + pθ sin θ cosψ]2 + 1
2Ic

p2
ψ

0 ≤ θ ≤ π 0 ≤ φ ≤ 2π 0 ≤ ψ ≤ 2π are Euler angles.
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Polyatomic thermodynamic functions

For asymmetric top

qrot = π1/2

σ ( 8π2IAkT
h2 )1/2( 8π2IBkT

h2 )1/2( 8π2ICkT
h2 )1/2 = π1/2

σ ( T 3

ΘAΘBΘC
)1/2

Erot = 3
2NkT CV ,rot = 3

2Nk Srot = Nk ln[π
1/2

σ ( T 3e3

ΘAΘBΘC
)1/2]

Linear polyatomic molecule:

q = ( 2πMkT
h2 )3/2V T

σΘr
{Πα

J=1
e
−Θνj/2T

1−e−Θνj/T
}ωe1e

De/kT

− A
NkT =

ln[( 2πMkT
h2 )3/2 Ve

N ]+ln( T
σΘr

)−Σα
j=1[

Θνj
2T +ln(1−e−Θνj/T )]+ De

kT +lnωe1

E
NkT = 3

2 + 2
2 + Σα

j=1[
Θνj
2T +

Θνj/T

e
Θνj/T−1

]− De
kT

Cv
Nk = 3

2 + 2
2 + Σα

j=1(Θνj/T )2 e
Θνj
T

(1−eΘνj/T )2

S
Nk =

ln[( 2πMkT
h2 )3/2 Ve5/2

N ]+ln( Te
σΘr

)+Σα
j=1[

Θνj/T

e
Θνj/T−1

−ln(1−e−Θνj/T )]+lnωe1

pV=NkT
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Polyatomic thermodynamic functions

For nonlinear polyatomic molecules:

q = ( 2πMkT
h2 )3/2V π1/2

σ ( T 3

ΘAΘBΘC
)1/2{Πα

J=1
e
−Θνj/2T

1−e−Θνj/T
}ωe1e

De/kT

− A
NkT = ln[( 2πMkT

h2 )3/2 Ve
N ] + ln(π

1/2

σ ( T 3

ΘAΘBΘC
)1/2)− Σα

j=1[
Θνj
2T +

ln(1− e−Θνj/T )] + De
kT + lnωe1

E
NkT = 3

2 + 3
2 + Σα

j=1[
Θνj
2T +

Θνj/T

e
Θνj/T−1

]− De
kT

Cv
Nk = 3

2 + 3
2 + Σα

j=1(Θνj/T )2 e
Θνj
T

(1−eΘνj/T )2

S
Nk = ln[( 2πMkT

h2 )3/2 Ve5/2

N ] + ln(π
1/2e3/2

σ ( T 3

ΘAΘBΘC
)1/2) +

Σα
j=1[

Θνj/T

e
Θνj/T−1

− ln(1− e−Θνj/T )] + lnωe1

pV=NkT

D0 = De − Σj
1
2hνj

Residual entropy for CO and CH3D.
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Hindered rotation

Rotation about a single bond.

U = 1
2V0(1− cos 3φ)

− h2

8π2Ir
∂2ψ
∂φ2 + 1

2V0(1− cos 3φ)ψ = εψ

Ir is effective moment of inertia.

At extremes of temperature this motion is a vibration or a rotation.

Numerically solving Schrodinger equation for different values of V0,
one can tabulate ε as a function of V0/kT .

Partition function and thus thermodynamic properties can be derived
from tables of ε. Comparing calculated and experimental values of
thermodynamic functions one can deduce V0.
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Chemical equilibrium

ν ′AA(g) + ν ′BB(g) � ν ′cC (g) + ν ′DD(g).

λ =
NA0
−NA

ν′A
=

NB0
−NB

ν′B
=

NC−NC0
ν′C

=
ND−ND0

ν′D

νcC (g) + νDD(g) + νAA(g) + νBB(g) = 0

dNj = νjdλ

dA = −SdT − pdV +
∑

j µjdNj . At constant volume and
temperature dA =

∑
j µjdNj = (

∑
j µjνj)dλ.

At equilibrium
(∂A∂λ )T ,V = 0 =

∑
j µjνj = νcµC + νDµD + νAµA + νBµB .

Q(NA,NB ,NC ,ND ,V ,T ) =
QA(NA,V ,T )QB(NB ,V ,T )QC (NC ,V ,T )QD(ND ,V ,T ) =
qA(V ,T )NA

NA!
qB(V ,T )NB

NB !
qC (V ,T )NC

NC !
qD(V ,T )ND

ND !

µi = −kT (∂ lnQ
∂Ni

)Nj 6=i ,V ,T = −kT (∂ lnQi
∂Ni

)Nj 6=i ,V ,T =

−kT (
∂ ln(q

Ni
i /Ni !)
∂Ni

)Nj 6=i ,V ,T = −kT ln qi (V ,T )
Ni
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Chemical equilibrium

Derive the equilibrium constant expression.
N
νC
C N

νD
D

N
νA
A N

νB
B

=
q
νC
C q

νD
D

q
νA
A q

νB
B

Kc(T ) =
ρ
νC
C ρ

νD
D

ρ
νA
A ρ

νB
B

= (qC/V )νC (qD/V )νD

(qA/V )νA (qB/V )νB

pj = ρjkT thus Kp(T ) =
p
νC
C p

νD
D

p
νA
A p

νB
B

= (kT )νC+νD−νA−νBKc(T )

E.g., Association of alkali metal vapor,

2Na(g) � Na2(g) Kp(T ) = pdimer

p2
monomer

= (kT )−1 (qNa2
/V )

(qNa/V )2

qNa(T ,V ) = ( 2πmNakT
h2 )3/2Vqelec(T )

qNa2(T ,V ) = (
2πmNa2

kT

h2 )3/2V 8π2IkT
2h2

e−βhν/2

1−e−βhν ω1ee
De/kT =

(
2πmNa2

kT

h2 )3/2V T
2Θr

(1− e−βhν)−1eD0/kT

qNa
V =?

qNa2
V =?
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Chemical equilibrium

Isotopic exchange reaction, H2 + D2 � 2HD. Born-Oppenheimer
approximation implies that H2,D2,HD have the same internuclear
potential, k and De .

K (T ) = Kp(T ) = Kc(T ) =
ρ2
HD

ρH2
ρD2

=
p2
HD

pH2
pD2

=
q2
HD

qH2
qD2

=

(
2πmHDkT

h2 )3( T
Θr,HD

)2( e
−Θν,HD/2T

1−e
−Θν,HD/T

)2e2De/kT

(
2πmH2

kT

h2 )3/2(
2πmD2

kT

h2 )3/2( T2

4Θr,H2
Θr,D2

)( e
−Θν,H2

/2T

1−e
−Θν,H2

/T
)( e
−Θν,D2

/2T

1−e
−Θν,D2

/T
)e2De/kT

=

m3
HD

(mH2
mD2

)3/2

4Θr,H2
Θr,D2

Θ2
r,HD

(1−e−Θν,H2
/T

)(1−e−Θν,D2
/T

)

(1−e−Θν,HD/T )2
e−(2Θν,HD−Θν,H2

−Θν,D2
)/2T

Θν,HD
Θν,H2

= νHD
νH2

= (
µH2
µHD

)1/2. Thus θv ,HD = ( 3
4 )1/2θv ,H2 .

For this reaction K (T ) = 4(1.06)exp−77.7
T .
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Chemical equilibrium

For diatomic isotopic exchange reactions like 14N2 +15 N2 � 214N15N:

K (T ) = 4(1 + ∆2

8M2 )e
−∆2ΘM,vib/32M2T , where ∆ is the mass difference

between isotopes and M is mass of the heavier isotope

CH4 + DBr � CH3D + HBr K (T ) =
ρCH3D

ρHBr
ρCH4

ρDBr
=

qCH3D
qHBr

qCH4
qDBr

=

σCH4
σDBr

σCH3D
σHBr

(
MCH3D

MHBr

MCH4
MDBr

)3/2 IHBr
IDBr

(IAIB IC )
1/2
CH3D

(IAIB IC )
1/2
CH4

qvib,CH3D
qvib,HBr

qvib,CH4
qvib,DBr

qvib,CH3D
qvib,HBr

qvib,CH4
qvib,DBr

≈ exp[−
∑

j

Θ
CH3D
ν,j +ΘHBr

ν,j −Θ
CH4
ν,j −ΘDBr

ν,j

2T ]

σCH4
σDBr

σCH3D
σHBr

= 12×1
3×1 = 4
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Chemical equilibrium

Teller—Redlich product rule for isotopically substituted compounds:

(M
′

M )3/2 I ′

I = Πn
i=1(

m′i
mi

)3/2Π3n−5
j=1

ν′j
νj

for linear molecules and

(M
′

M )3/2 (I ′AI
′
B I
′
C )1/2

(IAIB IC )1/2 = Πn
i=1(

m′i
mi

)3/2Π3n−6
j=1

ν′j
νj

Diatomic molecules: H2 + I2 � 2HI

K (T ) = (qHI /V )2

(qH2
/V )(qI2/V ) =

q2
HI

qH2
qI2

=

(
m2

HI
mH2

mI2
)3/2(

4Θr,H2
Θr,I2

Θ2
r,HI

) (1−e−Θν,H2
/T

)(1−e−Θν,I2
/T

)

(1−e−Θν,HI /T )2
exp

(2DHI
0 −D

H2
0 −D

I2
0 )

RT

Compare with d(lnK ) = −∆H
R d( 1

T )

Polyatomic molecules:

H2 + 1
2O2 � H2O Kp(T ) =

qH2O
/V

(kT )1/2(qH2
/V )(qO2

/V )1/2

qH2
V = (

2πmH2
kT

h2 )3/2( T
2Θr,H2

)(1− e−Θν,H2
/T )−1eD0,H2

/RT

114/1



Chemical equilibrium

qO2
V = (

2πmO2
kT

h2 )3/2( T
2Θr,O2

)(1− e−Θν,O2
/T )−13eD0,O2

/RT

qH2O

V = (
2πmH2O

kT

h2 )3/2 π1/2

σ ( T 3

ΘA,H2O
ΘB,H2O

ΘC ,H2O
)Π3

j=1(1−
e−Θνj,H2O

/T )−1eD0,H2O
/RT

Restricted internal rotation: Ethylene-Ethane equilibrium

C2H4 + H2 � C2H6, one should find the value of V0

For the equilibrium
∑

j νjµj = 0 substitute µ(T , p) = µ0(T ) + kT ln p

to get lnKp = −∆µ0
kT

µ = −kT ln( q
N ) = −kT ln[( q

V )VN ] = −kT ln[( q
V )kT ] + kT ln p

µ0(T ) = −kT ln[( q
V )kT ] depends on the unit of pressure.

q(V ,T ) = qtrans(V ,T )qrot(T )qvib(T )qelec(T )
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Chemical equilibrium

Zero of energy conventions enters in calculation of
qelec(T ) = ωe1e

−εe1/kT + ωe2e
−εe2/kT + · · · =

eDe/kT (ωe1 + ωe2e
−∆ε12/kT ) = eDe/kTq0

elec(T ).

q(V ,T ) = qtrans(V ,T )qrot(T )qvib(T )q0
elec(T )eDe/kT =

qtrans(V ,T )qrot(T ){Πj(1− e−Θνj/T )−1}q0
elec(T )e(De−1/2

∑
j hνj )/kT =

qtrans(V ,T )qrot(T )q0
vib(T )q0

elec(T )eD0/kT

q(V ,T ) = q0(V ,T )eD0/kT = q0(V ,T )eε
0
0/kT partition as the product

of an internal part q0(V ,T ) and a scaling factor accounting for the
arbitrary zero of energy.

µ− ε0
0 = −kT ln[(q

0

V )kT ] + kT ln p

limT→0 µ = ε0
0

Convention: Energy of an element is zero at 0◦K if it is in the physical
state characteristic of 25◦C and 1 bar. For a molecule ε0

0 represents
the energy of a molecule at 0◦K relative to the elements, i.e., heat of
formation.
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Chemical equilibrium

G 0 − E 0
0 = −RT ln[(q

0

V )kT ] where E 0
0 is the standard free energy at

0◦K.

E 0
0 = H0

0 = G 0
0

(G 0 − E 0
0 )/T varies slower with T compared to (G 0 − E 0

0 ).

−R lnKp =
∆E0

0
T + ∆(

G0−E0
0

T )

S0
298 = (

H298−E0
0

T )− (
G0

298−E0
0

T )
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Class presentations

Mr. Javadi Crystals, 11-1:11-3 15 Tir 11 am
Mr. Hadi Chemical Equilibrium 16 Tir 10:15 am
Mr. Moradi Crystals, 11-4:11-6 17 Tir 10:10 am
Ms. Mirzakhani Quantum Statistics, 10-1:10-4 19 Tir 2:45 pm
Mr. Sharbati Quantum Statistics, 10-5:10-7 20 Tir 2:45 pm
Ms. Madadi Simple theories of liquids 20 Tir 4 pm
Mr. Moham-
madvand

Polymers 22 Tir 3 pm

Mr. Hashemi Ideal systems in electric and mag-
netic fields

23 Tir 3 pm

Mr. Hajilou Imperfect gases 24 Tir 3:15 pm
Mr. Zamani Distribution functions in

monatomic liquids
24 Tir 4:30 pm
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Table of physico-chemical constants

Quantity Symbol Value (SI units)

atomic mass constant mu = 1 u 1.6605389× 10−27 kg
Avogadro’s number NA, L 6.0221417× 1023

Boltzmann constant k = R/NA 1.3806505× 10−23JK−1

Faraday constant F = NAe 96485.338 Cmol-1

gas constant R 8.314472 JK-1mol-1,
0.08205 L atm mol-1K-1,
8.20573 m3 atm mol-1K-1

molar Planck constant NAh 3.99031×10−10 J s mol-1

electric constant (vacuum
permittivity)

ε0 = 1/(µ0c
2) 8.854187817 × 10−12

Fm-1

119/1



Table of physico-chemical constants

Quantity Symbol Value (SI units)

magnetic constant (vacuum
permeability)

µ0 12.56637061×10−7 NA-2

Newtonian constant of gravitation G 6.67408×10−11 m3kg-1s-2

Planck constant h 6.626070040× 10−34 Js
reduced Planck constant ~ 1.054571800× 10−34 Js
speed of light in vacuum c 299792458 m/s
electronic charge e 1.60219× 10−19C
electron mass me 9.10956× 10−31Kg
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