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Aim

Your most valuable asset is your learning ability.

This course is a practice in learning and specially improves your
deduction skills.

This course provides you with tools applicable in understanding many
natural phenomena.

This course teaches you the basics of thermodynamics.

At the end of this semester you should be able to determine whether a
process is possible and if possible whether it is spontaneous. You
should be able to determine the equilibrium state of a thermodynamic
system based on spontaneity condition.
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Course structure

Class location: https://vc.sharif.edu/ch/a.nassimi

Midterm exam 17 Ordibehesht
9 am

Ch. 1–3 37.5%

Final exam 5 Tir 9 am Ch. 4–6 37.5%
Quizz and Problem set 15%
TA 10%

Raise your question and concern as it might be the question or
concern of your classmates.

Always remember that equations are the language of science but they
never do suffice.
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Topics

1st law of thermodynamics

2nd law of thermodynamics

Material equilibrium and thermodynamic functions

Chemical equilibrium in ideal gases.

Phase equilibrium

State function
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Thermodynamics

Study of the underlying physical principles that govern the properties
and behavior of chemical systems.

Physical chemistry:


Thermodynamics

Quantum Chemistry

Statistical mechanics

Kinetics

Thermodynamics: Macroscopic science that studies the
interrelationships of the various equilibrium properties of a system and
their changes in processes.

Quantum chemistry: Application of quantum mechanics to atomic
structure, molecular bonding and spectroscopy.

Statistical mechanics: Calculation of macroscopic thermodynamic
properties from molecular properties (It also allows a microscopic
interpretation of thermodynamics relations.).

Kinetics: Study of rate processes e.g., chemical reactions, diffusion
and the flow of charge.
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Thermodynamics

Study of heat, work, energy and the changes they produce in the
states of systems.

Thermodynamics:

{
Equilibrium thermodynamics

Irreversible thermodynamics

System and surroundings'

&

$

%

'
&

$
%System Environment

Open system, closed system and an isolated system.

Wall: Rigid, nonrigid; permeable, impermeable; adiabatic or
nonadiabatic.
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Thermodynamics

Equilibrium: (a) Systems macroscopic properties remain constant with
time. (b) removal of the system from surroundings causes no change
in the system properties.

Mechanical equilibrium: no unbalanced forces act on or within the
system.

Material equilibrium: no net chemical reactions occur in the system
and no net flow of chemical species occur among parts of the system.

Thermal equilibrium: no net change in the properties of a system or its
surrounding when they are separated by a thermally conducting wall.

Thermodynamic properties:

Extensive vs. intensive

Homogeneous system vs. inhomogeneous system.

A homogeneous part of a system is called a phase.

Thermodynamic state and state functions.
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Thermodynamics

Mechanical equilibrium →Pressure

Thermal equilibrium→Temperature

Zeroth law of thermodynamics: two systems that are each found to be
in thermal equilibrium with a third system will be found to be in
thermal equilibrium with each other.

Thermometer: a reference system, r.

θ ≡ aVr + b = a(Vbulb + Al) + b = aAl + (aVbulb + b) ≡ cl + d .

ice point and steam point for centigrade scale

Resistance thermometer, thermistor, thermocouple, optical pyrometer.

Temperature is an abstract property that is not measured directly.
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Thermodynamics

Atomic weight, relative atomic mass, Ar.

Molecular weight, relative molecular mass, Ar.

Avogadro’s number

Atomic mass or molecular mass in units of atomic mass units (amu).

The mole, molar mass M.

NA = 6.02× 1023mol−1

Ideal gases

Boyle’s law is an experimental gas law that describes how the pressure
of a gas tends to increase as the volume of the container decreases.,
PV = k(n,T )
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Ideal gas

The absolute pressure exerted by a given mass of an ideal gas is
inversely proportional to the volume it occupies if the temperature and
amount of gas remain unchanged within a closed system.

Figure: Schematic of the Boyle’s experiment taken from
https://libretexts.org/
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Ideal gas

The gas becomes ideal in the zero density limit.

Pressure and volume units.

Charles law or law of volumes, When the pressure on a sample of a
dry gas is held constant, V = a1 + a2θ, (using the Kelvin scale,
temperature and the volume will be in direct proportion:
V
T = k ′(n,P)).
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Ideal gas

Thermal expansion of gases and of liquid mercury are similar.

Ideal gas thermometer (temperature scale): T = limP→0
PV
nR or

T ≡ BV .

B is determined by assigning 273.16 K to the triple point of water.

T ≡ 273.16K limP→0
V

Vtr

A constant volume gas thermometer is more practical.

Present definition of the Celsius (centigrade) scale t:
t/°C ≡ T/K − 273.15

13/115



Ideal gas

Absolute ideal gas temperature is based on properties of a general
class of substances, thus it has fundamental significance (determining
kinetic energy and molecular energy distribution).

At constant P and m, V/T=Vtr/Ttr = constant. This is Charles’ law.

Gay-Lussac’s law, P
T = k ′′(n,V ).

What about a process which changes, P, V and T?

P1,V1,T1 → P2,V2,T2, divide this process into one at constant
T = T1, P1,V1 → P2,V3 and a second at constant
P = P2, V3,T1 → V2,T2 thus showing that P1V1

T1
= P2V2

T2
.

Volume is an extensive quantity: At constant T and P, V is
proportional to m. Thus PV

T = cm, where the constant c depends on
the nature of gas under consideration.
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Ideal gas

Avogadro’s hypothesis states that at constant P and T, V is
proportional to n. Thus PV

T = nR, where R is a universal constant.

Definition: xi = ni
ntotal

, Pi = xiPtotal .

Dalton’s law states that the presence of other molecules has no effect
on the pressure exerted by molecules of species i. I.e., Pi = ni

RT
V

Ptotal =
∑

i Pi = RT
V

∑
i ni = RT

V ntotal

Pi
Ptotal

= ni
ntotal

Ideal gas law can be deduced from classical mechanics
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Differential calculus

Function is a set of ordered pairs

Domain and range

Limit: limx→c f (x) = L iff ∀ε ∃δ such that if |x − c | < δ then
|f (x)− L| < ε.

E.g., limx→1
x2−1
x−1 = 2 limx→∞

2x−1
x = 2.

Slope and Derivative

If y=f(x), then dy
dx = lim∆x→0

∆y
∆x = limh→0

f (x+h)−f (x)
h = f ′(x).

Evaluate f’(x) for
f (x) = x2, a, au, xn, eax , ln ax , sin(ax), cos(ax), u + v , uv , u/v

Chain rule: (fog)′(x) = f ′(g(x))g ′(x).

Second derivative: d2y
dx2 ≡ d

dx
dy
dx .

16/115



Differential calculus

Partial derivative of z=f(x,y), (∂z
∂x )y ≡ lim∆x→0

f (x+∆x ,y)−f (x ,y)
∆x and

( ∂z
∂y )x ≡ lim∆y→0

f (x ,y+∆y)−f (x ,y)
∆y .

Total differential of z(x,y), dz = (∂z
∂x )ydx + ( ∂z

∂y )xdy .

Total differential of z(r,s,t), dz = (∂z
∂r )s,tdr + (∂z

∂s )r ,tds + (∂z
∂t )r ,sdt.

1 = (∂z
∂x )y

dxy

dzy
= (∂z

∂x )y (∂x
∂z )y ; thus (∂z

∂x )y = 1
( ∂x
∂z

)y
.

For an infinitesimal process in which z stays constant
(∂z
∂x )y (∂x

∂y )z = −( ∂z
∂y )x = − 1

( ∂y
∂z

)x

In short (∂z
∂x )y (∂x

∂y )z (∂y
∂z )x = −1

If second partial derivatives of z are continuous, then ∂2z
∂x∂y = ∂2z

∂y∂x

Volumetric equation of state: V = f (P,T , n1, n2, · · · )
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Equation of State

One phase system composed of n moles of a single pure substance,
V=f(P,T,n), alternatively, P=g(V,T,n) or T=h(P,V,n).
V=nk(T,P)
Molar volume, Vm = V̄ ≡ V /n and Vm = k(T ,P).
A molar quantity corresponds to every extensive property.

18/115



Real gases

Intermolecular forces and or molecular volume becomes important.

Compressibility factor Z ≡ PV
nRT = PVm

RT is used to quantify deviations
of a gas from ideal behavior.
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Critical point

Thermodynamic variables of a material at its critical point are denoted
by Tc ,Pc ,Vmc . These are important properties of each material.
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Critical point

Phase boundary between liquid and gas does not continue indefinitely.
It terminates at a point on the phase diagram called the critical point.

In water, the critical point occurs at around Tc = 647.096 K
(373.946°C), pc = 22.064 MPa (217.75 atm) and ρc = 356kg/m3.
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Real gases

The law of corresponding states
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Van der Waals Equation of State

There are many equations of state for real gases. The most
conceptually appealing is the Van der Waals equation of state.

Each molecule makes 4/3πd3 inaccessible to other molecules. Define
forbidden volume (inaccessible space) per mole b = NA4/3πd3

Attractive forces between molecule A and every other molecule reduces
the impact of A on the walls. Since every other molecule is affected
similarly, effect of attractive forces on pressure is proportional to N2.

To account for the dependence of attractive forces on distance their
affect on pressure is assumed to be proportional to 1/V 2, i.e.,
intermolecular forces are implicitly assumed to be proportional to 1/r6

Thus Start with the ideal gas equation of state and substitute V by
V − nb. Further substitute P by P + a n2

V 2 .
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Equation of State

Van der Waals equation of state: (P + a n2

V 2 )(V − nb) = nRT . Van
der Waals constants a and b are treated as phenomenological
constants to be determined experimentally for each material.

V̄ 3 − (b + RT
P )V̄ 2 + a

P V̄ −
ab
P = 0

For solids and liquids Vm = c1 + c2T + c3T
2 − c4P − c5PT is useful.

An equation of state is the locus of all points representing a system in
the thermodynamic space.
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Equation of State
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Thermodynamic properties

Lines of constant temperature are called isotherms, isothermal
processes move the system on such lines.

Also consider isobars and isochores.

Considering, P, V, T in the thermodynamic state, there are 6 first
partial derivatives possible.

Thermal expansivity, α(T ,P) ≡ 1
V (∂V

∂T )P,n = 1
Vm

(∂Vm
∂T )P .

Isothermal compressibility, κ(T ,P) ≡ − 1
V (∂V

∂P )T ,n = − 1
Vm

(∂Vm
∂P )T .

Four other partial derivatives can be computed from α and κ.

For solids, α ≈ 10−5 to 10−4K−1 and κ ≈ 10−6 to 10−5atm−1.

For liquids, α ≈ 10−3.5 to 10−3K−1 and κ ≈ 10−4atm−1.
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Integral calculus

Properties of summation:
∑n

i=1 cai = c
∑n

i=1 ai
∑n

i=1(ai + bi ) =∑n
i=1 ai +

∑n
i=1 bi

∑n
i=1

∑m
j=1 aibj = (

∑n
i=1 ai )(

∑m
j=1 bj ).

If dy/dx=f(x) then y =
∫
f (x)dx .∫

af (x)dx = a
∫
f (x)dx ,

∫
[f (x) + g(x)]dx =∫

f (x)dx +
∫
g(x)dx

∫
f (x)g(y)dxdy = (

∫
f (x)dx)(

∫
g(y)dy)∫

dx = x + C ,
∫
xndx = xn+1

n+1 + C ,
∫

dx
x =

ln x + C ,
∫
eaxdx = eax

a + C ,
∫

sin axdx =
− cos ax

a + C ,
∫

cos axdx = sin ax
a + C .
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Integral calculus

Definite integral:
∫ b

a f (x)dx ≡ limn→∞
∑n

i=1 f (xi )∆x where

∆x = b−a
n , and xi = a + i∆x .

Fundamental theorem of calculus: if F’(x)=f(x) then∫ b
a f (x)dx = F (b)− F (a).

Summation index is a dummy index and definite integration variable is
a dummy variable.∫ b

a f (x)dx = −
∫ a

b f (x)dx and
∫ b

a f (x)dx +
∫ c

b f (x)dx =
∫ c

a f (x)dx .

If [∂y(x ,z)
∂x ]z = f (x , z) then

∫
f (x , z)dx = y(x , z)., e.g.

f = xz3 ⇒ y(x , z) = x2z3/2 + g(z)

Also,
∫ b

a f (x , z)dx = y(b, z)− y(a, z)
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Review: Integrals

∫
x(x + a)ndx =∫

1
a2+x2 dx =∫

x
a2+x2 dx

= 1
2 ln |a2 + x2|

∫
x2

a2+x2 dx =∫
x3

a2+x2 dx =∫
tan(ax + b)dx =

−1
a ln | cos(ax + b)|

∫
cotan(ax + b)dx =

1
a ln | sin(ax + b)|
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Review: Integrals
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1
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Classical mechanics

Newton’s second law of motion: ~F = m~a.

Equivalently, Fx = max , Fy = may , Fz = maz .

Work dw ≡ ~F · d~r .

Power: P ≡ dw/dt

The work-energy theorem: work done on a particle by the force acting
on it equals the change in kinetic energy of the particle.

Fx = m( dvx
dt ) = m( dvx

dx )vx

w =
∫ 2

1 mvxdvx +
∫ 2

1 mvydvy +
∫ 2

1 mvzdvz =
m
2 (v2

x2 + v2
y2 + v2

z2)− m
2 (v2

x1 + v2
y1 + v2

z1) = K2 − K1 = ∆K

Conservative is a force depending only on the position.
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Classical mechanics

For conservative forces, potential energy can be defined satisfying
∂V
∂x = −Fx ,

∂V
∂y = −Fy ,

∂V
∂z = −Fz

w = −
∫ 2

1
∂V
∂x dx −

∫ 2
1
∂V
∂y dy −

∫ 2
1
∂V
∂z dz = −

∫ 2
1 dV = V1 − V2

w = K2 − K1 = V1 − V2; thus, K1 + V1 = K2 + V2.

Law of conservation of mechanical energy: Emech = K + V , when
forces are conservative mechanical energy is conserved.

E.g., potential energy and mechanical energy in the gravitational field
of earth.

For an n-particle system, K = K1 + K2 + · · ·+ Kn = 1
2

∑n
i=1 miv

2
i

V =
∑

i

∑
j>i Vij

With conservative forces K + V = Emech is constant for many particle
systems.
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P-V work

Most common type of work in thermodynamics.

Reversible P-V work.

dw = ~F · ~dr = PAdx

dwrev = −PdV
wrev = −

∫ 2
1 PdV

The above expression is a line integral and its value depend on the
path taken by the system.

dwirrev = −PextdV − dKpist ; thus, wirrev = −
∫ 2

1 PextdV −∆Kpist
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Heat

When two bodies come into thermal contact
m2c2(T2 − Tf ) = m1c1(Tf − T1) ≡ q

cH2O = 1.0cal/(g °C ) at 15 °C and 1 atm.

dqP ≡ mcPdT

qP = m
∫ T2

T1
cP(T )dT

CP = dqP/dT = mcP

In the absence of phase transition:
m2

∫ T2

Tf
cP2(T )dT = m1

∫ Tf

T1
cP1(T )dT = qP

Reversible vs. irreversible flow of heat.
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The first law of thermodynamics

Internal energy: Energy due to motions and interactions of molecules.

E=K+V+U

In most cases, E ≈ U.

The caloric theory claim that heat consists of a self-repellent fluid
called caloric that flows from hotter bodies to colder bodies.

Caloric was also thought of as a weightless gas that could pass in and
out of pores in solids and liquids.

The ”caloric theory” was superseded by the mid-19th century in favor
of the mechanical theory of heat.
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The first law of thermodynamics

The law of conservation of energy.

Um ≡ U/n is an intensive quantity.

The first law of thermodynamics: For a closed system there exists an
extensive state function E such that, ∆E = q + w

Also, ∆Esyst + ∆Esurr = 0.

For a system at rest in the absence of external fields, ∆U = q + w

∆U = U2 − U1 = Ufinal − Uinitial

Heat and work are defined only in terms of processes.

Before and after the process of energy transfer heat and work do not
exist.
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The first law of thermodynamics

Heat is energy transfer due to temperature difference.

Work is energy transfer due to a macroscopic force acting through a
distance.

Heat and work are forms of energy transfer.

Enthalpy: H ≡ U + PV .

U2 − U1 = q + w = q −
∫ V2

V1
PdV , for a constant pressure process,

U2−U1 = qP −P(V2−V1). qP = U2 +PV2− (U1 +PV1) = H2−H1

So at constant pressure, closed system and PV work only, qP = ∆H.

∆H = ∆U + ∆(PV ) but ∆(PV ) 6= P∆V + V∆P + ∆(V )∆(P)

Hm = H/n = (U + PV )/n = Um + PVm

For a constant volume process, ∆U = q + w = qV

When ∆H ≈ ∆U?
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Heat capacities

Heat capacity of a closed system for an infinitesimal process pr,
Cpr ≡ dqpr/dT

Isobaric heat capacity: CP ≡ dqP
dT = (∂H

∂T )P

Isochoric heat capacity: CV ≡ dqV
dT = ( ∂U

∂T )V

Molar heat capacities: CP,m ≡ CP/n and CV ,m ≡ CV /n.

Specific heat capacity, cP ≡ CP/m, specific volume, v = V /m = 1/ρ
and specific enthalpy, h = H/m.

CP − CV = ( ∂U
∂T )P + P(∂V

∂T )P − ( ∂U
∂T )V

dU = ( ∂U
∂T )V dT + ( ∂U

∂V )TdV

( ∂U
∂T )P = ( ∂U

∂T )V + ( ∂U
∂V )T (∂V

∂T )P

CP − CV = [( ∂U
∂V )T + P](∂V

∂T )P

( ∂U
∂V )T is called the internal pressure.
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Heat capacities
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Joule and Joule–Thompson experiments

Above apparatus is used to measure ∆T/∆V at constant U. From
which, we derive (∂T

∂V )U

Joule coefficient: µJ ≡ (∂T
∂V )U

( ∂U
∂V )T = −( ∂U

∂T )V (∂T
∂V )U = −CVµJ

Joule–Thompson experiment involves the slow throttling of a gas
through a rigid porous plug.
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Joule and Joule–Thompson experiments

wL = P1V1, wR = −P2V2, w = wL + wR = P1V1 − P2V2.

U2 − U1 = q + w = w = P1V1 − P2V2; thus U2 + P2V2 = U1 + P1V1

or ∆H = 0.

Joule–Thompson experiment measures ∆T/∆P at constant H.

Joule–Thompson coefficient µJT ≡ (∂T
∂P )H

Joule–Thompson liquefaction.
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Joule and Joule–Thompson experiments

(∂H
∂P )T = −CPµJT

Perfect gas: PV = nRT and ( ∂U
∂V )T = 0.

For a perfect gas U = U(T ).Thus dU = CV (T )dT . Also, H ≡
U + PV = U + nRT → H = H(T ), CP = dH/dT , CP = CP(T ).

CP − CV = P(∂V /∂T )P = nR

( ∂U
∂V )T = −CVµJ , thus µJ = 0 for a perfect gas.

(∂H
∂P )T = −CPµJT , thus µJT = 0 for a perfect gas.
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Perfect gases

For a perfect gas, PV work only, dU = CV dT = dq − PdV

For a reversible isothermal process in a perfect gas:
w = −q = nRT ln V1

V2
= nRT ln P2

P1

For a reversible adiabatic process in a perfect gas,
CV dT = −PdV = −(nRT/V )dV or CV ,mdT = −(RT/V )dV∫ 2

1
CV ,m

T dT = −
∫ 2

1
R
V dV = R ln V1

V2
≈ CV ,m ln T2

T1

ln T2
T1

= ln( V1
V2

)R/CV ,m

For a reversible adiabatic process in a perfect gas, T2
T1

= ( V1
V2

)R/CV ,m

P1V
1+R/CV ,m

1 = P2V
1+R/CV ,m

2

For a perfect gas with constant CV undergoing a reversible adiabatic
process, P1V

γ
1 = P2V

γ
2 where γ = CP/CV .

Perfect gas, adiabatic process, ∆U = CV (T2 − T1) = w .
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Potential theory, State function

Scalar potential

Conservative force
⇐⇒ ~F = −∇φ ⇐⇒ ∇× ~F = 0 ⇐⇒

∮
~F · dr = 0

∇× F = −∇×∇φ = 0∮
F · dr = −

∮
∇φ · dr = −

∮
dφ = 0∮

ACBDA F ·dr = 0 ⇐⇒
∫

ACB F ·dr = −
∫

BDA F ·dr =
∫

ADB F ·dr ⇐⇒
the work is path independent.
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Potential theory, State function

∫ B
A F · dr = φ(A)− φ(B)→ F · dr = −dφ = −∇φ · dr . Therefore

(F +∇φ) · dr = 0

Stokes theorem,
∮
~F · dr =

∫
S ∇× ~F · d~σ by integrating over the

perimeter of an arbitrary differential surface dσ, we see that∮
F · dr = 0 result in ∇× F = 0.

Scalar potential for the gravitational force on a unit mass m1,
FG = −Gm1m2 r̂

r2 = −kr̂
r2 ?

Scalar potential for the centrifugal force and simple harmonic
oscillator on a unit mass m1, ~Fc = ω2~r and ~FSHO = −k~r .

Exact differentials. How to know if integral of
df = P(x , y)dx + Q(x , y)dy is path dependent or independent.
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State functions and line integrals:

If b is a state function then L

∫ 2
1 db = b2 − b1

Prove that a quantity b is a state function iff
∮
db = 0.
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Molecular nature of internal energy

Translational kinetic energy: Ktr ,m = 1/2mv2. Also average
translational kinetic energy of one mole of molecules is 3/2RT .

For linear molecules, Ej = j(j + 1)b, Urot,m = RT . For non-linear
molecules Urot,m = 3/2RT

Molecular vibrational energy En = (n + 1/2)hν.

Electronic energy: εel = εeq − ε∞, changes in chemical reactions.

Intermolecular forces.
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Structural Interactions

Coulomb interaction ∝ q1q2
r is the strongest structural interaction.

Van der waals interactions include Dipole-dipole interaction ∝ µ1·µ2

r3

and London interactions.

Polar bonds is a necessary condition for molecular dipole moment.

If a molecule is indistinguishable after rotating by 2π
n radians around

an axes, that symmetry axes is called cn.

A plane of symmetry is an imaginary plane that bisects a molecule
into halves that are mirror images of each other.

An improper rotation is performed by rotating the molecule 360°/n
followed by reflection through a plane perpendicular to the rotation
axis.
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Intermolecular forces

If the resulting configuration is indistinguishable from the original, we
say there exists an n-fold improper rotation axis (or Sn axis) in the
molecule.

Presence of S2n in a molecule results in zero dipole moment in spite of
polar bonds.

London or dispersion forces are due to spontaneous dipoles created by
quantum effects. Edisp

AB ≈ −3
2

IAIB
IA+IB

αAαB
R6

I represents the ionization potential while α represents polarizability.

Increasing the size and surface area of a molecule increases its
polarizability which in turn increases its London forces.

Compare the range for these three forces.
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Lennard-Jones potential

Non-bonding intermolecular interactions are qualitatively similar to
bonding interactions.

For atoms and approximately spherical molecules LJ is a good
approximation to intermolecular interaction,
VLJ(r) = 4ε[(σr )12 − (σr )6].

r is internuclear distance while σ and ε are experimentally determined
parameters. σ/2 can be ascribed to molecular (atomic) radius.

LJ interaction can produce Van der waals molecules.
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The second law of thermodynamics

Kelvin-Planck statement: It is impossible for a system to undergo a
cyclic process whose sole effects are the flow of heat into the system
from a heat reservoir and the performance of an equivalent amount of
work by the system on the surroundings.

Second law is a generalization of experience. Its evidence include: 1-
All attempts at building a perpetual motion machine has failed. 2-
Deductions from the second law of thermodynamics about chemical
processes have all been confirmed. 3- This law can be deduced from
statistical mechanics.

Clausius statement: It is impossible for a system to undergo a cyclic
process whose sole effects are the flow of heat into the system from a
cold reservoir and the flow of an equal amount of heat out of the
system into a hot reservoir.
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Heat engines

To keep producing work a heat engine must work in cycles.

Each cycle must contain at least three steps: 1- Absorption of the
heat qH by the system. 2- performance of the work -w, 3- Expulsion
of the heat -qC by the system.

e = −w
qH

= qH +qC
qH

= 1 + qC
qH
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Heat engines

Carnot’s principle: No heat engine can be more efficient than a
reversible heat engine when both engines work between the same pair
of temperatures τH and τC .

The maximum amount of work from a given supply of heat is
obtained with a reversible engine.

Proof by contradiction:

esuper > erev where esuper =
−wsuper

qH,super
and erev = −wrev

qH,rev
.

Run the reversible engine in reverse as a heat pump and couple it with
super-engine so that the net effect of the combined system is
absorbing heat from the cold reservoir and producing the same
amount of work.

This is in contradiction with the Kelvin-Planck statement of the
second law.
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Heat engines
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Heat engines

Thus esuper > erev is wrong. Therefore e ≤ erev .

Consider two engines A and B operating reversibly between
temperatures τH and τC .

If either eA,rev < eB,rev or eA,rev > eB,rev one encounter a
contradiction with the second law by the same reasoning as above.

Thus eA,rev = eB,rev .

All reversible heat engines operating between reservoirs with
temperatures τH and τC have the same efficiency erev . Which is the
greatest possible efficiency for any engine operating between these two
temperatures.

eirrev ≤ erev

erev = f (τH , τC )
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Heat engines

Without loss of generality consider ideal gas as the working substance.
The first step (absorption of qH) is a reversible isothermal expansion.
The step involving expulsion of -qC is a reversible isothermal
contraction.
Two isoterms must be connected by two reversible adiabats.
This is called a Carnot cycle.
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Heat engines

For a reversible process with PV work only, dU = dq − PdV .

For a perfect gas: CV dT = dq − nRTdV /V .

Dividing by T and integrating over the Carnot cycle:∮
CV (T ) dT

T =
∮ dq

T − nR
∮

dV
V .∫

CV (T ) dT
T is an ordinary integral and CV (T ) dT

T is the differential of

a state function, thus
∮
CV (T ) dT

T = 0.

Similarly,
∮

dV
V =

∮
d lnV = 0

Thus,
∮ dq

T = 0. I.e.
∮ dq

T = qH
TH

+ qC
TC

= 0.

erev = 1 + qC
qH

= 1− TC
TH

= TH−TC
TH

Since erev is independent of the working material, we must have
qC
qH

= −TC
TH
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Entropy

Thus for any Carnot cycle:
∮ dq

T = qC
TC

+ qH
TH

= 0.

The lower the TC and the higher the TH the greater the efficiency of
the thermal engine.

We need to generalize the Carnot cycle result
∮ dq

T = 0 to any cycle.

For a perfect gas: CV dT = dq − nRTdV /V .

Dividing by T and integrating over a cycle:∮
CV (T ) dT

T =
∮ dq

T − nR
∮

dV
V .∫

CV (T ) dT
T is an ordinary integral and CV (T ) dT

T is the differential of

a state function, thus
∮
CV (T ) dT

T = 0. Similarly,
∮

dV
V =

∮
d lnV = 0

Thus,
∮ dq

T = 0, for any reversible cycle of an ideal gas.

Generalization to any cyclic process:
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Entropy

Dashed lines are reversible adiabats dividing the cycle into adjacent
strips.

Draw the reversible isotherm mn such that the area under amnb
equals the area under ab. Thus wamnb = wab.
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Entropy

∆Uamnb = ∆Uab. Thus qamnb = qab.

Also qamnb = qmn. Hence qmn = qab.

Draw reversible isotherm rs such that qrs = qcd .

The path mnsrm is a Carnot cycle. Thus qmn

Tmn
+ qsr

Tsr
= 0 = qab

Tmn
+ qdc

Tsr
.

In the limit of infinitesimally narrow strips between adiabats,
dqab
Tab

+ dqdc
Tdc

= 0.

Taking the sum over all infinitesimal strips we have
∮ dqrev

T = 0
dqrev

T is the differential of a state-function called entropy, S.

dS ≡ dqrev

T and ∆S = S2 − S1 =
∫ 2

1
dqrev

T .

If the system is composed of two subsystems,
dS = dq/T = dq1/T + dq2/T = dS1 + dS2, i.e., entropy is extensive.

Reversible change of state of a perfect gas:
dqrev = CV dT + nRTdV /V → dS = CV dT/T + nRdV /V → ∆S =∫ T2

T1

CV (T )
T dT + nR ln V2

V1
.

59/115



Entropy

Mixing of different inert perfect gases at constant P and T:

This is an irreversible process. To calculate ∆S we shall devise a
reversible path. 1- A reversible expansion to volume V. 2- A reversible
mixing of the two gases.
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Entropy

∆S1 = ∆Sa + ∆Sb = naR ln(V /Va) + nbR ln(V /Vb), ∆S2 = 0

∆mixS = −naR ln xa − nbR ln xb

Entropy of a perfect gas mixture is equal to the sum of the entropies
each pure gas would have if it alone occupied the volume of the
mixture at the temperature of the mixture.

∆Suniv = ∆Ssyst + ∆Ssurr

For a reversible process:
dSuniv = dSsyst + dSsurr = dqrev

Tsyst
+ −dqrev

Tsurr
= dqrev

Tsyst
− dqrev

Tsyst
= 0. Thus

∆Suniv = 0.

Adiabatic irreversible process in a closed system:
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Entropy

Bring state 2 in an adiabatic reversible process to Thr. S3 = S2.

In a reversible isothermal process bring the system’s entropy to S1.
S4 = S1.

S4 − S3 =
∫ 4

3
dqrev

T = q3→4
Thr

.

Bring the system on an isentrop (reversible adiabat) to state 1.
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Entropy

0 =
∮
dSsyst = (S2−S1) + 0 + q3→4/Thr + 0→ S2−S1 = −q3→4/Thr

0 =
∮

(dq + dw) = q3→4 + w . Thus w = −q3→4.

To avoid contradiction with the second law we must have
S2 − S1 = −q3→4/Thr ≥ 0.

If equality occurs q3→4 = 0 and w=0. So after a cycle there is no
change in the surroundings nor any change in the system. But an
irreversible process involve finite driving force which would result in a
change in the system or the surroundings or both of them.

For a closed system in an irreversible adiabatic process ∆Ssyst > 0.

Since this applies to an isolated system ∆Suniv > 0 for an irreversible
process.

In general ∆Suniv ≥ 0 .
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Entropy

dqrev/T is the differential of a state function S that has the property
∆Suniv ≥ 0 for every process.

Thermodynamic equilibrium in an isolated system is reached when the
system’s entropy is maximized.

Thermodynamic temperature scale:

−qC/qH = 1− f (τC , τH) ≡ g(τC , τH)

Three heat reservoir at temperatures τc , τm, τh

Heat engine 1 acting between τc , τm while heat engine 2 acting
between τm, τh such that qm1 = −qm2.
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Entropy

Consider heat engine 3 composed of heat engines 1 and 2.

Note that −qc3/qh3 = −qc1/qh2 = −(qc1/qm1)(qm2/qh2)→
g(τc , τh) = g(τc , τm)g(τm, τh)

Thus g(τC , τH) = φ(τC )/φ(τH)

By taking the simplest possible choice for φ we define the
thermodynamic temperature scale: ΘC

ΘH
= −qC

qH

Θtr = 273.16°
Θ = 273.16° |q||qtr |
Ideal gas temperature scale and the thermodynamic temperature scale
are numerically equal.
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Entropy

Consider the probability for various distributions.

equilibrium thermodynamic state of an isolated system is the most
probable state.

S=f(p)

Entropy is extensive, for a system composed of subsystems 1 and 2,
S12 = S1 + S2 → f (p12) = f (p1p2) = f (p1) + f (p2)

Thus f (p) = k ln p

Spontaneous mixing of equal volumes of different perfect gases:
∆S = S2 − S1 = k ln(p2/p1)

66/115



Entropy

p1 = ( 1
2 )Nd ( 1

2 )Ne = ( 1
2 )Nd +Ne .

∆S = k ln(1/p1) = k ln 2Nd +Ne = 2Ndk ln 2.

From thermodynamics ∆S = 2ndR ln 2.

Boltzmann’s constant, k = Rnd/Nd = R/NA = 1.38× 10−23J/K .

Entropy is a measure of the probability of a state.

Probability of a thermodynamic state is proportional to the number of
available energy levels of that state.

Equilibrium value of each property is the average of that property over
all possible states.

Thus one calculates the average value of each property and its
variance.

Fluctuations in number density are of the order of
√
N.
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Entropy

Brownian motion is due to fluctuations in pressure.

Fluctuations in electron densities in an electrical resistor produces
noise.

Microscopic reversibility vs. macroscopic irreversibility.
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Material equilibrium

In each phase the number of moles of each substance remains
constant.{

Reaction equilibrium

Phase equilibrium

Criterion for equilibrium in an isolated system is maximization of S.

For a closed but not isolated system equilibrium criterion is
maximization of Ssyst + SSurr .

For a system away from equilibrium: dSuniv = dSsyst + dSsurr > 0 and
dSsurr = dqsurr/T ; thus, dSsyst > −dSsurr = −dqsurr/T = dqsyst/T .

For a closed system in thermal and mechanical equilibrium
dS > dqirrev/T

In general dS ≥ dq
T , Clausius inequality.

dU ≤ TdS + dw
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Energy function interpretation

dU ≤ TdS + SdT − SdT + dw = d(TS)− SdT + dw →
d(U − TS) ≤ −SdT + dw = −SdT − PdV .

At constant temperature and volume, d(U − TS) ≤ 0.

Helmholtz free energy, Helmholtz energy, Helmholtz function or the
work function: A ≡ U − TS .

dU ≤ TdS + SdT − SdT − PdV + VdP − VdP =
d(TS)− SdT − d(PV ) + VdP → d(U + PV − TS) ≤ −SdT + VdP

d(H − TS) ≤ −SdT + VdP

At constant T and P in a closed system in mechanical and thermal
equilibrium with only PV work, d(H − TS) ≤ 0.

Gibbs function, Gibbs energy or Gibbs free energy:
G ≡ H − TS ≡ U + PV − TS

Equilibrium conditions dA = 0 and dG = 0.
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Energy function interpretation

∆Suniv = −∆Hsyst/T + ∆Ssyst = −(∆Hsyst − T∆Ssyst)/T =
−∆Gsyst/T for a closed system at constant T and P, PV work only.

dA ≤ −SdT + dw . At constant temperature, dA ≤ dw . Thus
∆A ≤ w , i.e., wby ≤ −∆A; which is the origin of the term work
function.

Maximum work output by a closed system for an isothermal process
between two given states is obtained in a reversible process and equals
−∆A.

dG = dA + PdV + VdP and dG ≤ −SdT + dw + PdV + VdP.

In a closed system at thermal and mechanical equilibrium for a process
at constant T and P, dG ≤ dw + PdV . Thus, dG ≤ dwnon,PV

∆G ≤ wnon,PV wby ,non,PV ≤ −∆G

−∆G is the maximum non-expansion work done by a system in a
constant T and P process.
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Thermodynamic relations

dU = dq + dw = TdS − PdV

Since dqrev = TdS for a closed system in equilibrium, we have
CV = T ( ∂S

∂T )V , CP = T ( ∂S
∂T )P .

The Gibbs equations:
dH = TdS + VdP, dA = −SdT − PdV , dG = −SdT + VdP.

Comparing dU = (∂U
∂S )V dS + ( ∂U

∂V )SdV with the corresponding Gibbs

equation, (∂U
∂S )V = T and ( ∂U

∂V )S = −P.

Similarly, (∂H
∂S )P = T , (∂H

∂P )S = V , ( ∂A
∂T )V = −S , ( ∂A

∂V )T =

−P, (∂G
∂T )P = −S , (∂G

∂P )T = V .

Thermodynamics, enables properties that are difficult to measure to
be expressed in terms of easily measured properties like
CP(T ,P), α(T ,P), κ(T ,P).
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Thermodynamic relations

Euler reciprocity relation is the condition satisfied by an exact
differential. When df=Mdx+Ndy, f is an exact differential iff
(∂M
∂y )x = (∂N

∂x )y . Originated from ( ∂2f
∂x∂y ) = ( ∂2f

∂y∂x ).

The Maxwell relations: (∂T
∂V )S = −(∂P

∂S )V , (∂T
∂P )S =

(∂V
∂S )P , ( ∂S

∂V )T = ( ∂P
∂T )V , ( ∂S

∂P )T = −(∂V
∂T )P .

( ∂U
∂V )T = T ( ∂S

∂V )T − P = T ( ∂P
∂T )V − P = αT

κ − P

(∂H
∂P )T = T ( ∂S

∂P )T + V = −T (∂V
∂T )P + V = −TVα + V

( ∂S
∂P )T = −(∂V

∂T )P = −αV
(∂G
∂T )P = −S , (∂G

∂P )T = V

(41) µJT = (1/CP)[T (∂V /∂T )P − V ] = (V /CP)(αT − 1)

(37) CP − CV = [(∂U/∂V )T + P](∂V /∂T )P = TVα2/κ

For an ideal gas: (∂U/∂V )T = αT
κ − P = P − P = 0, thus ideal and

perfect gases are the same.

(26) Estimate the internal pressure in solids and liquids.
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Thermodynamic relations

dS = CP
T dT − αVdP → ∆S = S2 − S1 =

∫ 2
1

CP
T dT −

∫ 2
1 αVdP

∆H =
∫ 2

1 CPdT +
∫ 2

1 (V − TVα)dP

∆U = ∆H −∆(PV )

G = G (T ,P, n1, · · · , nk )→ dG =
(∂G
∂T )P,ni

dT + (∂G
∂P )T ,ni

dP + ( ∂G
∂n1

)T ,P,nj 6=1
dn1 + · · ·+ ( ∂G

∂nk
)T ,P,nj 6=k

dnk

Since in a reversible process on a system of constant composition
dG = −SdT + VdP we have (∂G

∂T )P,ni
= −S , (∂G

∂P )T ,ni
= V .

dG = −SdT + VdP +
∑k

i=1( ∂G
∂ni

)T ,P,nj 6=i
dni

µi ≡ ( ∂G
∂ni

)T ,P,nj 6=i

Key equation of chemical thermodynamics:
dG = −SdT + VdP +

∑k
i=1 µidni

These are Gibbs equations: dU = TdS − PdV +
∑

i µidni

dH = TdS + VdP +
∑

i µidni
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Material equilibrium condition

dA = −SdT − PdV +
∑

i µidni

For a multiphase system G =
∑

α G
α and dG =

∑
α dG

α.

dGα = −SαdT + V αdP +
∑k

i=1 µ
α
i dn

α
i

µαi ≡ (∂Gα

∂nαi
)T ,P,nαj 6=i

dG = −
∑

α S
αdT +

∑
α V

αdP +
∑

α

∑k
i=1 µ

α
i dn

α
i

dG = −SdT + VdP +
∑

α

∑k
i=1 µ

α
i dn

α
i

Condition for material equilibrium in a closed system with PV work
only, at constant T and P:

∑
α

∑k
i=1 µ

α
i dn

α
i = 0

µαi = µαi (Tα,Pα, xα1 , x
α
2 , · · · )
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Phase equilibrium condition

For a pure substance, µi is the molar Gibbs free energy,
µi ≡ (∂G/∂ni )T ,P = Gm,i

In a multiphase system if dnj flows from β to δ,

µβj dn
β
j + µδj dn

δ
j = 0→ µβj = µδj .

Phase equilibrium condition is that µ of a given substance is the same
in every phase.

Before equilibrium in a system with only PV work, 71,
dG < −SdT + VdP, i.e.,
−SdT + VdP +

∑
α

∑k
i=1 µ

α
i dn

α
i < −SdT + VdP, i.e.,∑

α

∑k
i=1 µ

α
i dn

α
i < 0.

Thus substance j flows spontaneously from a phase with higher
chemical potential µj to a phase with lower chemical potential µj .

(∂µδj /∂x
δ
j )T ,P,nδi 6=j

> 0

View chemical potential as escaping tendency.
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Phase equilibrium condition

When substance j is absent from phase δ, phase equilibrium condition
becomes µδj ≥ µ

β
j .

Denote a chemical reaction by
0→ ν1A1 + ν2A2 + · · ·+ νmAm + νm+1Am+1 + · · · or 0→

∑
i νiAi

where νi are stoichiometric numbers or stoichiometric coefficients.

CH4 + 2O2 → CO2 + 2H2O 0→ −CH4 − 2O2 + CO2 + 2H2O,
where νCH4 = −1, νO2 = −2, νCO2 = +1 and νH2O = +2.

Extent of reaction ξ. For 0→
∑

i νiAi , ∆ni ≡ ni − ni ,0 = νiξ.

In material equilibrium∑
i

∑
α µ

α
i dn

α
i =

∑
i µi (

∑
α dn

α
i ) =

∑
i µidni = 0 = (

∑
i µiνi )dξ

The condition for chemical reaction equilibrium is that
∑

i µiνi = 0.
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Standard thermodynamic functions of reaction

Standard state of a pure solid or liquid is the state with pressure 1 bar
and temperature T, e.g., V °m,200

Standard state of pure gases is defined with P=1 bar and the gas
behaving ideally.

Standard enthalpy change of reaction, ∆HT °: enthalpy change for the
process of transforming stoichiometric numbers of moles of the pure,
separated reactants, each in its standard state at temperature T, to
stoichiometric numbers of moles of the pure, separated products, each
in its standard state at temperature T.

For the reaction: 0→
∑

i νiAi , ∆HT ° ≡
∑

i νiHm,T ,i °.
Thermodynamics does not provide absolute values of U, H and S, but
only relative values.
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Standard thermodynamic functions of reaction

The standard enthalpy of formation or standard heat of formation
∆f H

0
T of a pure substance at T is ∆H0 for the process of forming one

mole of substance in its standard state at T from the corresponding
separate elements in their reference form.

The reference form or reference phase is taken as the form of the
element most stable at T and 1 bar.

C(graphite, 307 K, P°)+H2(Ideal gas, 307 K, P°)+1/2O2(Ideal gas,
307 K, P°)→H2CO(Ideal gas, 307 K, P°) ∆H = ∆f H

0
307,H2CO(g)

For an element in its reference form, ∆f H
0
T is zero.

The standard enthalpy change for a reaction ∆H0
T =

∑
i νi ∆f H

0
T ,i
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Standard thermodynamic functions of reaction

For aA+bB→cC+dD,

∆H1 = ∆H2 + ∆H3 → ∆H0
T =

−a∆f H
0
T (A)− b∆f H

0
T (B) + c∆f H

0
T (C ) + d∆f H

0
T (D)

Determination of standard enthalpies of formation:

1- ∆H for hypothetical transformation of gaseous elements from an
ideal gas at T and 1 bar to a real gas at T and 1 bar.

2- ∆H for mixing the pure elements at T and 1 bar.

3- Use ∆H =
∫ 2

1 CPdT +
∫ 2

1 (V − TVα)dP to find ∆H for bringing
mixture from T and 1 bar to conditions of the reaction.
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Standard thermodynamic functions of reaction

4- Use a calorimeter to find ∆H for forming the compound from
mixed elements.

5- Use ∆H =
∫ 2

1 CPdT +
∫ 2

1 (V − TVα)dP to find ∆H for bringing
the compound from state in which it is formed to T and 1 bar.

6- If compound i is a gas, find ∆H for transformation of i from a real
gas to an ideal gas.

Calorimetry

{
Constant volume calorimeter

Constant pressure calorimeter

Standard enthalpy of combustion, ∆cH
0
T is measured by an adiabatic

bomb calorimeter.

For the calorimeter ∆U = 0, after measuring ∆T the system is cooled
back to 25°C. Then the electrical energy to rise the temperature by
∆T is measured.
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Standard thermodynamic functions of reaction

∆rU298 = −Uel = −VIt
Alternatively, ∆rU298 = −CK+P∆T . Where CK+P is estimated by
burning a compound with known ∆rU298 in the calorimeter.
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Standard thermodynamic functions of reaction

Calorimetry measures either ∆H0 or ∆U0. To relate these quantities
use ∆H0 = ∆U0 + P0∆V 0

∆H0 =
∑

i νiH
0
m,i , ∆V 0 =

∑
i νiV

0
m,i , ∆U0 =

∑
i νiU

0
m,i

Neglect volume of solids and liquids compared with gases.
∆V 0 = (∆ng/mol)RT/P0.

Thus ∆H0 = ∆U0 + (∆ng/mol)RT

Hess’s law states that enthalpy is an state function. One should
combine enthalpies of reactions the same way he combines reactions
themselves.

E.g., Hydrogenation of propene:
CH2CHCH3 + H2 → CH3CH2CH3 ∆H = −124kJmol−1

Combustion of propane
CH3CH2CH3 + 5O2 → 3CO2 + 4H2O ∆H = −2220kJmol−1

Combustion of Hydrogen H2 + 1/2O2 → H2O ∆H = −286kJmol−1
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Standard thermodynamic functions of reaction

Calculate enthalpy of propene combustion?

Performing a formation reaction in the calorimeter may be impractical
while heat of combustion can often be measured easily.

Exothermic reaction (releasing energy, a) graph vs. Endothermic
reaction (absorbing energy, b) graph.
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Thermodynamics: Thermochemistry

Calculation of Hid − Hre :

Real gas at P°
(a)−−→ real gas at 0 bar

(b)−−→ ideal gas at 0 bar
(c)−−→ ideal

gas at P°
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Thermodynamics: Thermochemistry

∆H = Hid (T ,P0)− Hre(T ,P0) = ∆Ha + ∆Hb + ∆Hc

∆Ha = Hre(T , 0 bar)− Hre(T ,P0) =
∫ 0

P0(V − TVα)dP

In the zero pressure limit Ure = Uid and (PV )re = (PV )id , Thus
Hre(T , 0 bar) = Hid (T , 0 bar) and ∆Hb = 0.

Hid = Hid (T ) thus ∆Hc = 0.

∆H = Hid (T ,P0)− Hre(T ,P0) =
∫ P0

0 [T (∂V
∂T )P − V ]dP

Instead of tabulating ∆f H
0, construct a table of relative

(conventional) standard state enthalpies, H0
m,i . ∆H0 =

∑
i νiH

0
m,i .

Arbitrarily, for the most stable form of each pure element, H0
m,298 = 0.

For other compounds we use experimental data like formation
enthalpies to deduce values of H0

m,i .
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Temperature dependence of reaction heats

d∆H0

dT =
∑

i νi
dH0

m,i

dT =
∑

i νiC
0
P,m,i ≡ ∆C 0

P , standard heat capacity
change in the reaction.

d∆H0

dT =
d(H0

pr−H0
re )

dT =
d(H0

pr )

dT − d(H0
re )

dT = C 0
P,pr − C 0

P,re = ∆C 0
P

Kirshhoff’s law: ∆H0
T2
−∆H0

T1
=

∫ T2

T1
∆C 0

PdT

C 0
P,m = a + bT + cT 2 + dT 3.

∆C 0
P = ∆a + ∆bT + ∆cT 2 + ∆dT 3.

Use of a spreadsheet to obtain a polynomial fit.
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Relative (conventional) entropies

Assign an arbitrary entropy value to each element in a chosen
reference state

Find ∆S for preparing the desired substance in its standard state from
elements in their reference states.

For a pure element in its stable condensed form
S0

m,0 = limT→0 S
0
m,T = 0.

To find entropy at a different temperature ∆S =
∫ T2

T1
(CP/T )dT

Reactions outside electrochemical cells are irreversible and so
measuring conventional entropies for compounds is a challenge.

Experimental observation: limT→0(∂∆G/∂T )P = 0

(∂G/∂T )P = −S . (∂∆G/∂T )P = −S2 + S1 = −∆S .
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Relative (conventional) entropies

Nernst-Simon statement of the third law of thermodynamics: For any
isothermal process that involves only substances in internal
equilibrium, the entropy change goes to zero as T goes to zero:
limT→0 ∆S = 0.

Consider the reaction H2(s) + 1
2O2(s)→ H2O(s), choice of elemental

entropy as zero together with third law imply that
limT→0 S

0
m(H2O) = 0

S0
m,0(H2O) = 0. By the same reasoning, for any compound S0

m,0 = 0.

Using the third law, for any compound in internal equilibrium,
S0

m,0 = 0. Also, S0
0 = 0.

Conventional standard state entropy at any T can be found.

E.g., for a liquid, S0
m,T2

=
∫ Tfus

0

C 0
P,m(s)

T dT + ∆fus H0
m

Tfus
+
∫ T2

Tfus

C 0
P,m(l)

T dT .
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Relative (conventional) entropies

For a gas, S0
m,T2

=∫ Tfus

0

C 0
P,m(s)

T dT + ∆fus H0
m

Tfus
+
∫ Tboil

Tfus

C 0
P,m(l)

T dT + ∆boil H
0
m

Tboil
+
∫ T2

Tboil

C 0
P,m(g)

T dT .

Also consider: Sm,id (T ,P°)− Sm,re(T ,P°) =
∫ P°

0 [(∂Vm
∂T )P − R

P ]dP.

For non-metallic solids at very low temperatures,
C °P,m ≈ C °V ,m = aT 3. Since limT→0

TVα2

κ = 0

For metals at very low T, C °P,m ≈ C °V ,m = aT 3 + bT

Due to lack of data at very low T,∫ Tfus

0

C◦P,m
T dT =

C◦P,m(Tlow )

3 +
∫ Tfus

Tlow

C◦P,m
T dT .

Example 5.7 of the book.

Dependence of entropy on physical state and size of molecule.

For solids and liquids: H◦m,T − H◦m,0 ≈ U◦m,T − U◦m,0.

Standard entropy of reaction: ∆S◦T =
∑

i νiS
◦
m,T ,i .

∆ST2°−∆ST1° =
∫ T2

T1

∆CP °
T dT .

Example 5.8 of the book.

90/115



Relative (conventional) Gibbs energies

Standard Gibbs energy of reaction: ∆G ◦T =
∑

i νiG
◦
m,T ,i , the change

in G for converting stoichiometric numbers of moles of the separated
pure reactants, each in its standard state at T, into the separated pure
products in their standard states at T.

∆G ◦T =
∑

i νi ∆f G
◦
T ,i .

∆f G
◦
T ,i = ∆f H

◦
T ,i − T∆f S

◦
T ,i .

Instead of tabulating ∆f G
◦
T it is possible to tabulate

G ◦m,T = H◦m,T − TS◦m,T
Tabulations of thermodynamic data list:
∆f H

◦
298, S

◦
m,298, ∆f G

◦
298, and C ◦P,m,298.
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Thermodynamics tables

Change of standard from 1 atm to 1 bar. [?]

Tabulated values depend on the reference form chosen for the
elements.

There are tables of ∆f H
◦, S◦m, and ∆f G

◦ at various temperatures.

Instead of tabulating ∆f H
◦, and ∆f G

◦ vs. T, some tables list
H◦m,T − H◦m,298 (or H◦m,T − H◦m,0) vs. T and G ◦m,T − H◦m,298 (or
G ◦m,T − H◦m,0) vs. T.

∆H◦T = ∆H◦298 +
∑

i νi (H
◦
m,T − H◦m,298)i

∆G ◦T = ∆H◦298 + T
∑

i νi [(G
◦
m,T − H◦m,298)/T ]i

Example 5.11

(G ◦m,T − H◦m,298)/T = (H◦m,T − TS◦m,T )/T − H◦m,298/T =
(H◦m,T − H◦m,298)/T − S◦m,T
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Estimation of thermodynamic properties

As of May 2011, about sixty million chemical compounds are known.

Bond additivity (mostly for gases)

E.g., bond additivity contributions to ∆f H
◦
298/(kcal/mol) are C—C

2.73, C—H -3.83, C—O -12.0 and O—H -27.0.

Liquid at P◦ → liquid at Pvp → gas at Pvp → gas at P◦.

Using enthalpy of vaporization one can express liquid enthalpy in
terms of gas phase enthalpy.

For condensed phase: ∆H◦298 ≈ ∆U◦0 .

Gaseous reactants
(a)−−→ gaseous atoms

(b)−−→ gaseous products.

∆H◦298 = ∆atH
◦
298,re −∆atH

◦
298,pr

Group contribution methods.

Unattainability of absolute zero statement of the third law.
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Reaction equilibrium in ideal gas mixtures: Ideal gas
chemical potential

Chemical potential of a pure gas

dG = −SdT + VdP → dGm = dµ = −SmdT + VmdP

At constant temperature for an ideal gas
dµ = VmdP = RT

P dP → µ(T ,P2)− µ(T ,P1) = RT ln(P2/P1)

µ = µ◦(T ) + RT ln(P/P◦)

Chemical potential in an ideal gas mixture

Ideal gas mixture: (a) PV = ntotRT

(b) When the gas is separated from pure component i by a thermally
conducting, rigid membrane permeable to i only then at equilibrium
Pi ≡ xiP equals pressure in the pure i subsystem.

µi (T ,P, x1, x2, · · · ) = µ∗i (T , xiP) = µ∗i (T ,Pi ) =
µ◦i (T ) + RT ln(Pi/P

◦)
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Reaction equilibrium in ideal gas mixtures

Each of U, H, S, G, and CP for an ideal gas mixture
is the sum of the corresponding thermodynamic functions for the pure
gases occupying a volume equal to the mixtures volume at its partial
pressure and temperature.
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Ideal gas reaction equilibrium

aA+bB 
 cC+dD

cµC + dµD − aµA − bµB = 0

Equilibrium condition becomes ∆G ◦ = −RT ln
(PC ,eq/P◦)c (PD,eq/P◦)d

(PA,eq/P◦)a(PB,eq/P◦)b .

K ◦P ≡
(PC ,eq/P◦)c (PD,eq/P◦)d

(PA,eq/P◦)a(PB,eq/P◦)b P◦ ≡ 1 bar.∑
i νiµi =

∑
i νi [µ

◦
i + RT ln(Pi ,eq/P

◦)] = 0

∆G ◦T = −RT
∑

i ln(Pi ,eq/P
◦)νi

Standard pressure equilibrium constant K ◦P = e−∆G◦/RT .

Pressure equilibrium constant KP ≡ Πi (Pi ,eq)νi .

Concentration and mole fraction equilibrium constants

ci ≡ ni/V → Pi = ciRT

For the reaction aA+bB 
 fF+dD, K ◦P =
(cF ,eq/c◦)f (cD,eq/c◦)d

(cA,eq/c◦)a(cB,eq/c◦)b ( c◦RT
P◦ )f +d−a−b c◦ ≡ 1mol/L = 1mol/dm3
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Ideal gas reaction equilibrium

K ◦c ≡ Πi (ci ,eq/c
◦)νi

K ◦P = K ◦c ( c◦RT
P◦ )∆n/mol

Mole fraction equilibrium constant:
Kx ≡ Πi (xi ,eq)νi , K ◦P = Kx (P/P◦)∆n/mol

Qualitative discussion of chemical equilibrium

0 < K ◦P <∞,


K ◦P � 1

K ◦P � 1

K ◦P ≈ 1

.

K ◦P = 1/e
∆G◦
RT ,


∆G ◦ � 0

∆G ◦ � 0

∆G ◦ ≈ 0

For an isothermal process: ∆G ◦ = ∆H◦ − T∆S◦.

At low T, ∆G ◦ ≈ ∆H◦

At high T, ∆G ◦ ≈ −T∆S◦

97/115



Temperature dependence of the equilibrium constant

d ln K◦P
dT = ∆G◦

RT 2 − 1
RT

d(∆G◦)
dT = ∆G◦

RT 2 + ∆S◦

RT = ∆H◦

RT 2 :Van’t Hoff equation

Which results from the Gibbs-Helmholtz equation:
(∂(G/T )/∂T )P = −H/T 2

d lnK ◦P = ∆H◦

RT 2 dT → ln
K◦P (T2)
K◦P (T1) =

∫ T2

T1

∆H◦(T )
RT 2 dT

Typically: ∆H◦T = A + BT + CT 2 + DT 3 + ET 4.

If the temperature change is small ln
K◦P (T2)
K◦P (T1) ≈

∆H◦(T )
R ( 1

T1
− 1

T2
)

van’t Hoff equation:
d ln K◦P
d(1/T ) = −∆H◦

R

Knowledge of K ◦P over a temperature range allows determination of
∆G ◦,∆H◦ and ∆S◦.
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Temperature dependence of the equilibrium constant

Figure: Thermodynamic quantities for N2(g) + 3H2(g) 
 2NH3(g)

At high T, lnK ◦P ≈
∆S◦

R .

At low T, lnK ◦P ≈
−∆H◦

RT .
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Ideal gas equilibrium calculations

Figure: For N2(g) + 3H2(g) 
 2NH3(g)

Calorimetric measurement allow calculation of ∆f G
◦(T ), which

enable calculation of ∆G ◦(T ) for any reaction.

Equilibrium composition is a function of T and P (or T and V) and
initial composition.

Equilibrium extent of reaction ξeq relate equilibrium composition to
initial composition: ∆ni ≡ ni ,eq − ni ,0 = νiξeq
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Ideal gas equilibrium calculations

Steps for finding equilibrium composition of an ideal gas reaction:

∆G ◦(T ) =
∑

i νi ∆f G
◦
T ,i

K ◦P = e−∆G◦(T )/RT (ln
K◦P (T2)
K◦P (T1) ≈

∆H◦(T )
R ( 1

T1
− 1

T2
)).

At fixed T and P: Pi ,eq = xi ,eqP = (ni ,eq/
∑

j nj ,eq)P =
ni,0+νiξeq∑
j (nj,0+νjξeq)P

At fixed T and V: Pi ,eq =
ni,eqRT

V =
(ni,0+νiξeq)RT

V

Solve K ◦P = Πi (Pi/P
◦)νi for ξeq.

(ni ,0 + νiξeq)

E.g., N2(g) + 3H2(g) 
 2NH3(g) with nN2,0 = 1 mol nH2,0 = 2 mol
and nNH3,0 = 0.5 mol, ∆f G

◦(NH3) =-16.45 kJ/mol, Assume V=10 L,
at 298 K.

Reaction quotient QP ≡
P2

NH3

PN2
P3

H2

Find the acceptable range for extent of reaction.
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Ideal gas equilibrium calculations

E.g., N2O4(g) 
 2NO2(g) with nN2O4,0 = 0.3 mol and nNO2,0 = 0.5
mol at 25°C and 2 atm.

∆f G
◦ = −26.81 kJ/mol for O(g) at 4200 K. Find equilibrium

composition of 1 mol O2 at 4200 K and 3.00 bar.

K ◦P(800K ) = 6.51 for 2A + B 
 C + D. If 3.000 mol A, 1.000 mol B
and 4.000 mol C are placed in an 8 L vessel at 800 K.

Use solver in excel.

K ◦P(400K ) = 3.33 for ideal gas reaction 2R + 2S 
 V + W ,
nR,0=0.400 mol and nS,0=0.400 mol in a 5.00 l vessel at 400 K.

Isomerization: A 
 B, A 
 C and B 
 C. Express mole fractions in
terms of equilibrium constants.

If at 300 K, nA = 0.16, nB = 0.24 and nC = 0.72, find KB/A and
KC/A.

Fluctuations
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Simultaneous equilibrium

Propagation of error in evaluating K ◦P .

(1) CH4+H2O 
 CO+3H2

(2) CH4+2H2O 
 CO2+4H2

n0,CH4 = 1 mol, n0,H2O = 1 mol, n0,CO2 = 1 mol, n0,H2 = 1 mol,
n0,CO = 2 mol,

Pi/P
◦ = xiP/P

◦ = niP/ntot/P
◦, K ◦P,1 =

nCO n3
H2

nCH4
nH2O

( P
P◦ntot

)2, K ◦P,2 =
nCO2

n4
H2

nCH4
n2

H2O
( P

P◦ntot
)2

(3) CO2+H2 
 CO+H2O
(4) 4CO + 2H2O 
 3CO2+CH4

Deal only with independent reactions.

Reaction quotient for the reaction 0→
∑

i νiµi , QP ≡ Πi (Pi )
νi

Standard Reaction quotient for the reaction
0→

∑
i νiµi , Q◦P ≡ Πi (Pi/P

◦)νi
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Shifts in equilibria
QP < KP

QP > KP

QP ≈ KP
Q◦P < K ◦P
Q◦P > K ◦P
Q◦P ≈ K ◦P

Isobaric temperature change dK ◦P/dT = K ◦P∆H◦/RT 2{
Endothermic reaction ∆H◦ > 0

Exothermic reaction ∆H◦ < 0

An increase in T at constant P in a closed system shifts the
equilibrium in the direction in which the system absorbs heat from the
surroundings.

Isothermal pressure change: consider A 
 2B. Isothermally compress
the mixture to half its volume to instantaneously double the pressure.
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Shifts in equilibrium

To generalize to aA + bB + · · ·
 eE + fF + · · · . Consider total
number of gas moles on the right and left.

QP =
Pe

E P f
F ···

Pa
APb

B ···
=

xe
E x f

F ···
xa

Axb
B ···

Pe+f +···

Pa+b+··· =
xe

E x f
F ···

xa
Axb

B ···
P∆ng/mol

Le Chateliers principle:

Isochoric addition of inert gas

Addition of a reactant gas:

E.g., in A+B 
 2C+D consider addition or removal of a reactant or
product at constant T and V, using KP and QP.

E.g., in A+B 
 2C+D consider addition or removal of a reactant or
product at constant T and P, using KP and QP.

At constant T and P the result can be counter intuitive. Consider:
N2(g) + 3H2(g) 
 2NH3(g) with nN2 = 3.0 mol nH2 = 1.0 mol and
nNH3 = 1.0 mol. At some T and P, Kx =8.33. Qx = Πix

νi
i
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Shifts in equilibrium

Consider adding 0.1 mol N2. Qx =?

Le Chatelier principle: “a change in one of the variables that
determines the equilibrium will shift the equilibrium in the direction
counteracting the change in that variable.”

It is suggested that restricting Le Chatelier principle to intensive
variables save it. Yet there is counter example even to Le Chatelier
principle for an intensive variable.

Le Chatelier principle restricted to intensive variables and infinitesimal
changes is valid.
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Real gases

Compressibility factor or compression factor Z ≡ PVm
RT = Vm

V id
m

= P
P id .

Figure: Compressibility factor taken from Physical Chemistry Levine

Consider P → o and T →∞.
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Real gases equations of state

For a real gas PV = ZnRT and tables of Z(P,T) are available.
An algebraic formula is more convenient than a Z table.
van der Waals equation: (P + a

V 2
m

)(Vm − b) = RT or P = RT
Vm−b −

a
V 2

m
.

Redlich-Kwong equation: P = RT
Vm−b −

a
Vm(Vm+b)T 1/2

Virial equation of state originates from statistical mechanics:
PVm = RT [1 + B(T )

Vm
+ C(T )

V 2
m

+ D(T )
V 3

m
+ · · · ]

(a) Second virial coefficient vs
temperature (b) Third virial coefficient vs

temperature

Figure
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Real gases equations of state

Another form of virial equation:
PVm = RT [1 + B†(T )P + C †(T )P2 + D†(T )P3 + · · · ]
B = RTB†, C = (B†2 + C †)R2T 2.

At low P, Vm = RT/P + B. Thus B(T) is the correction to the ideal
gas molar volume.

For vdW gas PVm
RT = Z = Vm

Vm−b −
a

RTVm
= 1

1−b/Vm
− a

RTVm
.

Intermolecular repulsion’s make Z greater than 1 and make P greater
than Pid. Intermolecular attractions decrease Z and make P less than
Pid.

b is approximately the liquids molar volume.

For vdW gas PVm
RT = Z = 1 + (b − a

RT ) 1
Vm

+ b2

V 2
m

+ b3

V 3
m

+ · · · .
According to vdW EOS, B(T) = b-a/RT.

At low P, Z ≈ 1 + (b − a/RT ) 1
Vm

.
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Real gases equations of state

Consider low T limit and high T limit.

For gas mixtures one can take parameters of the equation of state as
functions of mixture composition.

For a two component gas take a = x2
1a1 + 2x1x2(a1a2)1/2 + x2

2a2 and
b = x1b1 + x2b2.

Mean molar volume of the system Vm ≡ V /ntot .

B = x2
1B1 + 2x1x2B12 + x2

2B2, crudely estimate B12 = 1
2 (B1 + B2).

a = x2
1a1 + 2x1x2(1− k12)(a1a2)1/2 + x2

2a2 and b = x1b1 + x2b2.
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Condensation
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Condensation

Saturated vapor and saturated liquid refer to a gas and liquid in
equilibrium with each other.

Critical pressure Pc, critical temperature Tc and critical molar volume
Vm,c .

Tc ≈ 1.6Tnbp, Vm,c ≈ 2.7Vm,nbp, 10 atm < Pc < 100 atm.

Fluid, supercritical fluid, large diffusion coefficient and small viscosity,
tunable properties near the critical point.

E.g., supercritical CO2

Determining equation of state parameters via critical point data.
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Real gases

The law of corresponding states
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Table of physico-chemical constants

Quantity Symbol Value (SI units)

atomic mass constant mu = 1 u 1.6605389× 10−27 kg
Avogadro’s number NA, L 6.0221417× 1023

Boltzmann constant k = R/NA 1.3806505× 10−23JK−1

Faraday constant F = NAe 96485.338 Cmol-1

gas constant R 8.314472 JK-1mol-1,
0.08205 L atm mol-1K-1,
8.20573 m3 atm mol-1K-1

molar Planck constant NAh 3.99031×10−10 J s mol-1

electric constant (vacuum
permittivity)

ε0 = 1/(µ0c
2) 8.854187817 × 10−12

Fm-1
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Table of physico-chemical constants

Quantity Symbol Value (SI units)

magnetic constant (vacuum
permeability)

µ0 12.56637061×10−7 NA-2

Newtonian constant of gravitation G 6.67408×10−11 m3kg-1s-2

Planck constant h 6.626070040× 10−34 Js
reduced Planck constant ~ 1.054571800× 10−34 Js
speed of light in vacuum c 299792458 m/s
electronic charge e 1.60219× 10−19C
electron mass me 9.10956× 10−31Kg
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