Problem 2.7-9 A slightly tapered bar AB of rectangular cross section and length L is acted upon by a force P (see figure). The width of the bar varies uniformly from b_2 at end A to b_1 at end B. The thickness t is constant.

(a) Determine the strain energy U of the bar.
(b) Determine the elongation δ of the bar by equating the strain energy to the work done by the force P.

Problem 2.7-11 A block B is pushed against three springs by a force P (see figure). The middle spring has stiffness k_1, and the outer springs each have stiffness k_2. Initially, the springs are unstressed and the middle spring is longer than the outer springs (the difference in length is denoted s).

(a) Draw a force-displacement diagram with the force P as ordinate and the displacement x of the block as abscissa.
(b) From the diagram, determine the strain energy U_1 of the springs when $x = 2s$.
(c) Explain why the strain energy U_1 is not equal to $P\delta/2$, where $\delta = 2s$.

Problem 2.10-3 A flat bar of width b and thickness t has a hole of diameter d drilled through it (see figure). The hole may have any diameter that will fit within the bar.

What is the maximum permissible tensile load P_{max} if the allowable tensile stress in the material is σ_t?

Problem 2.12-8 A rigid bar ACB is supported on a fulcrum at C and loaded by a force P at end B (see figure). Three identical wires made of an elastoplastic material (yield stress σ_y and modulus of elasticity E) resist the load P. Each wire has cross-sectional area A and length L.

(a) Determine the yield load P_y and the corresponding yield displacement δ_y at point B.
(b) Determine the plastic load P_p and the corresponding displacement δ_p at point B when the load just reaches the value P_p.
(c) Draw a load-displacement diagram with the load P as ordinate and the displacement δ_p of point B as abscissa.

Problem 2.11-1 A bar AB of length L and weight density γ hangs vertically under its own weight (see figure). The stress-strain relation for the material is given by the Ramberg-Osgood equation (Eq. 2-71):

$$\epsilon = \frac{\sigma}{E} + \frac{\sigma_0}{E} \left(\frac{\sigma}{\sigma_0} \right)^m$$

Derive the following formula

$$\delta = \frac{\gamma L^2}{2E} + \frac{\sigma_0 \alpha L}{(m+1)E} \left(\frac{\gamma L}{\sigma_0} \right)^m$$

for the elongation of the bar.