Intuitively, the state may be regarded as a kind of information storage or memory or accumulation of past causes. We must, of course, demand that the set of internal states Σ be sufficiently rich to carry all information about the past history of Σ to predict the effect of the past upon the future. We do not insist, however, that the state is the least such information although this is often a convenient assumption.

This chapter describes how feedback of a system’s state can be used to shape the local behavior of a system. The concept of reachability is introduced and used to investigate how to “design” the dynamics of a system through assignment of its eigenvalues. In particular, it will be shown that under certain conditions it is possible to assign the system eigenvalues arbitrarily by appropriate feedback of the system state.

6.1 REACHABILITY

One of the fundamental properties of a control system is what set of points in the state space can be reached through the choice of a control input. It turns out that the property of “reachability” is also fundamental in understanding the extent to which feedback can be used to design the dynamics of a system.

Definition of Reachability

We begin by disregarding the output measurements of the system and focusing on the evolution of the state, given by

$$\frac{dx}{dt} = Ax + Bu,$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}$, A is an $n \times n$ matrix and B a column vector. A fundamental question is whether it is possible to find control signals so that any point in the state space can be reached through some choice of input. To study this, we define the reachable set $\mathcal{R}(x_0, \leq T)$ as the set of all points x_f such that there exists an input $u(t)$, $0 \leq t \leq T$ that steers the system from $x(0) = x_0$ to $x(T) = x_f$, as illustrated in Figure 6.1a.

Definition 6.1 (Reachability). A linear system is reachable if for any $x_0, x_f \in \mathbb{R}^n$ there exists a $T > 0$ and $u : [0, T] \rightarrow \mathbb{R}$ such that the corresponding solution satisfies $x(0) = x_0$ and $x(T) = x_f$.
CHAPTER 6. STATE FEEDBACK

Figure 6.1: The reachable set for a control system. The set $\mathcal{R}(x_0, \leq T)$ shown on the left is the set of points reachable from x_0 in time less than T. The phase portrait on the right shows the dynamics for a double integrator, with the the natural dynamics drawn as horizontal arrows and the control inputs drawn as vertical arrows. The set of achievable equilibrium points is the x axis. By setting the control inputs as a function of the state, it is possible to steer the system to the origin, as shown on the sample path.

The definition of reachability addresses whether it is possible to reach all points in the state space in a transient fashion. In many applications, the set of points that we are most interested in reaching is the set of equilibrium points of the system (since we can remain at those points once we get there). The set of all possible equilibria for constant controls is given by

$$E = \{ x_e : Ax_e + bu_e = 0 \text{ for some } u_e \in \mathbb{R} \}.$$

This means that possible equilibria lie in a one (or possibly higher) dimensional subspace. If the matrix A is invertible this subspace is spanned by $A^{-1}B$.

The following example provides some insight into the possibilities.

Example 6.1 Double integrator

Consider a linear system consisting of a double integrator, whose dynamics are given by

$$\begin{align*}
\dot{x}_1 &= x_2 \\
\dot{x}_2 &= u.
\end{align*}$$

Figure 6.1b shows a phase portrait of the system. The open loop dynamics ($u = 0$) are shown as horizontal arrows pointed to the right for $x_2 > 0$ and to the left for $x_2 < 0$. The control input is represented by a double-headed arrow in the vertical direction, corresponding to our ability to set the value of x_2. The set of equilibrium points E corresponds to the x_1 axis, with $u_e = 0$.

Suppose first that we wish to reach the origin from an initial condition $(a, 0)$. We can directly move the state up and down in the phase plane, but we must rely on the natural dynamics to control the motion to the left and right. If $a > 0$, we can move the origin by first setting $u < 0$, which will cause x_2 to become negative. Once $x_2 < 0$, the value of x_1 will begin to decrease and we will move to the left. After a while, we can set u_2 to be positive, moving x_2 back toward zero and slowing the motion in the x_1 direction. If we bring $x_2 > 0$, we can move the system state in the
opposite direction.

Figure 6.1b shows a sample trajectory bringing the system to the origin. Note that if we steer the system to an equilibrium point, it is possible to remain there indefinitely (since \(\dot{x}_1 = 0 \) when \(x_2 = 0 \)), but if we go to any other point in the state space, we can only pass through the point in a transient fashion.

To find general conditions under which a linear system is reachable, we will first give a heuristic argument based on formal calculations with impulse functions. We note that if we can reach all points in the state space through some choice of input, then we can also reach all equilibrium points.

Testing for Reachability

When the initial state is zero, the response of the state to a unit step in the input is given by

\[
x(t) = \int_0^t e^{A(t-\tau)} B d\tau = A^{-1}(e^{At} - I)B
\]

(see equation (5.22) and Exercise 5.7). The derivative of a unit step function is the impulse function, \(\delta(t) \), defined in Section 5.3. Since derivatives are linear operations, it follows (see Exercise 6.10) that the response of the system to an impulse function is the derivative of equation (6.2):

\[
\frac{dx}{dt} = e^{At}B.
\]

Similarly we find that the response to the derivative of an impulse function is

\[
\frac{d^2x}{dt^2} = Ae^{At}B.
\]

Continuing this process and using the linearity of the system, the input

\[
u(t) = \alpha_1 \delta(t) + \alpha_2 \delta'(t) + \alpha_3 \delta''(t) + \cdots + \alpha_n \delta^{(n-1)}(t)
\]

gives the state

\[
x(t) = \alpha_1 e^{At}B + \alpha_2 A e^{At}B + \alpha_3 A^2 e^{At}B + \cdots + \alpha_n A^{n-1} e^{At}B.
\]

Taking the limit as \(t \) goes to zero through positive values we get

\[
x(0+) = \alpha_1 B + \alpha_2 AB + \alpha_3 A^2 B + \cdots + \alpha_n A^{n-1} B.
\]

The right hand is a linear combination of the columns of the matrix

\[
W_r = \begin{pmatrix} B & AB & \cdots & A^{n-1}B \end{pmatrix}.
\]

To reach an arbitrary point in the state space we thus require that there are \(n \) linear independent columns of the matrix \(W_r \). The matrix \(W_r \) is called the reachability matrix.

An input consisting of a sum of impulse functions and their derivatives is a very violent signal. To see that an arbitrary point can be reached with smoother signals
we can make use of the convolution equation. Assuming that the initial condition is zero, the state of a linear system is given by

$$x(t) = \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau = \int_0^t e^{A\tau}Bu(t-\tau)d\tau.$$

It follows from the theory of matrix functions, specifically the Cayley-Hamilton theorem (see Exercise 6.11) that

$$e^{At} = I\alpha_0(\tau) + A\alpha_1(\tau) + \cdots + A^{n-1}\alpha_{n-1}(\tau),$$

where $\alpha_i(\tau)$ are scalar functions, and we find that

$$x(t) = B\int_0^t \alpha_0(\tau)u(t-\tau)d\tau + AB\int_0^t \alpha_1(\tau)u(t-\tau)d\tau + \cdots + A^{n-1}B\int_0^t \alpha_{n-1}(\tau)u(t-\tau)d\tau.$$

Again we observe that the right hand side is a linear combination of the columns of the reachability matrix W_r given by equation (6.3). This basic approach leads to the following theorem.

Theorem 6.1. A linear system is reachable if and only if the reachability matrix W_r is invertible.

The formal proof of this theorem is beyond the scope of this text, but follows along the lines of the sketch above and can be found in most books on linear control theory, such as [48, 133]. We illustrate the concept of reachability with the following example.

Example 6.2 Reachability of balance systems

Consider the balance system introduced in Example 2.1 and shown in Figure 6.2. Recall that this system is a model for a class of examples in which the center of mass is balanced above a pivot point. One example is the Segway transportation system shown in the left portion of the figure, for which a natural question to ask is whether we can move from one stationary point to another by appropriate application of forces through the wheels.

The nonlinear equations of motion for the system are given in equation (2.9) and repeated here:

$$\begin{align*}
(M + m)\ddot{\rho} - ml \cos \theta \ddot{\theta} &= -c\dot{\rho} - ml \sin \theta \dot{\theta}^2 + F \\
(J + ml^2)\ddot{\theta} - ml \cos \theta \ddot{\rho} &= -\gamma\dot{\theta} + mgl \sin \theta,
\end{align*}$$

(6.4)

For simplicity, we take $c = \gamma = 0$. Linearizing around the equilibrium point $x_e =$
6.1. REACHABILITY

Figure 6.2: Balance system. The Segway human transportation system shown on the left is an example of a balance system which uses torque applied to the wheels to keep the rider upright. A simplified diagram for a balance system is shown on the right. The system consists of a mass m on a rod of length l connected by a pivot to a cart with mass M.

$(p, 0, 0, 0)$, the dynamics matrix and the control matrix are

$$A = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^2 l^2 g}{M J_t - m^2 l^2} & 0 & 0 \\ 0 & \frac{m g l}{M J_t - m^2 l^2} & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ 0 \\ \frac{J_t}{M J_t - m^2 l^2} \\ \frac{m g l}{M J_t - m^2 l^2} \end{pmatrix},$$

where $M_t = M + m$ and $J_t = J + m l^2$. The reachability matrix is

$$W_r = \begin{pmatrix} 0 & \frac{J_t}{M J_t - m^2 l^2} & 0 & \frac{g l^3 m^3}{(M J_t - m^2 l^2)^2} \\ 0 & \frac{m g l}{M J_t - m^2 l^2} & 0 & \frac{g l^2 m^2 (m + M)}{(M J_t - m^2 l^2)^2} \\ \frac{J_t}{M J_t - m^2 l^2} & 0 & \frac{g l^3 m^3}{(M J_t - m^2 l^2)^2} & 0 \\ \frac{m g l}{M J_t - m^2 l^2} & 0 & \frac{g l^2 m^2 (m + M)}{(M J_t - m^2 l^2)^2} & 0 \end{pmatrix}. \quad (6.5)$$

This matrix has determinant

$$\det(W_r) = \frac{g^2 l^4 m^4}{(M J_t - m^2 l^2)^4} \neq 0$$

and we can conclude that the system is reachable. This implies that we can move the system from any initial state to any final state and, in particular, that we can always find an input to bring the system from an initial state to an equilibrium point.

It is useful to have an intuitive understanding of the mechanisms that make a system unreachable. An example of such a system is given in Figure 6.3. The system consists of two identical systems with the same input. Clearly, we can not
Figure 6.3: A non-reachable system. The cart-pendulum system shown on the left has a single input that affects two pendula of equal length and mass. Since the forces affecting the two pendula are the same and their dynamics are identical, it is not arbitrarily control the state of the system. The figure on the right gives a block diagram representation of this situation.

separately cause the first and second system to do something different since they have the same input. Hence we cannot reach arbitrary states and so the system is not reachable (Exercise 6.2).

More subtle mechanisms for non-reachability can also occur. For example, if there is a linear combination of states that always remains constant, then the system is not reachable. To see this, suppose that there exists a row vector H such that

$$0 = \frac{d}{dt} Hx = H(Ax + Bu) \quad \text{for all } u.$$

Then H is in the left null space of both A and B and it follows that

$$HW_r = H \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = 0.$$

Hence the reachability matrix is not full rank. In this case, if we have an initial condition x_0 and we wish to reach a state x_f for which $Hx_0 \neq Hx_f$, then since $Hx(t)$ is constant, no input u can move from x_0 to x_f.

Reachable Canonical Form

As we have already seen in previous chapters, it is often convenient to change coordinates and write the dynamics of the system in the transformed coordinates $z = Tx$. One application of a change of coordinates is to convert a system into a canonical form in which it is easy to perform certain types of analysis.

A linear state space system is in **reachable canonical form** if its dynamics are
6.1. REACHABILITY

Figure 6.4: Block diagram for a system in reachable canonical form. The individual states of the system are represented by a chain of integrators whose input depends on the weighted values of the states. The output is given by an appropriate combination of the system input and other states.

given by

\[
\frac{dz}{dt} = \begin{bmatrix}
-a_1 & -a_2 & -a_3 & \cdots & -a_n \\
1 & 0 & 1 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 1 & 0 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
z_1 \\
z_2 \\
\vdots \\
z_n
\end{bmatrix} +
\begin{bmatrix}
1 \\
0 \\
0 \\
0 \\
\vdots
\end{bmatrix} u
\]

(6.6)

A block diagram for a system in reachable canonical form is shown in Figure 6.4. We see that the coefficients that appear in the A and B matrices show up directly in the block diagram. Furthermore, the output of the system is a simple linear combination of the outputs of the integration blocks.

The characteristic polynomial for a system in reachable canonical form is given by

\[
\lambda(s) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n.
\]

(6.7)

The reachability matrix also has a relatively simple structure:

\[
W_r = \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} =
\begin{bmatrix}
1 & -a_1 & a_1^2 - a_2 & \cdots & * \\
0 & 1 & -a_1 & \cdots & * \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & 1 & -a_1 & \cdots & * \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix},
\]

where $*$ indicates a possibly nonzero term. This matrix is full rank since no column can be written as a linear combination of the others due to the triangular structure of the matrix.

We now consider the problem of changing coordinates such that the dynamics of a
system can be written in reachable canonical form. Let A, B represent the dynamics of a given system and \tilde{A}, \tilde{B} be the dynamics in reachable canonical form. Suppose that we wish to transform the original system into reachable canonical form using a coordinate transformation $x = Tz$. As shown in the last chapter, the dynamics matrix and the control matrix for the transformed system are

$$\tilde{A} = TAT^{-1}, \quad \tilde{B} = TB.$$

The reachability matrix for the transformed system then becomes

$$\tilde{W}_r = \begin{bmatrix} \tilde{B} & \tilde{A}\tilde{B} & \cdots & \tilde{A}^{n-1}\tilde{B} \end{bmatrix}.$$

Transforming each element individually, we have

$$\tilde{A}\tilde{B} = TAT^{-1}TB = TAB$$
$$\tilde{A}^2\tilde{B} = (TAT^{-1})^2TB = TAT^{-1}TAT^{-1}TB = TATB$$
$$\vdots$$
$$\tilde{A}^n\tilde{B} = TAB.$$

and hence the reachability matrix for the transformed system is

$$\tilde{W}_r = T \begin{bmatrix} B & AB & \cdots & A^{n-1}B \end{bmatrix} = TW_r.$$

(6.8)

Since W_r is invertible, we can thus solve for the transformation T that takes the system into reachable canonical form:

$$T = \tilde{W}_rW_r^{-1}.$$

The following example illustrates the approach.

Example 6.3 Transformation to reachable form

Consider a simple two dimensional system of the form

$$\dot{x} = \begin{bmatrix} \alpha & \omega \\ -\omega & \alpha \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u.$$

We wish to find the transformation that converts the system into reachable canonical form:

$$\tilde{A} = \begin{bmatrix} -a_1 & -a_2 \\ 1 & 0 \end{bmatrix}, \quad \tilde{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$

The coefficients a_1 and a_2 can be determined from the characteristic equation for the original system:

$$\lambda(s) = \det(sI - A) = s^2 - 2\alpha s + (\alpha^2 + \omega^2) \quad \Rightarrow \quad a_1 = -2\alpha \quad a_2 = \alpha^2 + \omega^2.$$

The reachability matrix for each system is

$$W_r = \begin{bmatrix} 0 & \omega \\ 1 & \alpha \end{bmatrix}, \quad \tilde{W}_r = \begin{bmatrix} 1 & -a_1 \\ 0 & 1 \end{bmatrix}.$$
The transformation T becomes
\[
T = \tilde{W}_r W_r^{-1} = \begin{bmatrix}
-d \frac{a_1 + \alpha}{\omega} & 1 \\
\frac{1}{\omega} & 0 \\
\frac{\alpha}{\omega} & 1
\end{bmatrix} = \begin{bmatrix}
\frac{\alpha}{\omega} \\
\frac{1}{\omega} \\
0
\end{bmatrix}
\]
and hence the coordinates
\[
\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = T x = \begin{bmatrix} \frac{\alpha}{\omega} x_1 + x_2 \\ x_2 \end{bmatrix}
\]
put the system in reachable canonical form.

We summarize the results of this section in the following theorem.

Theorem 6.2. Let A and B be the dynamics and control matrices for a reachable system. Then there exists a transformation $z = T x$ such that in the transformed coordinates the dynamics and control matrices are in reachable canonical form (6.6) and the characteristic polynomial for A is given by
\[
\det(sI - A) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n.
\]

One important implication of this theorem is that for any reachable system, we can always assume without loss of generality that the coordinates are chosen such that the system is in reachable canonical form. This is particularly useful for proofs, as we shall see later in this chapter. However, for high order systems, small changes in the coefficients a_i can give large changes of the eigenvalues. Hence, the reachable canonical form is not always well conditioned and must be used with some care.

6.2 STABILIZATION BY STATE FEEDBACK

The state of a dynamical system is a collection of variables that permits prediction of the future development of a system. We now explore the idea of designing the dynamics a system through feedback of the state. We will assume that the system to be controlled is described by a linear state model and has a single input (for simplicity). The feedback control will be developed step by step using one single idea: the positioning of closed loop eigenvalues in desired locations.

State Space Controller Structure

Figure 6.5 shows a diagram of a typical control system using state feedback. The full system consists of the process dynamics, which we take to be linear, the controller elements, K and k_r, the reference input, r, and processes disturbances, d. The goal of the feedback controller is to regulate the output of the system, y, such that it tracks the reference input in the presence of disturbances and also uncertainty in the process dynamics.
An important element of the control design is the performance specification. The simplest performance specification is that of stability: in the absence of any disturbances, we would like the equilibrium point of the system to be asymptotically stable. More sophisticated performance specifications typically involve giving desired properties of the step or frequency response of the system, such as specifying the desired rise time, overshoot and settling time of the step response. Finally, we are often concerned with the disturbance rejection properties of the system: to what extent can we tolerate disturbance inputs \(d \) and still hold the output \(y \) near the desired value?

Consider a system described by the linear differential equation

\[
\frac{dx}{dt} = Ax + Bu, \quad y = Cx + Du,
\]

where we have ignored the disturbance signal \(d \) for now. Our goal is to drive the output \(y \) to a given reference value, \(r \), and hold it there.

We begin by assuming that all components of the state vector are measured. Since the state at time \(t \) contains all information necessary to predict the future behavior of the system, the most general time invariant control law is a function of the state and the reference input:

\[
u = \alpha(x, r).
\]

If the feedback is restricted to be a linear, it can be written as

\[
u = -Kx + kr, \quad (6.10)
\]

where \(r \) is the reference value, assumed for now to be a constant.

This control law corresponds to the structure shown in Figure 6.5. The negative sign is a convention to indicate that negative feedback is the normal situation. The closed loop system obtained when the feedback (6.10) is applied to the system (6.9) is given by

\[
\frac{dx}{dt} = (A - BK)x + Bkr. \quad (6.11)
\]

We attempt to determine the feedback gain \(K \) so that the closed loop system has

\[\]
6.2. STABILIZATION BY STATE FEEDBACK

The characteristic polynomial
\[p(s) = s^n + p_1s^{n-1} + \cdots + p_{n-1}s + p_n. \] (6.12)

This control problem is called the eigenvalue assignment problem or “pole placement” problem (we will define “poles” more formally in a later chapter).

Note that the \(k_r \) does not affect the stability of the system (which is determined by the eigenvalues of \(A - BK \)), but does affect the steady state solution. In particular, the equilibrium point and steady state output for the closed loop system are given by
\[x_e = -(A - BK)^{-1}Bk_r \quad y_e = Cx_e + Du_e, \]

hence \(k_r \) should be chosen such that \(y_e = r \) (the desired output value). Since \(k_r \) is a scalar, we can easily solve to show that if \(D = 0 \) (the most common case).
\[k_r = -1/\left(C(A - BK)^{-1}B\right). \] (6.13)

Notice that \(k_r \) is exactly the inverse of the zero frequency gain of the closed loop system. The solution for \(D \neq 0 \) is left as an exercise.

Using the gains \(K \) and \(k_r \), we are thus able to design the dynamics of the closed loop system to satisfy our goal. To illustrate how to construct such a state feedback control law, we begin with a few examples that provide some basic intuition and insights.

Example 6.4 Vehicle steering

In Example 5.12 we derived a normalized linear model for vehicle steering. The dynamics describing the lateral deviation where given by

\[
A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} \gamma \\ 1 \end{bmatrix} \\
C = \begin{bmatrix} 1 & 0 \end{bmatrix} \quad D = 0.
\]

The reachability matrix for the system is thus
\[W_r = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} \gamma & 1 \\ 1 & 0 \end{bmatrix}. \]

The system is reachable since \(\det W_r = -1 \neq 0 \).

We now want to design a controller that stabilizes the dynamics and tracks a given reference value \(r \) of the lateral position of the vehicle. To do this we introduce the feedback

\[u = -Kx + k_r = -k_1x_1 - k_2x_2 + k_r, \]

and the closed loop system becomes
\[
\frac{dx}{dt} = (A - BK)x + Bk_r = \begin{pmatrix} -\gamma k_1 & 1 - \gamma k_2 \\ -k_1 & -k_2 \end{pmatrix} x + \begin{pmatrix} \gamma k_r \\ k_r \end{pmatrix} r
\]
\[y = Cx + Du = \begin{pmatrix} 1 & 0 \end{pmatrix} x. \] (6.14)
The closed loop system has the characteristic polynomial
\[
\det(sI - A + BK) = \det \begin{pmatrix} s + \gamma k_1 & \gamma k_2 - 1 \\ k_1 & s + k_2 \end{pmatrix} = s^2 + (\gamma k_1 + k_2)s + k_1.
\]

Suppose that we would like to use feedback to design the dynamics of the system to have the characteristic polynomial
\[
p(s) = s^2 + 2\zeta_c \omega_c s + \omega_c^2.
\]

Comparing this polynomial with the characteristic polynomial of the closed loop system we see that the feedback gains should be chosen as
\[
k_1 = \omega_c^2 \quad k_2 = 2\zeta_c \omega_c - \gamma \omega_c^2.
\]

Equation (6.13) gives \(k_r = k_1 = \omega_c^2\), and the control law can be written as
\[
u = k_1(r - x_1) - k_2x_2 = \omega_c^2(r - x_1) - (2\zeta_c \omega_c - \gamma \omega_c^2)x_2.
\]

The step responses for the closed loop system for different values of the design parameters are shown in Figure 6.6. The effect of \(\omega_c\) is shown in Figure 6.6a, which shows that the response speed increases with increasing \(\omega_c\). The responses for \(\omega_c = 0.5\) and 1 have reasonable overshoot. The settling time is about 15 car lengths for \(\omega_c = 0.5\) (beyond the end of the plot) and decreases to about 6 car lengths for \(\omega_c = 1\). The control signal \(\delta\) is large initially and goes to zero as time increases because the controller has an integrator. The initial value of the control signal is \(k_r = \omega_c^2 r\) and thus the achievable response time is limited by the available...
State Feedback for Systems in Reachable Canonical Form

The reachable canonical form has the property that the parameters of the system are the coefficients of the characteristic equation. It is therefore natural to consider systems in this form when solving the eigenvalue assignment problem.

Consider a system in reachable canonical form, i.e,

\[
\frac{dz}{dt} = \tilde{A}z + \tilde{B}u = \begin{pmatrix} -a_1 & -a_2 & -a_3 & \cdots & -a_n \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \cdots & 1 & 0 \end{pmatrix} z + \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} u
\]

(6.15)

\[
y = \tilde{C}z = \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix} z.
\]

It follows from (6.7) that the open loop system has the characteristic polynomial

\[
det(sI - A) = s^n + a_1 s^{n-1} + \cdots + a_{n-1} s + a_n.
\]

Before making a formal analysis we can gain some insight by investigating the block diagram of the system shown in Figure 6.4 on page 181. The characteristic polynomial is given by the parameters \(a_k\) in the figure. Notice that the parameter \(a_k\) can be changed by feedback from state \(x_k\) to the input \(u\). It is thus straightforward to change the coefficients of the characteristic polynomial by state feedback.

Returning to equations, introducing the control law

\[
u = -\tilde{K}z + k_r r = -\tilde{k}_1 z_1 - \tilde{k}_2 z_2 - \cdots - \tilde{k}_n z_n + k_r r,
\]

(6.16)

the closed loop system becomes

\[
\frac{dz}{dt} = \begin{pmatrix} -a_1 - \tilde{k}_1 & -a_2 - \tilde{k}_2 & -a_3 - \tilde{k}_3 & \cdots & -a_n - \tilde{k}_n \\ 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & & \cdots & 1 & 0 \end{pmatrix} z + \begin{pmatrix} k_r \\ \vdots \\ 0 \end{pmatrix} r
\]

(6.17)

\[
y = \begin{pmatrix} b_1 & \cdots & b_2 & b_n \end{pmatrix} z.
\]

The feedback changes the elements of the first row of the \(A\) matrix, which corresponds to the parameters of the characteristic equation. The closed loop system
thus has the characteristic polynomial
\[s^n + (a_1 + \bar{k}_1)s^{n-1} + (a_2 + \bar{k}_2)s^{n-2} + \cdots + (a_{n-1} + \bar{k}_{n-1})s + a_n + \bar{k}_n. \]

Requiring this polynomial to be equal to the desired closed loop polynomial
\[p(s) = s^n + p_1s^{n-1} + \cdots + p_{n-1}s + p_n \]
we find that the controller gains should be chosen as
\[\bar{k}_1 = p_1 - a_1, \quad \bar{k}_2 = p_2 - a_2, \quad \cdots \quad \bar{k}_n = p_n - a_n. \]

This feedback simply replaces the parameters \(a_i \) in the system (6.17) by \(p_i \). The feedback gain for a system in reachable canonical form is thus
\[\bar{K} = \begin{pmatrix} p_1 - a_1 & p_2 - a_2 & \cdots & p_n - a_n \end{pmatrix}. \quad (6.18) \]

To have zero frequency gain equal to unity, the parameter \(k_r \) should be chosen as
\[k_r = \frac{a_n + \bar{k}_n}{b_n} = \frac{p_n}{b_n}. \quad (6.19) \]

Notice that it is essential to know the precise values of parameters \(a_n \) and \(b_n \) in order to obtain the correct zero frequency gain. The zero frequency gain is thus obtained by precise calibration. This is very different from obtaining the correct steady state value by integral action, which we shall see in later sections.

Eigenvalue Placement

We have seen through the examples how feedback can be used to design the dynamics of a system through assignment of its eigenvalues. To solve the problem in the general case, we simply change coordinates so that the system is in reachable canonical form. Consider the system
\[\frac{dx}{dt} = Ax + Bu \]
\[y = Cx + Du. \quad (6.20) \]

We can change the coordinates by a linear transformation \(z = Tx \) so that the transformed system is in reachable canonical form (6.15). For such a system the feedback is given by equation (6.16), where the coefficients are given by equation (6.18). Transforming back to the original coordinates gives the feedback
\[u = -\bar{K}z + k_r r = -\bar{K}Tx + k_r r. \]

The results obtained can be summarized as follows.

Theorem 6.3 (Eigenvalue assignment by state feedback). Consider the system given by equation (6.20), with one input and one output. Let \(\lambda(s) = s^n + a_1s^{n-1} + \cdots + a_{n-1}s + a_n \) be the characteristic polynomial of \(A \). If the system is reachable then there exists a feedback
\[u = -Kx + k_r r \]
that gives a closed loop system with the characteristic polynomial

\[p(s) = s^n + p_1 s^{n-1} + \cdots + p_{n-1} s + p_n \]

and unity zero frequency gain between \(r \) and \(y \). The feedback gain is given by

\[K = KT = \begin{bmatrix} p_1 - a_1 & p_2 - a_2 & \cdots & p_n - a_n \\ 1 & 1 & \cdots & 1 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ 0 & 0 & \cdots & 1 \end{bmatrix} \tilde{W}_r W_r^{-1} \quad k_r = \frac{p_n}{a_n}, \quad (6.21) \]

where \(a_i \) are the coefficients of the characteristic polynomial of the matrix \(A \) and the matrices \(W_r \) and \(\tilde{W}_r \) are given by

\[W_r = \begin{pmatrix} B & AB & \cdots & A^{n-1}B \end{pmatrix}, \quad \tilde{W}_r = \begin{pmatrix} 1 & a_1 & a_2 & \cdots & a_{n-1} \\ 0 & 1 & a_1 & \cdots & a_{n-2} \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & a_1 \\ 0 & 0 & \cdots & 1 & 1 \end{pmatrix}^{-1} \]

For simple problems, the eigenvalue assignment problem can be solved by introducing the elements \(k_i \) of \(K \) as unknown variables. We then compute the characteristic polynomial

\[\lambda(s) = \det(sI - A + BK) \]

and equate coefficients of equal powers of \(s \) to the coefficients of the desired characteristic polynomial

\[p(s) = s^n + p_1 s^{n-1} + \cdots + p_{n-1} + p_n. \]

This gives a system of linear equations to determine \(k_i \). The equations can always be solved if the system is reachable, exactly as we did in Example 6.4.

Equation (6.21), which is called Ackermann’s formula \([3, 4]\), can be used for numeric computations. It is implemented in the MATLAB function \texttt{acker}. The MATLAB function \texttt{place} is preferable for systems of high order because it is better conditioned numerically.

Example 6.5 Predator-prey

Consider the problem of regulating the population of an ecosystem by modulating the food supply. We use the predator-prey model introduced in Section 3.7. The dynamics for the system are given by

\[
\begin{align*}
\frac{dH}{dt} &= \left(r_h + u \right) H \left(1 - \frac{H}{K} \right) - \frac{aHL}{1 + aHT_h} H \quad H \geq 0 \\
\frac{dL}{dt} &= r_l L \left(1 - \frac{L}{kH} \right) \quad L \geq 0.
\end{align*}
\]

We choose the following nominal parameters for the system, which correspond to the values used in previous simulations:

\[
\begin{align*}
 r_h &= 0.02 \quad K = 500 \quad a = 0.03 \\
 r_l &= 0.01 \quad k = 0.2 \quad T_h = 5.
\end{align*}
\]
We take the parameter \(r_h\), corresponding to the growth rate for hares, as the input to the system, which we might modulate by controlling a food source for the hares. This is reflected in our model by the term \((r_h + u)\) in the first equation.

To control this system, we first linearize the system around the equilibrium point of the system, \((H_e, L_e)\), which can be determined numerically to be \(H \approx (6.5, 1.3)\). This yields a linear dynamical system

\[
\frac{d}{dt} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} 0.001 & -0.01 \\ 0.002 & -0.01 \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} + \begin{pmatrix} 6.4 \\ 0 \end{pmatrix} v
\]

where \(z_1 = L - L_e\), \(z_2 = H - H_e\) and \(v = u\). It is easy to check that the system is reachable around the equilibrium \((z, v) = (0, 0)\) and hence we can assign the eigenvalues of the system using state feedback.

Determining the eigenvalues of the closed loop system requires balancing the ability to modulate the input against the natural dynamics of the system. This can be done by the process of trial and error or by using some of the more systematic techniques discussed in the remainder of the text. For now, we simply choose the desired closed loop poles to be \(\lambda = \{-0.01, -0.02\}\). We can then solve for the feedback gains using the techniques described earlier, which results in

\[
K = \begin{pmatrix} 0.005 & -0.15 \end{pmatrix}.
\]

Finally, we solve for the reference gain, \(k_r\), using equation (6.13) to obtain \(k_r = 0.003\).

Putting these steps together, our control law becomes

\[v = -Kz + k_r r. \]

In order to implement the control law, we must rewrite it using the original coordinates for the system, yielding

\[u = u_e - K(x - x_e) + k_r(r - y_e) \]

\[= \begin{pmatrix} 0.005 & -0.015 \end{pmatrix} \begin{pmatrix} H - 6.5 \\ L - 1.3 \end{pmatrix} + 0.003 (r - 6.5). \]

This rule tells us how much we should modulate \(r_h\) as a function of the current number of lynxes and hares in the ecosystem. Figure 6.7a shows a simulation of the resulting closed loop system using the parameters defined above and starting an initial population of 15 hares and 5 lynxes. Note that the system quickly stabilizes the population of lynxes at the reference value \((H = 20)\). A phase portrait of the system is given in Figure 6.7b, showing how other initial conditions converge to the stabilized equilibrium population. Notice that the dynamics are very different than the natural dynamics (shown in Figure 3.20 on page 95).

The results of this section show that we can use state feedback to design the dynamics of a system, under the strong assumption that we can measure all of the states. We shall address the availability of the states in the next chapter, when we consider output feedback and state estimation. In addition, Theorem 6.3 states that...
the eigenvalues can be assigned to arbitrary locations is also highly idealized and assumes that the dynamics of the process are known to high precision. The robustness of state feedback combined with state estimators is considered in Chapter 12, after we have developed the requisite tools.

6.3 STATE FEEDBACK DESIGN

The location of the eigenvalues determines the behavior of the closed loop dynamics and hence where we place the eigenvalues is the main design decision to be made. As with all other feedback design problems, there are tradeoffs between the magnitude of the control inputs, the robustness of the system to perturbations and the closed loop performance of the system. In this section we examine some of these tradeoffs, starting with the special case of second order systems.

Second Order Systems

One class of systems that occurs frequently in the analysis and design of feedback systems is second order, linear differential equations. Because of their ubiquitous nature, it is useful to apply the concepts of this chapter to that specific class of systems and build more intuition about the relationship between stability and performance.

The canonical second order system is a differential equation of the form

\begin{align}
\ddot{q} + 2\zeta \omega_0 \dot{q} + \omega_0^2 q &= ku \\
y &= q.
\end{align}

(6.22)
In state space form, this system can be represented as

\[
\begin{align*}
\dot{x} &= \begin{pmatrix} 0 & \omega_0 \\ -\omega_0 & -2\zeta\omega_0 \end{pmatrix} x + \begin{pmatrix} 0 \\ k/\omega_0 \end{pmatrix} u \\
y &= \begin{pmatrix} 1 & 0 \end{pmatrix} x.
\end{align*}
\] (6.23)

The eigenvalues of this system are given by

\[
\lambda = -\zeta\omega_0 \pm \sqrt{\omega_0^2 (\zeta^2 - 1)}
\]

and we see that the origin is a stable equilibrium point if \(\omega_0 > 0\) and \(\zeta > 0\). Note that the eigenvalues are complex if \(\zeta < 1\) and real otherwise. Equations (6.22) and (6.23) can be used to describe many second order systems, including damped oscillators, active filters and flexible structures, as shown in the examples below.

The form of the solution depends on the value of \(\zeta\), which is referred to as the damping factor for the system. If \(\zeta > 1\), we say that the system is overdamped and the natural response (\(u = 0\)) of the system is given by

\[
y(t) = \frac{\beta x_{10} + x_{20}}{\beta - \alpha} e^{-\alpha t} - \frac{\alpha x_{10} + x_{20}}{\beta - \alpha} e^{-\beta t}
\]

where \(\alpha = \omega_0(\zeta + \sqrt{\zeta^2 - 1})\) and \(\beta = \omega_0(\zeta - \sqrt{\zeta^2 - 1})\). We see that the response consists of the sum of two exponentially decaying signals. If \(\zeta = 1\) then the system is critically damped and solution becomes

\[
y(t) = e^{-\zeta\omega_0 t} (x_{10} + (x_{20} + \zeta\omega_0 x_{10}) t).
\]

Note that this is still asymptotically stable as long as \(\omega_0 > 0\), although the second term in the solution is increasing with time (but more slowly than the decaying exponential that is multiplying it).

Finally, if \(0 < \zeta < 1\), then the solution is oscillatory and equation (6.22) is said to be underdamped. The parameter \(\omega_0\) is referred to as the natural frequency of the system, stemming from the fact that for small \(\zeta\), the eigenvalues of the system are approximately \(\lambda = -\zeta \pm j\omega_0\). The natural response of the system is given by

\[
y(t) = e^{-\zeta\omega_0 t} \left(x_{10} \cos \omega_d t + \left(\frac{\zeta \omega_0}{\omega_d} x_{10} + \frac{1}{\omega_d} x_{20} \right) \sin \omega_d t \right),
\]

where \(\omega_d = \omega_0\sqrt{1 - \zeta^2}\) is called the damped frequency. For \(\zeta \ll 1\), \(\omega_d \approx \omega_0\) defines the oscillation frequency of the solution and \(\zeta\) gives the damping rate relative to \(\omega_0\).

Because of the simple form of a second order system, it is possible to solve for the step and frequency responses in analytical form. The solution for the step
Figure 6.8: Step response for a second order system. Normalized step responses h for the system (6.23) for $\zeta = 0$ (dashed), 0.1, 0.2, 0.5, 0.707 (dash dotted), 1, 2, 5 and 10 (dotted). As the damping ratio is increased, the rise time of the system gets longer, but there is less overshoot. The horizontal axis is in scaled units $\omega_0 t$; higher values of ω_0 results in faster response (rise time and settling time).

The step response depends on the magnitude of ζ:

$$y(t) = \frac{k}{\omega_0^2} \left(1 - e^{-\zeta \omega_0 t} \cos \omega_0 t + \frac{\zeta}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin \omega_0 t \right) \quad \zeta < 1$$

$$y(t) = \frac{k}{\omega_0^2} (1 - e^{-\omega_0 t} \left(1 + \omega_0 t \right)) \quad \zeta = 1 \quad (6.24)$$

$$y(t) = \frac{k}{\omega_0^2} \left(1 - e^{-\omega_0 t} - \frac{1}{2(1+\zeta)} e^{\omega_0(t-2\zeta)t} \right) \quad \zeta > 1,$$

where we have taken $x(0) = 0$. Note that for the lightly damped case ($\zeta < 1$) we have an oscillatory solution at frequency ω_d.

Step responses of systems with $k = \omega_0^2$ and different values of ζ are shown in Figure 6.8. The shape of the response is determined by ζ and the speed of the response is determined by ω_0 (included in the time axis scaling): the response is faster if ω_0 is larger.

In addition to the explicit form of the solution, we can also compute the properties of the step response that were defined in Section 5.3. For example, to compute the maximum overshoot for an underdamped system, we rewrite the output as

$$y(t) = \frac{k}{\omega_0^2} \left(1 - \frac{1}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin(\omega_0 t + \varphi) \right) \quad (6.25)$$

where $\varphi = \arccos \zeta$. The maximum overshoot will occur at the first time in which the derivative of y is zero, and hence we look for the time t_p at which

$$0 = \frac{k}{\omega_0^2} \left(\frac{\zeta \omega_0}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \sin(\omega_0 t + \varphi) - \frac{\omega_0}{\sqrt{1-\zeta^2}} e^{-\zeta \omega_0 t} \cos(\omega_0 t + \varphi) \right) \quad (6.26)$$
Table 6.1: Properties of the response to reference values of a second order system for $|\zeta| < 1$.
The parameter $\varphi = \arccos \zeta$.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>$\zeta = 0.5$</th>
<th>$\zeta = 1/\sqrt{2}$</th>
<th>$\zeta = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady state value</td>
<td>k/ω_0^2</td>
<td>k/ω_0^2</td>
<td>k/ω_0^2</td>
<td>k/ω_0^2</td>
</tr>
<tr>
<td>Rise time</td>
<td>$T_r = 1/\omega_0 \cdot e^{\varphi/\tan \varphi}$</td>
<td>1.8/\omega_0</td>
<td>2.2/\omega_0</td>
<td>2.7/\omega_0</td>
</tr>
<tr>
<td>Overshoot</td>
<td>$M_p = e^{-\pi \zeta / \sqrt{1-\zeta^2}}$</td>
<td>16%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Settling time (2%)</td>
<td>$T_s \approx 4/\zeta \omega_0$</td>
<td>8.0/\omega_0</td>
<td>5.9/\omega_0</td>
<td>5.8/\omega_0</td>
</tr>
</tbody>
</table>

Eliminating the common factors, we are left with

$$\tan(\omega_d t_p + \varphi) = \frac{\sqrt{1-\zeta^2}}{\zeta}.$$

Since $\varphi = \arccos \zeta$, it follows that we must have $\omega_d t_p = \pi$ (for the first non-trivial extremum) and hence $t_p = \pi/\omega_d$. Substituting this back into equation (6.25), subtracting off the steady state value and normalizing, we have

$$M_p = e^{-\pi \zeta / \sqrt{1-\zeta^2}}.$$

Similar computations can be done for the other characteristics of a step response. Table 6.1 summarizes the calculations.

The frequency response for a second order system can also be computed explicitly and is given by

$$M e^{j\theta} = \frac{k}{(i\omega)^2 + 2\zeta \omega_0 (i\omega) + \omega_0^2} = \frac{k}{\omega_0^2 - \omega^2 + 2i\zeta \omega_0 \omega}.$$

A graphical illustration of the frequency response is given in Figure 6.9. Notice the resonance peak that increases with decreasing ζ. The peak is often characterized by its Q-value, defined as $Q = 1/2\zeta$. The properties of the frequency response for a second order system are summarized in Table 6.2.

Table 6.2: Properties of the frequency response for a second order system with $|\zeta| < 1$.

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>$\zeta = 0.1$</th>
<th>$\zeta = 0.5$</th>
<th>$\zeta = 1/\sqrt{2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero frequency gain</td>
<td>M_0</td>
<td>k/ω_0^2</td>
<td>k/ω_0^2</td>
<td>k/ω_0^2</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>ω_0</td>
<td>1.54ω_0</td>
<td>1.27ω_0</td>
<td>ω_0</td>
</tr>
<tr>
<td>Resonant peak gain</td>
<td>M_r</td>
<td>1.54k/ω_0^2</td>
<td>1.27k/ω_0^2</td>
<td>k/ω_0^2</td>
</tr>
<tr>
<td>Resonant frequency</td>
<td>ω_{mr}</td>
<td>ω_0</td>
<td>0.707ω_0</td>
<td>0</td>
</tr>
</tbody>
</table>
6.3. STATE FEEDBACK DESIGN

Figure 6.9: Frequency response of a second order system (6.23). The upper curve shows the gain ratio, M, and the lower curve shows the phase shift, θ. The parameters is Bode plot of the system with $\zeta = 0$ (dashed), 0.1, 0.2, 0.5, 0.7 and 1.0 (dashed-dot).

Example 6.6 Drug administration

To illustrate the usage of these formulas, consider the two-compartment model for drug administration, described in Section 3.6. The dynamics of the system are

$$
\frac{dc}{dt} = \begin{pmatrix} -k_0 & -k_1 \\ k_2 & -k_2 \end{pmatrix} c + \begin{pmatrix} b_0 \\ 0 \end{pmatrix} u \\
y = \begin{pmatrix} 0 & 1 \end{pmatrix} x,
$$

where c_1 and c_2 are the concentrations of the drug in each compartment, $k_i, i = 0, \ldots, 2$ and b are parameters of the system, u is the flow rate of the drug into compartment 1 and y is the concentration of the drug in compartment 2. We assume that we can measure the concentrations of the drug in each compartment and we would like to design a feedback law to maintain the output at a given reference value r.

We choose $\zeta = 0.9$ to minimize the overshoot and choose the rise time to be $T_r = 10$ min. Using the formulas in Table 6.1 this gives a value for $\omega_0 = 0.22$. We can now compute the gain to place the eigenvalues at this location. Setting $u = -Kx + k_r r$, the closed loop eigenvalues for the system satisfy

$$
\lambda(s) = -0.198 \pm 0.0959i
$$

Choose $k_1 = -0.2027$ and $k_2 = 0.2005$ gives the desired closed loop behavior.
Equation 6.13 gives the reference gain $k_r = 0.0645$. The response of the controller is shown in Figure 6.10 and compared with an “open loop” strategy involving administering periodic doses of the drug.

Higher Order Systems

Our emphasis so far has only considered second order systems. For higher order systems, eigenvalue assignment is considerably more difficult, especially when trying to account for the many tradeoffs that are present in a feedback design.

One of the other reasons why second order systems play such an important role in feedback systems is that even for more complicated systems the response is often characterized by the “dominant eigenvalues”. To define these more precisely, consider a system with eigenvalues $\lambda_i, i = 1, \ldots, n$. We define the damping factor for a complex eigenvalue λ to be

$$\zeta = \frac{-\text{Re}\lambda}{|\lambda|}.$$

We say that a complex conjugate pair of eigenvalues λ, λ^* is a *dominant pair* if it has the lowest damping factor compared with all other eigenvalues of the system.

Assuming that a system is stable, the dominant pair of eigenvalues tends to be the most important element of the response. To see this, assume that we have a system in Jordan form with a simple Jordan block corresponding to the dominant
pair of eigenvalues:

\[
\dot{z} = \begin{bmatrix}
\lambda & J_2 \\
\lambda^* & \ddots \\
& \ddots & J_k
\end{bmatrix} z + Bu
\]

\[
y = Cz.
\]

(Note that the state \(z\) may be complex due to the Jordan transformation.) The response of the system will be a linear combination of the responses from each of the individual Jordan subsystems. As we see from Figure 6.8, for \(\zeta < 1\) the sub-system with the slowest response is precisely the one with the smallest damping factor. Hence when we add the responses from each of the individual subsystems, it is the dominant pair of eigenvalues that will be the primary factor after the initial transients due to the other terms in the solution die out. While this simple analysis does not always hold (for example, if some non-dominant terms have larger coefficients due to the particular form of the system), it is often the case that the dominant eigenvalues determine the (step) response of the system.

One way to visualize the effect of the closed loop eigenvalues on the dynamics is to use the eigenvalue plot in Figure 6.11. This chart shows representative step and frequency responses as a function of the location of the eigenvalues. The diagonal lines in the left half plane represent the damping ratio \(\zeta = \sqrt{2} \approx 0.707\), a common value for many designs.

The only formal requirement for eigenvalue placement is that the system is reachable. In practice there are many other constraints because the selection of eigenvalues has strong effect on the magnitude and rate of change of the control signal. Large eigenvalues will in general require large control signals as well as fast changes of the signals. The capability of the actuators will therefore impose constraints on the possible location of closed loop eigenvalues. These issues will be discussed in depth in Chapters 11 and 12.

We illustrate some of the main ideas using the balance system as an example.

Example 6.7 Balance system

Consider the problem of stabilizing a balance system, whose dynamics were given in Example 6.2. The dynamics are given by

\[
A = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & \frac{m^2l^2g}{M_tJ_t - m^2l^2} & -cJ_t & -\gamma mJ_t \\
0 & \frac{M_0mgl}{M_tJ_t - m^2l^2} & -\gamma mJ_t & -\gamma lMJ_t
\end{bmatrix}, \quad B = \begin{bmatrix}
0 \\
0 \\
\frac{J_t}{M_tJ_t - m^2l^2} \\
\frac{l_J}{M_tJ_t - m^2l^2}
\end{bmatrix},
\]

where \(M_t = M + m\), \(J_t = J + ml^2\) and we have left \(c\) and \(\gamma\) non-zero. We use the following parameters for the system (corresponding roughly to a human being
Unstable

\[\zeta = \sqrt{2} \]

Figure 6.11: Representative step and frequency responses for second order systems, following Franklin, Powell and Emami-Naeini [80]. Step responses are shown in the upper half of the plot, with the location of the origin of the step response indicating the value of the eigenvalues. Frequency responses are shown in the lower half of the plot. The diagonal lines represent constant damping ratio \(\zeta = 1 / \sqrt{2} \), where the response has very little overshoot and almost no resonant peak.

balanced on a stabilizing cart):

\[
M = 10 \text{ kg} \quad m = 80 \text{ kg} \quad c = 0.1 \text{ N s/m} \\
\gamma = 0.01 \text{ N m s} \quad g = 9.8 \text{ m/s}^2 \\
J = 100 \text{ kg m}^2/\text{s}^2 \quad l = 1 \text{ m}
\]

The eigenvalues of the open loop dynamics are given by \(\lambda \approx 0, 4.7, -1.9 \pm 2.7 \). We have verified already in Example 6.2 that the system is reachable and hence we can use state feedback to stabilize the system and provide a desired level of performance.

To decide where to place the closed loop eigenvalues, we note that the closed loop dynamics will roughly consist of two components: a set of fast dynamics that stabilize the pendulum in the inverted position and a set of slower dynamics that will control the position of the cart. For the fast dynamics, we look to the natural period of the pendulum (in the hanging down position), which is given by \(\omega_0 = \sqrt{g/l} \approx 2.1 \text{ rad/s} \). To provide a fast response we choose a damping ratio of \(\zeta = 0.5 \) and try to place the first pair of poles at \(\lambda_{1,2} = -\zeta \omega_0 \pm \)
6.3. STATE FEEDBACK DESIGN

\[\omega_0 \approx -1 \pm 2i, \] where we have used the approximation that \(\sqrt{1 - \zeta^2} \approx 1. \) For the slow dynamics, we choose the damping ratio to be 0.7 to provide small overshoot and choose the natural frequency to be 0.5 to give a rise time of approximately 5 seconds. This gives eigenvalues \(\lambda_{3,4} = -0.35 \pm 0.35i. \)

The controller consists of a feedback on the state and a feedforward gain for the reference input. The feedback gain is given by

\[
K = \begin{bmatrix}
-18.8 & 4500 & 597 & -876
\end{bmatrix},
\]

which can be computed using Theorem 6.3 or using the MATLAB \texttt{place} command. The feedforward gain is \(k_r = -1/(C(A - BK)^{-1}B) = -15.5. \) The step response for the resulting controller (applied to the linearized system) is given in Figure 6.12a. While the step response gives the desired characteristics, the input required (bottom left) is excessively large, almost three times the force of gravity at its peak.

To provide a more realistic response, we can redesign the controller to have slower dynamics. We see that the peak of the input force occurs at the fast time scale and hence we choose to slow this down by a factor of 3, leaving the damping ratio unchanged. We also slow down second set of eigenvalues, with the intuition that we should move the position of the cart more slowly than we stabilize the pendulum dynamics. Leaving the damping ratio for the slow dynamics unchanged at 0.7 and changing the frequency to 1 (corresponding to a rise time of approximately 10 seconds), the desired eigenvalues become

\[
\lambda = \{-0.33 \pm 0.66i, -0.175 \pm 0.18i\}
\]
The performance of the resulting controller is shown in Figure 6.12b.

As we see from this example, it can be difficult to reason about where to place the eigenvalues using state feedback. This is one of the principle limitations of this approach, especially for systems of higher dimension. Optimal control techniques, such as the linear quadratic regular problem discussed next, are one approach that is available. One can also focus on the frequency response for performing the design, which is the subject of Chapters 8–12.

Linear Quadratic Regulators

In addition to selecting the closed loop eigenvalue locations to accomplish a certain objective, another way that the gains for a state feedback controller can be chosen is by attempting to optimize a cost function. This can be particularly useful in helping balance the performance of the system with the magnitude of the inputs required to achieve that level of performance.

The infinite horizon, linear quadratic regulator (LQR) problem is one of the most common optimal control problems. Given a multi-input linear system

\[\dot{x} = Ax + Bu \quad x \in \mathbb{R}^n, u \in \mathbb{R}^p, \]

we attempt to minimize the quadratic cost function

\[\tilde{J} = \int_0^\infty (x^T Q_x x + u^T Q_u u) \, dt \]

where \(Q_x \geq 0 \) and \(Q_u > 0 \) are symmetric, positive (semi-) definite matrices of the appropriate dimension. This cost function represents a tradeoff between the distance of the state from the origin and the cost of the control input. By choosing the matrices \(Q_x \) and \(Q_u \), we can balance the rate of convergence of the solutions with the cost of the control.

The solution to the LQR problem is given by a linear control law of the form

\[u = -Q_u^{-1} B^T P x \]

where \(P \in \mathbb{R}^{n \times n} \) is a positive definite, symmetric matrix that satisfies the equation

\[PA + A^T P - PBQ_u^{-1} B^T P + Q_x = 0. \]

Equation (6.27) is called the algebraic Riccati equation and can be solved numerically (for example, using the \texttt{lqr} command in MATLAB).

One of the key questions in LQR design is how to choose the weights \(Q_x \) and \(Q_u \). To guarantee that a solution exists, we must have \(Q_x \geq 0 \) and \(Q_u > 0 \). In addition, there are certain “observability” conditions on \(Q_x \) that limit its choice. We assume here \(Q_x > 0 \) to ensure that solutions to the algebraic Riccati equation always exist.

To choose specific values for the cost function weights \(Q_x \) and \(Q_u \), we must use our knowledge of the system we are trying to control. A particularly simple choice
is to use diagonal weights

\[Q_x = \begin{pmatrix} q_1 & 0 & \cdots & 0 \\ 0 & q_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & q_n \end{pmatrix}, \quad Q_u = \rho \begin{pmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & r_n \end{pmatrix}. \]

For this choice of \(Q_x \) and \(Q_u \), the individual diagonal elements describe how much each state and input (squared) should contribute to the overall cost. Hence, we can take states that should remain small and attach higher weight values to them. Similarly, we can penalize an input versus the states and other inputs through choice of the corresponding input weight \(\rho \).

Example 6.8 Vectored thrust aircraft

Consider the original dynamics of the system (2.26), written in state space form as

\[
\frac{dx}{dt} = \begin{pmatrix} x_4 \\ x_5 \\ x_6 \\ -g \sin \theta - c x_1 \\ -g \cos \theta - c y \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{m} \cos \theta f_1 - \frac{1}{m} \sin \theta f_2 \\ \frac{1}{m} \sin \theta f_1 + \frac{1}{m} \cos \theta f_2 \end{pmatrix}.
\]

The equilibrium point for the system is given by \(f_1 = 0, f_2 = mg \) and \(x_e = (\xi, \eta, 0, 0, 0, 0) \).

To derive the linearized model near an equilibrium point, we compute the linearization according to equation (5.33):

\[
A = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & -g & -c/m & 0 & 0 \\ 0 & 0 & 0 & 0 & -c/m & 0 \\ 0 & 0 & -mgl/J & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 1/m & 0 \\ 0 & 1/m \\ r/J & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}, \quad D = 0
\]

Letting \(z = x - x_e \) and \(v = u - u_e \), the linearized system is given by

\[
\dot{z} = Az + Bv \\
y = Cx.
\]

It can be verified that the system is reachable.

To compute a linear quadratic regulator for the system, write the cost function as

\[
J = \int_0^\infty (z^T Q_z z + p^T Q_v v) dt
\]

where \(z = x - x_e \) and \(v = u - u_e \) represent the local coordinates around the desired equilibrium point \((x_e, u_e)\). We begin with diagonal matrices for the state and input
costs:

\[
Q_z = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \quad Q_v = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}.
\]

This gives a control law of the form \(v = -Kz \), which can then be used to derive the control law in terms of the original variables:

\[
u = v + u_e = -K(x - x_e) + u_e.
\]

As computed in Example 5.4, the equilibrium points have \(u_e = (0, mg) \) and \(x_e = (\xi_e, \eta_e, 0, 0, 0, 0) \). The response of the controller to a step change in the desired position is shown in Figure 6.13a. The response can be tuned by adjusting the weights in the LQR cost. Figure 6.13b shows the response in the \(\xi \) directions for different choices of the weight \(\rho \).

Linear quadratic regulators can also be designed for discrete time systems, as illustrated by the following example.

Example 6.9 Web server control

Consider the web server example given in Section 3.4, where a discrete time model for the system was given. We wish to design a control law that sets the server parameters so that average processor load of the server is maintained at a desired level. Since other processes may be running on the server, the web server must adjust its parameters in response to changes in the load.

A block diagram for the control system is shown in Figure 6.14. We focus on the special case where we wish to control only the processor load using both
6.3. STATE FEEDBACK DESIGN

the KeepAlive and MaxClients parameters. We also include a “disturbance” on the measured load that represents the usage of the processing cycles by other processes running on the server. The system has the same basic structure as the generic control system in Figure 6.5, with the variation that the disturbance enters after the process dynamics.

The dynamics of the system are given by a set of difference equations of the form

\[x[k+1] = Ax[k] + Bu[k], \quad y_{cpu}[k] = C_{cpu}x[k] + d_{cpu}[k], \]

where \(x = (x_{cpu}, x_{mem}) \), \(u = (u_{ka}, u_{mc}) \), \(d_{cpu} \) is the processing load from other processes on the computer and \(y_{cpu} \) is the total processor load.

We choose our controller to be a state feedback controller of the form

\[u = -K \begin{bmatrix} y_{cpu} \\ x_{mem} \end{bmatrix} + k_{r} r_{cpu}, \]

where \(r_{cpu} \) is the desired processor load. Note that we have used the measured processor load \(y_{cpu} \) instead of the state to ensure that we adjust the system operation based on the measured load. (This modification is necessary because of the non-standard way in which the disturbance enters the process dynamics.)

The feedback gain matrix \(K \) can be chosen by any of the methods described in this chapter. Here we use a linear quadratic regulator, with cost function given by

\[Q_x = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}, \quad Q_u = \begin{bmatrix} 1/50^2 & 0 \\ 0 & 1/1000^2 \end{bmatrix}. \]

The cost function for the state \(Q_x \) is chosen so that we place more emphasis on the processor load versus the memory usage. The cost function for the inputs \(Q_u \) is chosen so as to normalize the two inputs, with a KeepAlive timeout of 50 seconds having the same weight as a MaxClients value of 1000. These values are squared since the cost associated with the inputs is given by \(u^T Q_u u \). Using the dynamics in Section 3.4, the resulting gains become

\[K = \begin{bmatrix} -22.3 & 10.1 \\ 382.7 & 77.7 \end{bmatrix}. \]
As in the case of a continuous time control system, the reference gain k_r is chosen to yield the desired equilibrium point for the system. Setting $x[k+1] = x[k] = x_e$, the steady state equilibrium point and output for a given reference input r is given by

$$x_e = (A - BK)x_e + Bk_r r, \quad y_e = Cx_e.$$

This is a matrix differential equation in which k_r is a column vector that sets the two inputs values based on the desired reference. If we take the desired output to be of the form $y_e = (r,0)$, then we must solve

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} = C(A - BK - I)^{-1}Bk_r.$$

Solving this equation for k_r, we obtain

$$k_r = \left((C(A - BK - I)^{-1}B)^{-1}\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} 49.3 \\ 539.5 \end{bmatrix}.$$

The dynamics of the closed loop system are illustrated in Figure 6.15. We apply a change in load of $d_{cpu} = 0.3$ at time $t = 10$ s, forcing the controller to adjust the operation of the server to attempt to maintain the desired load at 0.57. Note that both the KeepAlive and MaxClients parameters are adjusted. Although the load is decreased, it remains approximately 0.2 above the desired steady state. (Better results can be obtained using the techniques of the next section.)

6.4 INTEGRAL ACTION

Controllers based on state feedback achieve the correct steady state response to reference signals by careful calibration of the gain k_r. However, one of the primary uses of feedback is to allow good performance in the presence of uncertainty, and hence requiring that we have an exact model of the process is undesirable. An alternative to calibration is to make use of integral feedback, in which the controller uses an integrator to provide zero steady state error. The basic concept of integral
feedback was already given in Section 1.5 and in Section 3.1; here we provide a more complete description and analysis.

The basic approach in integral feedback is to create a state within the controller that computes the integral of the error signal, which is then used as a feedback term. We do this by augmenting the description of the system with a new state z:

$$\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ y - r \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ Cx - r \end{bmatrix}.$$

The state z is seen to be the integral of the error between the desired output r and the actual output y. Note that if we find a compensator that stabilizes the system then we will necessarily have $\dot{z} = 0$ in steady state and hence $y = r$ in steady state.

Given the augmented system, we design a state space controller in the usual fashion, with a control law of the form

$$u = -Kx - k_iz + kr,$$

where K is the usual state feedback term, k_i is the integral term and kr is used to set the nominal input for the desired steady state. The resulting equilibrium point for the system is given as

$$x_e = - (A - BK)^{-1}B(k_ri - k_iz_e)$$

Note that the value of z_e is not specified, but rather will automatically settle to the value that makes $\dot{z} = y - r = 0$, which implies that at equilibrium the output will equal the reference value. This holds independently of the specific values of A, B and K, as long as the system is stable (which can be done through appropriate choice of K and k_i).

The final compensator is given by

$$u = -Kx - k_iz + kr$$

$$\dot{z} = y - r,$$

where we have now included the dynamics of the integrator as part of the specification of the controller. This type of compensator is known as a dynamic compensator since it has its own internal dynamics. The following example illustrates the basic approach.

Example 6.10 Cruise control

Consider the cruise control example introduced in Section 3.1 and considered further in Example 5.11. The linearized dynamics of the process around an equilibrium point v_e, u_e are given by

$$\dot{x} = ax - b_v \theta + bw$$

$$y = v = x + v_e,$$

where $x = v - v_e$, $w = u - u_e$, m is the mass of the car and θ is the angle of the road. The constant a depends on the throttle characteristic and is given in Example 5.11.
If we augment the system with an integrator, the process dynamics become

\[
\begin{align*}
\dot{x} &= ax - b_g \theta + bw \\
\dot{z} &= y - v_r = v_e + x - v_r,
\end{align*}
\]

or, in state space form,

\[
\frac{d}{dt} \begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} a & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} + \begin{pmatrix} b \\ 0 \end{pmatrix} u + \begin{pmatrix} -b_g \\ 0 \end{pmatrix} \theta + \begin{pmatrix} 0 \\ v_e - v_r \end{pmatrix}.
\]

Note that when the system is at equilibrium we have that \(\dot{z} = 0 \), which implies that the vehicle speed, \(v = v_e + x \), should be equal to the desired reference speed, \(v_r \).

Our controller will be of the form

\[
\dot{z} = y - v_r \\
u = -k_p x - k_i z + k_r v_r
\]

and the gains \(k_p, k_i \) and \(k_r \) will be chosen to stabilize the system and provide the correct input for the reference speed.

Assume that we wish to design the closed loop system to have characteristic polynomial

\[
\lambda(s) = s^2 + a_1 s + a_2.
\]

Setting the disturbance \(\theta = 0 \), the characteristic polynomial of the closed loop system is given by

\[
\det(sI - (A - BK)) = s^2 + (bk_p - a)s + bk_i
\]

and hence we set

\[
k_p = \frac{a_1 + a}{b} \quad k_i = \frac{a_2}{b} \quad k_r = \frac{a_2}{b}.
\]

The resulting controller stabilizes the system and hence brings \(\dot{z} = y - v_r \) to zero, resulting in perfect tracking. Notice that even if we have a small error in the values of the parameters defining the system, as long as the closed loop poles are still stable then the tracking error will approach zero. Thus the exact calibration required in our previous approach (using \(k_r \)) is not needed here. Indeed, we can even choose \(k_r = 0 \) and let the feedback controller do all of the work (Exercise 6.5).

Integral feedback can also be used to compensate for constant disturbances. Figure 6.16 shows the results of a simulation in which the car encounters a hill with angle \(\theta = 4^\circ \) at \(t = 8 \) s. The stability of the system is not affected by this external disturbance and so we once again see that the car’s velocity converges to the reference speed. This ability to handle constant disturbances is a general property of controllers with integral feedback and is explored in more detail in Exercise 6.6.
6.5 FURTHER READING

The importance of state models and state feedback was discussed in the seminal paper by Kalman [111], where the state feedback gain was obtained by solving an optimization problem that minimized a quadratic loss function. The notions of reachability and observability (next chapter) are also due to Kalman [113] (see also [83, 116]). Kalman defines controllability and reachability as the ability to reach the origin and an arbitrary state, respectively [115]. We note that in most textbooks the term “controllability” is used instead of “reachability”, but we prefer the latter term because it is more descriptive of the fundamental property of being able to reach arbitrary states. Most undergraduate textbooks on control will contain material on state space systems, including, for example, Franklin, Powell and Emami-Naeini [80] and Ogata [158]. Friedland’s textbook [81] covers the material in the previous, current and next chapter in considerable detail, including the topic of optimal control.

EXERCISES

6.1 Extend the argument in Section 6.1 to show that if a system is reachable from an initial state of zero, it is reachable from a nonzero initial state.

6.2 Consider the system shown in Figure 6.3. Write the dynamics of the two systems as

\[\frac{dx}{dt} = Ax + Bu, \quad \frac{dz}{dt} = Az + Bu. \]

Observe that if \(x \) and \(z \) have the same initial condition, they will always have the same state, regardless of the input that is applied. Show that this violates the definition of reachability and further show that the reachability matrix \(W_r \) is not full rank.

6.3 Show that the characteristic polynomial for a system in reachable canonical form is given by equation (6.7) and that

\[\frac{d^n z_k}{dt^n} + a_1 \frac{d^{n-1} z_k}{dt^{n-1}} + \cdots + a_{n-1} \frac{dz_k}{dt} + a_n z_k = \frac{d^{n-k} u}{dt^{n-k}}. \]
6.4 Consider a system in reachable canonical form. Show that the inverse of the reachability matrix is given by

\[
\tilde{W}_r^{-1} = \begin{bmatrix}
1 & a_1 & a_2 & \cdots & a_n \\
0 & 1 & a_1 & \cdots & a_{n-1} \\
\vdots & & & & \\
0 & 0 & 0 & \cdots & 1
\end{bmatrix}.
\] (6.28)

6.5 Build a simulation for the speed controller designed in Example 6.10 and show that with \(k_r = 0\), the system still achieves zero steady state error.

6.6 Show that integral feedback can be used to compensate for a constant disturbance by giving zero steady state error even when \(d \neq 0\).

6.7 (Rear steered bicycle) A simple model for a bicycle was given by (3.5) in Section 3.2. A model for a bicycle with rear-wheel steering is obtained simply by reversing the sign of the velocity in the model. Determine the conditions under which this systems is reachable and explain any situations in which the system is not reachable.

6.8 Equation (6.13) gives the gain required to maintain a given reference value for a system with no direct term. Compute the reference gain in the case where \(D \neq 0\).

6.9 (An unreachable system) Consider the system

\[
\frac{dx}{dt} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u \\
y = \begin{bmatrix} 1 & 0 \end{bmatrix} x
\]

with the control law

\[u = -k_1 x_1 - k_2 x_2 + k_r r.\]

Show that eigenvalues of the system cannot be assigned to arbitrary values.

6.10 Show that if \(y(t)\) is the output of a linear system corresponding to input \(u(t)\), then the output corresponding to an input \(\dot{u}(t)\) is given by \(\dot{y}(t)\). (Hint: use the definition of the derivative: \(\dot{y}(t) = \lim_{\epsilon \to 0} (y(t+\epsilon) - y(t))/\epsilon\).)

6.11 Prove the Cayley-Hamilton theorem