Chapter 7
Propositional Satisfiability Techniques
Motivation

- Propositional satisfiability: given a boolean formula
 - e.g., \((P \lor Q) \land (\neg Q \lor R \lor S) \land (\neg R \lor \neg P)\), does there exist a model
 - i.e., an assignment of truth values to the propositions that makes the formula true?
- This was the very first problem shown to be NP-complete
- Lots of research on algorithms for solving it
 - Algorithms are known for solving all but a small subset in average-case polynomial time
- Therefore,
 - Try translating classical planning problems into satisfiability problems, and solving them that way
SATPLAN

Henry Kautz and Bart Selman (1996)

Idea

- Transform a planning problem into a satisfiability problem.
- Use a general-purpose SAT solver to find a satisfying assignment.
- Translate the satisfying assignment back to a plan for the original problem.

Results

- Efficient.
- Key issue: SAT encoding of the planning problem.
- Huge SAT instances (around 10,000 variables)
The Satisfiability (SAT) Problem

Given

- A boolean formula over n variables.

Find

- A satisfying assignment, that is, an assignment to all variables such that the formula evaluates to TRUE.

The formula can be unsatisfiable, satisfiable, or a tautology.

Example

- $(x_1 + x_2 + \bar{x}_3)(\bar{x}_2 + x_4)(\bar{x}_1 + \bar{x}_5)$

- $(\bar{x}_1 + x_2 + x_3 + \bar{x}_4 + x_5)(\bar{x}_3)(x_2 + x_5)(\bar{x}_5)(x_1)$

- $(x_1, x_2, x_3, x_4, x_5) = (1, 1, 0, 1, 0)$
SAT as CSP

SAT is a Constraint Satisfaction Problem!

- **Variables**: Boolean variables in the formula
- **Domains**: Each variable can take values from \{0, 1\}
- **Constraints**: Each clause of size \(k\) is a \(k\)-ary constraint

\[
(\overline{x_2} + x_3 + x_4)
\]

\(x_2, x_3,\) and \(x_4\) cannot be simultaneously \(x_2 = 1, x_3 = 0,\) and \(x_4 = 0\)

- **Solution**: An assignment that satisfies all constraints (clauses).
Architecture of a SAT-based planner

Problem Description
- Init State
- Goal State
- Actions

Compiler (encoding) → CNF

Simplifier (polynomial inference)

Solver (SAT engine/s)

Decoder

Plan

Increment plan length
If unsatisfiable

satisfying model

mapping
Compiler
- take a planning problem as input, guess a plan length, and generate a propositional logic formula, which if satisfied, implies the existence of a solution plan

Simplifier
- use fast techniques such as unit clause propagation and pure literal elimination to shrink the CNF formula

Solver
- use systematic or stochastic methods to find a satisfying assignment. If the formula is unsatisfiable, then the compiler generates a new encoding reflecting a longer plan length

Decoder
- translate the result of solver into a solution plan.
Overall Approach

- A *bounded planning problem* is a pair \((P,n)\):
 - \(P\) is a planning problem; \(n\) is a positive integer
 - Any solution for \(P\) of length \(n\) is a solution for \((P,n)\)

- Planning algorithm:
- Do iterative deepening like we did with Graphplan:
 - for \(n = 0, 1, 2, \ldots\),
 - encode \((P,n)\) as a satisfiability problem \(\Phi\)
 - if \(\Phi\) is satisfiable, then
 - From the set of truth values that satisfies \(\Phi\), a solution plan can be constructed, so return it and exit
Notation

- For satisfiability problems we need to use propositional logic
- Need to encode ground atoms into propositions
 - For set-theoretic planning we encoded, for example, `at(r1,loc1)` into `at-r1-loc1`
- We do the same thing here, but we don’t bother to rewrite
 - Just write the proposition as `at(r1,loc1)`
Fluents

- If \(\pi = \langle a_0, a_1, \ldots, a_{n-1} \rangle \) is a solution for \((P, n)\), it generates these states:
 \[
 s_0, \quad s_1 = \gamma(s_0, a_0), \quad s_2 = \gamma(s_1, a_1), \quad \ldots, \quad s_n = \gamma(s_{n-1}, a_{n-1})
 \]

- **Fluent**: proposition saying a particular atom is true in a particular state
 - \(\text{at}(r_1, \text{loc}_1, i) \) is a fluent that’s true iff \(\text{at}(r_1, \text{loc}_1) \) is in \(s_i \)
 - We’ll use \(l_i \) to denote the fluent for literal \(l \) in state \(s_i \)
 - e.g., if \(l = \text{at}(r_1, \text{loc}_1) \) then \(l_i = \text{at}(r_1, \text{loc}_1, i) \)
 - \(a_i \) is a fluent saying that \(a \) is the \(i \)th step of \(\pi \)
 - e.g., if \(a = \text{move}(r_1, \text{loc}_2, \text{loc}_1) \) then \(a_i = \text{move}(r_1, \text{loc}_2, \text{loc}_1, i) \)
Encoding Planning Problems

- Encode \((P,n)\) as a formula \(\Phi\) such that
 \[\pi = \langle a_0, a_1, \ldots, a_{n-1} \rangle\] is a solution for \((P,n)\) if and only if
 \(\Phi\) can be satisfied in a way that makes the fluents \(a_0, \ldots, a_{n-1}\) true.

- Let
 - \(A = \{\text{all actions in the planning domain}\}\)
 - \(S = \{\text{all states in the planning domain}\}\)
 - \(L = \{\text{all literals in the language}\}\)

- \(\Phi\) is the conjunct of many other formulas …
Formulas in Φ

- Formula describing the initial state:
 \[\land \{l_0 \mid l \in s_0\} \land \land \{\neg l_0 \mid l \in L - s_0\} \]

- Formula describing the goal:
 \[\land \{l_n \mid l \in g^+\} \land \land \{\neg l_n \mid l \in g^-\} \]

- For every action a in A, formulas describing what changes a would make if it were the i'th step of the plan:
 \[a_i \implies \land \{p_i \mid p \in \text{Precond}(a)\} \land \land \{e_{i+1} \mid e \in \text{Effects}(a)\} \]

- Complete exclusion axiom:
 - For all actions a and b, formulas saying they can’t occur at the same time
 \[\neg a_i \lor \neg b_i \]
 - this guarantees there can be only one action at a time

- Is this enough?
Frame Axioms

- **Classical Frame axioms:**
 - Formulas describing what *doesn’t* change between steps i and $i+1$

- **Explanatory frame axioms**
 - One axiom for every literal l
 - Says that if l changes between s_i and s_{i+1}, then the action at step i must be responsible:

$$
(\neg l_i \land l_{i+1} \Rightarrow \forall a \in A \{a_i/l \in \text{effects}^+(a)\})
\land
(l_i \land \neg l_{i+1} \Rightarrow \forall a \in A \{a_i/l \in \text{effects}^-(a)\})
$$
Encodings of Planning to SAT
Frame Axioms

- **Classical**: (McCarthy & Hayes 1969)
 - State what fluents are left unchanged by an action
 - \(\text{clear}(d, i) \land \text{move}(a, b, c, i) \Rightarrow \text{clear}(d, i+1) \)
 - Problem: if no action occurs at step \(i \) nothing can be inferred about propositions at level \(i+1 \)
 - Sol: at-least-one axiom: at least one action occurs

- **Explanatory**: (Haas 1987)
 - State the causes for a fluent change
 - \(\text{clear}(d, i) \land \neg \text{clear}(d, i+1) \Rightarrow \)

 \[
 (\text{move}(a, b, d, i) \lor \text{move}(a, c, d, i) \lor \ldots \lor \text{move}(c, \text{Table}, d, i))
 \]
Example

- Planning domain:
 - one robot \(r_1\)
 - two adjacent locations \(l_1, l_2\)
 - one operator (move the robot)

- Encode \((P,n)\) where \(n = 1\)

 - Initial state: \(\{\text{at}(r_1,l_1)\}\)
 Encoding: \(\text{at}(r_1,l_1,0) \land \neg\text{at}(r_1,l_2,0)\)

 - Goal: \(\{\text{at}(r_1,l_2)\}\)
 Encoding: \(\text{at}(r_1,l_2,1) \land \neg\text{at}(r_1,l_1,1)\)

 - Operator: see next slide
Example (continued)

- Operator: move(r,l,l')
 precond: at(r,l)
 effects: at(r,l'), ¬at(r,l)

Encoding:

move(r1,l1,l2,0) ⇒ at(r1,l1,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l1,1)
move(r1,l2,l1,0) ⇒ at(r1,l2,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l2,1)
move(r1,l1,l1,0) ⇒ at(r1,l1,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l1,1)
moves(r1,l2,l2,0) ⇒ at(r1,l2,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l2,1)
move(l1,r1,l2,0) ⇒ ...
move(l2,l1,r1,0) ⇒ ...
move(l1,l2,r1,0) ⇒ ...
move(l2,l1,r1,0) ⇒ ...

- How to avoid generating the last four actions?
 - Assign data types to the constant symbols like we did for state-variable representation

contradictions (easy to detect)
nonsensical
Example (continued)

- Locations: l1, l2
- Robots: r1
- Operator: move(r : robot, l : location, l’ : location)
 - precond: at(r,l)
 - effects: at(r,l’), ¬at(r,l)

Encoding:
move(r1,l1,l2,0) ⇒ at(r1,l1,0) ∧ at(r1,l2,1) ∧ ¬at(r1,l1,1)
move(r1,l2,l1,0) ⇒ at(r1,l2,0) ∧ at(r1,l1,1) ∧ ¬at(r1,l2,1)
Example (continued)

- Complete-exclusion axiom:
 \[\neg \text{move}(r1,l1,l2,0) \lor \neg \text{move}(r1,l2,l1,0) \]

- Explanatory frame axioms:
 \[\neg \text{at}(r1,l1,0) \land \text{at}(r1,l1,1) \Rightarrow \text{move}(r1,l2,l1,0) \]
 \[\neg \text{at}(r1,l2,0) \land \text{at}(r1,l2,1) \Rightarrow \text{move}(r1,l1,l2,0) \]
 \[\text{at}(r1,l1,0) \land \neg \text{at}(r1,l1,1) \Rightarrow \text{move}(r1,l1,l2,0) \]
 \[\text{at}(r1,l2,0) \land \neg \text{at}(r1,l2,1) \Rightarrow \text{move}(r1,l2,l1,0) \]
Extracting a Plan

- Suppose we find an assignment of truth values that satisfies Φ.
 - This means P has a solution of length n

- For $i=1,…,n$, there will be exactly one action a such that $a_i = true$
 - This is the i’th action of the plan.

- Example (from the previous slides):
 - Φ can be satisfied with $\text{move}(r1,l1,l2,0) = true$
 - Thus $\langle \text{move}(r1,l1,l2,0) \rangle$ is a solution for $(P, 1)$
 » It’s the only solution - no other way to satisfy Φ
Birthday Dinner Example

- Goal: \(\neg \text{garb} \land \text{dinner} \land \text{present} \)
- Init: \(\text{garb} \land \text{clean} \land \text{quiet} \)
- Actions:
 - Cook
 - Pre: clean
 - Effect: dinner
 - Wrap
 - Pre: quiet
 - Effect: present
 - Carry
 - Pre:
 - Effect: \(\neg \text{garb} \land \neg \text{clean} \)
 - Dolly
 - Pre:
 - Effect: \(\neg \text{garb} \land \neg \text{quiet} \)
Constructing SATPLAN sentence

- Initial sentence (clauses): garb\(_0\), clean\(_0\), quiet\(_0\), \neg\text{present}\(_0\), \neg\text{dinner}\(_0\)
- Goal (at depth 2): \neg\text{garb}\(_2\), \text{present}\(_2\), \text{dinner}\(_2\)
- Action\(_t\) \rightarrow (\text{Pre}_t \land \text{Eff}_{t+1}) \text{ [in clause form]}
 - Cook\(_0\) \rightarrow (\text{clean}\(_0\) \land \text{dinner}\(_1\))
- Explanatory Frame Axioms: For every state change, say what could have caused it
 - garb\(_0\) \land \neg \text{garb}\(_1\) \rightarrow (\text{dolly}\(_0\) \lor \text{carry}\(_0\)) \text{ [in clause form]}
- Complete exclusion axiom: For all actions a and b, add \neg a\(_t\) \lor \neg b\(_t\)
 - this guarantees there can be only one action at a time
Planning

- How to find an assignment of truth values that satisfies Φ?
 - Use a satisfiability algorithm

- Example: the *Davis-Putnam* algorithm

 - First need to put Φ into conjunctive normal form

 $\Phi = D \land (\neg D \lor A \lor \neg B) \land (\neg D \lor \neg A \lor \neg B) \land (\neg D \lor \neg A \lor B) \land A$

 - Write Φ as a set of *clauses* (disjuncts of literals)

 $\Phi = \{D, (\neg D \lor A \lor \neg B), (\neg D \lor \neg A \lor \neg B), (\neg D \lor \neg A \lor B), A\}$

 - Two special cases:

 - $\Phi = \{\}$ is a formula that’s always *true*
 - $\Phi = \{\ldots, (), \ldots\}$ is a formula that’s always *false*
Algorithms for the Satisfiability Problem

Complete or Systematic Methods

- Explore the space of all possible assignments systematically.
- If there is a satisfying assignment, it *will* be found.
- If no satisfying assignment is found, the formula *is* unsatisfiable.

Incomplete or Stochastic Methods

- Stochastic moves in the space of all possible assignments.
- If there is a satisfying assignment, it *may* be found.
- If no satisfying assignment is found, the formula *may* or *may not* be unsatisfiable.
SAT solvers

- **Systematic SAT solvers**
 - DPLL algorithm
 - Perform a backtracking depth-first search through the space of partial truth assignment, using unit-clause and pure-literal heuristics

- **Stochastic SAT solvers**
 - Search locally using random moves to escape from local minima.
 - incomplete
 - GSAT: perform a greedy search. After hill climbing for a fixed amount of flips, it starts anew with a freshly generated, random assignment.
 - WALKSAT: improve GSAT by adding additional randomness akin to simulated annealing
The Davis-Putnam Procedure

Depth-first backtracking through combinations of truth values

- Select a variable P in Φ
- Recursive call on $\Phi \land P$
 - Simplify: remove all occurrences of $\neg P$
 - If $\Phi = \{\ldots, (), \ldots\}$ then backtrack
 - Else if $\Phi = \{\}$ then have a solution
- Recursive call on $\Phi \land \neg P$
 - Simplify: remove all occurrences of P
 - If $\Phi = \{\ldots, (), \ldots\}$ then backtrack
 - Else if $\Phi = \{\}$ then have a solution

Davis-Putnam(Φ, μ)

- if $\emptyset \in \Phi$ then return
- if $\Phi = \emptyset$ then exit with μ
- Unit-Propagate(Φ, μ)
 - select a variable P such that P or $\neg P$ occurs in ϕ
 - Davis-Putnam($\Phi \cup \{P\}, \mu$)
 - Davis-Putnam($\Phi \cup \{\neg P\}, \mu$)

end

Unit-Propagate(Φ, μ)

- while there is a unit clause $\{l\}$ in Φ do
 - $\mu \leftarrow \mu \cup \{l\}$
 - for every clause $C \in \Phi$
 - if $l \in C$ then $\Phi \leftarrow \Phi - \{C\}$
 - else if $\neg l \in C$ then $\Phi \leftarrow \Phi - \{C\} \cup \{C - \{\neg l\}\}$

end
DPLL: Unit Propagation and Purification

Unit Propagation

- If there is a unit clause, there is only one promising assignment to the corresponding variable (unary constraint).

- Example: \((x_1 + x_2 + x_3)(\overline{x}_2)(\overline{x}_1 + \overline{x}_5)(\overline{x}_2 + x_4)\)

- Make that assignment \((x_2 = 0)\) and eliminate the variable \((x_2)\).

Purification

- A pure variable appears purely in positive \((x_i)\) or negative \((\overline{x}_i)\) form.

- Assign \(x_i = 1\) in the positive case and \(x_i = 0\) in the negative case.

- Example: \(x_3\) and \(x_5\) are pure. Assign \(x_3 = 1\) and \(x_5 = 0\).

DPLL: Branching

Branching or Splitting

- If there are not unit clauses or pure variables, select an unassigned variable and try in turn the two possible assignments.
- Create a reduced formula in each case and continue recursively.

Example

- \((x_1 + x_2 + x_3)(\bar{x}_1 + \bar{x}_5)(\bar{x}_2 + x_4)(x_1 + \bar{x}_3 + x_5)\)

- Assume that \(x_1\) is selected.
- \(x_1 = 1\) gives \((\bar{x}_5)(\bar{x}_2 + x_4)\)
- \(x_1 = 0\) gives \((x_2 + x_3)(\bar{x}_2 + x_4)(\bar{x}_3 + x_5)\)
Local Search

- Let u be an assignment of truth values to all of the variables
 - $\text{cost}(u, \Phi) =$ number of clauses in Φ that aren’t satisfied by u
 - $\text{flip}(P, u) = u$ with the truth value of P reversed

- Local search:
 - Select a random assignment u
 - while $\text{cost}(u, \Phi) \neq 0$
 - if there is a P such that $\text{cost}(\text{flip}(P, u), \Phi) < \text{cost}(u, \Phi)$ then
 - randomly choose any such P
 - $u \leftarrow \text{flip}(P, u)$
 - else return failure

- Local search is sound
- If it finds a solution it will find it very quickly
- Local search is not complete: can get trapped in local minima
GSAT

- Basic-GSAT:
 - Select a random assignment u
 - while cost(u, Φ) $\neq 0$
 - choose the P that minimizes cost(flip(P, u), Φ)
- Not guaranteed to terminate

- GSAT:
 - restart after a max number of flips
 - return failure after a max number of restarts

- Walksat
 - works better than both local search and GSAT
Walksat

For i=1 to max-tries
 A:= random truth assignment
For j=1 to max-flips
 If solution?(A) then return A else
 C:= random unsatisfied clause
 With probability p flip a random variable in C
 With probability (1- p) flip the variable in C that minimizes the number of unsatisfied clauses
Example

- Consider the following formula (Solution = \{D, \neg A, \neg B\})
 \[\Phi = D \land (\neg D \lor A \lor \neg B) \land (\neg D \lor \neg A \lor \neg B) \land (\neg D \lor \neg A \lor B) \land (D \lor A) \]

- Local search select a random total assignment, e.g., \[u = \{D, A, B\} \], under which only \((\neg D \lor \neg A \lor \neg B)\) is unsatisfied, and \(\text{Cost}(u, \Phi) = 1\)

- There is no \(u'\) such that \(|u - u'| = 1\) and \(\text{Cost}(u', \Phi) < 1\)

- Therefore search stops with failure

- If the initial guess was \(\{\neg D, \neg A, \neg B\}\), the search could find solution in one step
Example (Cont.)

- Consider the following formula (Solution = \{D, \neg A, \neg B\})
 \[\Phi = D \land (\neg D \lor A \lor \neg B) \land (\neg D \lor \neg A \lor \neg B) \land (\neg D \lor \neg A \lor B) \land (D \lor A) \]

- Basic GSAT selects a random total assignment, say, \(u = \{D, A, B\} \),
- It has two alternatives:
 - flipping D or B (because corresponding cost is 1)
 (Flipping A has a cost of 2),
- if B is flipped, next A will be chosen, and solution is found
Example (Cont.)

- Consider the following formula (Solution = \{D, \neg A, \neg B\})
 \[\Phi = D \land (\neg D \lor A \lor \neg B) \land (\neg D \lor \neg A \lor \neg B) \land (\neg D \lor \neg A \lor B) \land (D \lor A) \]

- Iterative-Repair (A simplified version of Walksat) with the same initial guess \(u = \{D, A, B\} \),

- It has to repair clause \((\neg D \lor \neg A \lor \neg B)\)

- Different assignments can repair this, one is the solution.

- Suppose \(u = \{\neg D, \neg A, \neg B\} \) is selected,

- it then must repair two clauses \(D \) and \((D \lor A)\),

- If \(D \) is selected then iterative repair finds the solution, but if \((D \lor A)\) is selected, it will have two choices one of the leads to solution
Recall the overall approach:

- for $n = 0, 1, 2, \ldots$,
 - encode (P,n) as a satisfiability problem Φ
 - if Φ is satisfiable, then
 - From the set of truth values that satisfies Φ, extract a solution plan and return it

How well does this work?
Recall the overall approach:

- for \(n = 0, 1, 2, \ldots \),
 - encode \((P,n)\) as a satisfiability problem \(\Phi\)
 - if \(\Phi\) is satisfiable, then
 - From the set of truth values that satisfies \(\Phi\), extract a solution plan and return it

How well does this work?

- By itself, not very practical (takes too much memory and time)

But it can be combined with other techniques

- e.g., planning graphs
Parameters of SAT-based planner

- Encoding of Planning Problem into SAT
 - Frame Axioms
 - Action Encoding

- Encoding is important to the performance of Solver, since solver speed can be exponential in the size of the formula.

- Simplification

- SAT Solver(s)
Action Encoding

<table>
<thead>
<tr>
<th>Representation</th>
<th>One Propositional Variable per</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>fully-instantiated action</td>
<td>Move(r1, l1, l2)</td>
</tr>
<tr>
<td>Simply Splitting</td>
<td>fully-instantiated action’s argument</td>
<td>Move(Arg1, r1) (\land) Move(Arg2, l1) (\land) Move(Arg3, l2)</td>
</tr>
<tr>
<td>Overloaded Splitting</td>
<td>fully-instantiated argument</td>
<td>Act(Move) (\land) Arg1(r1) (\land) Arg2(l1) (\land) Arg3(l2)</td>
</tr>
<tr>
<td>Bitwise</td>
<td>Binary encodings of actions</td>
<td>Bit1 (\land) ~Bit2 (\land) Bit3 ((Move(r1, l1, l2) = 5))</td>
</tr>
</tbody>
</table>

| more vars | more clauses |
Linear Encoding

- Initial and Goal States
- Action implies both preconditions and its effects
- Only one action at a time
- Some action occurs at each time
 (allowing for do-nothing actions)
- Classical frame axioms
- Operator Splitting
Graphplan-based Encoding

- Goal holds at last layer (time step)
- Initial state holds at layer 0
- Fact at level i implies disjunction of all operators at level i–1 that have it as an add-effect
- Operators imply their preconditions
- Conflicting Actions (only action mutex explicit, fact mutex implicit)
Graphplan Encoding

Fact \Rightarrow Act1 \lor Act2

Act1 \Rightarrow Pre1 \land Pre2

\negAct1 \lor \negAct2
Compare Graphplan with SAT

- Both approaches convert parameterized action schemata into a finite propositional structure representing the space of possible plans up to a given length
 - The planning graph
 - a CNF formula
- Both approaches use local consistency methods before resorting to exhaustive search
 - mutex propagation
 - Propositional simplification
- Both approaches iteratively expand their propositional structure until they find a solution
 - planning graph is extended when no solution is found
 - propositional logic formula is recreated for a longer plan length
- Planning graph can be automatically converted into CNF notation for solution with SAT solvers
Comparison with Plan Space Planning

- Plan Space planning
 - <5 primitive actions in solutions
 - Works best if few interactions between goals

- Constraint-based planning
 - Graphplan, SATPLAN, + descendents
 - 100+ primitive actions in solutions
 - Moderate time horizon <30 time steps
 - Handles interacting goals well
BlackBox

- The BlackBox procedure combines planning-graph expansion and satisfiability checking
 - It is roughly as follows:

- for $n = 0, 1, 2, \ldots$
 - **Graph expansion:**
 - create a “planning graph” that contains n “levels”
 - Check whether the planning graph satisfies a necessary (but insufficient) condition for plan existence
 - If it does, then
 - Encode (P,n) as a satisfiability problem Φ but include only the actions in the planning graph
 - If Φ is satisfiable then return the solution
More about BlackBox

- Memory requirement still is combinatorially large, but less than satisifiability alone
- It was one of the two fastest planners in the 1998 planning competition
Graph Search vs. SAT

Time

Problem size / complexity

Graphplan

SATPLAN

Blackbox with solver schedule