Mechanics of Solids

Home Work No.3

Problem 2.4-4 A bar ACB having two different cross-sectional areas \(A_1 \) and \(A_2 \) is held between rigid supports at A and B (see figure). A load \(P \) acts at point C, which is distance \(b_1 \) from end A and distance \(b_2 \) from end B.

(a) Obtain formulas for the reactions \(R_A \) and \(R_B \) at supports A and B, respectively, due to the load \(P \).
(b) Obtain a formula for the displacement \(\delta_C \) of point C.
(c) What is the ratio of the stress \(\sigma_1 \) in region AC to the stress \(\sigma_2 \) in region CB?

Problem 2.5-5 A bar AB of length \(L \) is held between rigid supports and heated nonuniformly in such a manner that the temperature increase \(\Delta T \) at distance \(x \) from end A is given by the expression \(\Delta T = \Delta T_B x^2 / L^3 \), where \(\Delta T_B \) is the increase in temperature at end B of the bar (see figure).

Derive a formula for the compressive stress \(\sigma_x \) in the bar. (Assume that the material has modulus of elasticity \(E \) and coefficient of thermal expansion \(\alpha \)).

Problem 2.5-9 Rectangular bars of copper and aluminum are held by pins at their ends, as shown in the figure. Thin spacers provide a separation between the bars. The copper bars have cross-sectional dimensions 0.5 in. \(\times \) 2.0 in., and the aluminum bar has dimensions 1.0 in. \(\times \) 2.0 in.

Determine the shear stress in the 7/16 in. diameter pins if the temperature is raised by 100°F. (For copper, \(E_c = 18,000 \) ksi and \(\alpha_c = 9.5 \times 10^{-6}/\text{°F} \); for aluminum, \(E_a = 10,000 \) ksi and \(\alpha_a = 13 \times 10^{-6}/\text{°F} \).) Suggestion: Use the results of Example 2-8.

Problem 2.6-6 A steel bar with diameter \(d = 12 \) mm is subjected to a tensile load \(P = 9.5 \) kN (see figure).

(a) What is the maximum normal stress \(\sigma_{\text{max}} \) in the bar?
(b) What is the maximum shear stress \(\tau_{\text{max}} \)?
(c) Draw a stress element oriented at 45° to the axis of the bar and show all stresses acting on the faces of this element.

Problem 2.6-15 Acting on the sides of a stress element cut from a bar in uniaxial stress are tensile stresses of 10,000 psi and 5,000 psi, as shown in the figure.

(a) Determine the angle \(\theta \) and the shear stress \(\tau_\theta \) and show all stresses on a sketch of the element.
(b) Determine the maximum normal stress \(\sigma_{\text{max}} \) and the maximum shear stress \(\tau_{\text{max}} \) in the material.

Problem 2.6-9 A compression member in a bridge truss is fabricated from a wide-flange steel section (see figure). The cross-sectional area \(A = 7.5 \) in.\(^2 \) and the axial load \(P = 90 \) k.

Determine the normal and shear stresses acting on all faces of stress elements located in the web of the beam and oriented at (a) an angle \(\theta = 0° \), (b) an angle \(\theta = 30° \), and (c) an angle \(\theta = 45° \). In each case, show the stresses on a sketch of a properly oriented element.