به نام خداوند بخشیده مهریان

پایدارشتهای کلاس درس نظریه بازی‌ها

استاد درس:

دکتر صفری

بهترین مرادآبادی

۱۳۸۸/۰۹/۲۹
تعریف مجموعه تقاضا:

با داشتن یک مجموعه قیمت‌ها P = {p_1, p_2, ..., p_m} و تابع ارزش (Demand) برای باریک‌های i مجموعه T باشد، تعریف یک تقاضا (Demand) نامیده می‌شود اگر به ازای هر طوری که S ⊆ M باشد باشیم:

\[\nu_i(S) - \sum_{j \in S} p_j \leq \nu_i(T) - \sum_{j \in T} p_j \]

تعریف Walrasian equilibrium

مجموعه قیمت‌ها P به همراه یک تخصیص از آن‌ها

است اگر هر بازیکن خود تحت Demand است، اگر هر بازیکن i در S شامل \(s_1^*, s_2^*, ..., s_n^* \) به‌کار می‌رود. با هم آن‌ها مجموعه S باشد و اگر آن‌ها i در Demand باشند و اگر آن‌ها j به‌همراه بازیکنی نسبت داده نشده است آنگاه \(p_j^* = 0 \)

شناخته شده است.

تئوری:

در مساله مزایده چند کالا یکی بازیکن \(s^* \) وجود دارد اگر و فقط اگر Walrasian equilibrium دارای LP Relaxation جواب به‌همراه صحیح باشد.

اثبات:

برای اثبات تئوری بالا ابتدا دو قانون زیر را اثبات می‌کنیم:

1- اگر یک مجموعه قیمت‌ها P = \{ p_1^*, p_2^*, ..., p_m^* \} به همراه یک تخصیص از آن‌ها \(s = \{ s_1^*, s_2^*, ..., s_n^* \} \) باشد آنگاه Walrasian equilibrium یک S = \{ s_1, s_2, ..., s_n \} شامل شاخصی است.
تخصیص بهینه است و تابع سودمندی جمعی را ماکزیمم می‌کند. در نتیجه مقدار تابع سودمندی جمعی برای ازه جواب ممکن برای LPRelaxation \(S = \{ s_1^*, s_2^*, \ldots, s_n^* \} \)

اگر جواب ممکن برای LPRelaxation باشد آنگاه:

\[
\sum_{i=1}^{n} v_i (S_i^*) \geq \sum_{i \in N, S \subseteq M} X_i^*, S v_i (S)
\]

انبات: با توجه به اینکه در یک Demand بازیکن هر بازیکن Walrasian equilibrium خود را دریافت می‌کند پس:

و چون \(\{ X_i^*, \}_{i,s} \) یک جواب ممکن برای LPRelaxation است پس داریم:

\[
\sum_{S} X_i^*, S \leq 1
\]

و پس

\[
v_i (S_i^*) - \sum_{j \in S_i^*} p_j^* \geq \sum_{j \in S_i^*} X_i^*, S (v_i (S) - \sum_{j \in S} p_j^*)
\]

حال نشان می‌دهیم که

\[
\sum_{i \in N} \sum_{j \in S_i^*} p_j^* \geq \sum_{j \in S_i^*, i \in N} X_i^*, S (\sum_{j \in S} p_j^*)
\]

و واضح است که طرف چپ مساوی همیشه برابر \(\sum_j p_j^* \) است و طرف راست مساوی حداقل برای \(\sum_j p_j^* \) است.

در نتیجه

\[
\sum_{i=1}^{n} v_i (S_i^*) \geq \sum_{i \in N, S \subseteq M} X_i^*, S v_i (S)
\]

در نتیجه

\[
\sum_{i=1}^{n} v_i (S_i^*) \geq \sum_{i \in N, S \subseteq M} X_i^*, S v_i (S)
\]

با توجه به توابع معادله‌ها و محدودیت‌های سیستم.
مثال:

دو خریدار و Bob و Alice دو آیتم های موجود هستند؛ تابع ارزش برای اکبر و احمد به شرح زیر است:

\[
V_h = \begin{cases}
3 & S = \{a,b\} \\
0 & S \neq \{a,b\}
\end{cases} \quad \Quad...
مسأله باشند آنگاه ثابت می‌کنیم که

\[P = \{ p_1, p_2, \ldots, p_m \} \]

\[S = \{ s_1, s_2, \ldots, s_n \} \]

به همراه است.

یک Walrasian equilibrium با توجه به شرط Complementary Slackness Condition برای هر بازیکن که \(X_i^*, S \geq 0 \) است رابطه

\[X_i^*, S \geq 0 \]

با توجه به شرط Complementary Slackness Condition برای هر بازیکن که

\[u_i = v_i^*(S) - \sum_{j \in S^*} p_i \]

به شکل زیر می‌باشد:

\[v_i^*(S^*) - \sum_{j \in S^*} p_j \leq v_i(S) - \sum_{j \in S} p_j \]

از طرفی برای هر آیتم ز

\[\sum_{i \in N, S \mid j \in S} X_i^*, S < 1 \]

\[p_j^* = 0 \]

Complementary Slackness باشد.

زبان‌هایی نامیش ثابت ارزش:

همانگونه که در قیال هم مطرح شد با توجه به اینکه تعداد اعضای دامنه ثابت ارزش برابر با تعداد زیر مجموعه های است (به غیر از مجموعه تهی) و بنابر این هر نفر می‌توانند حداقل ۱(۲) ثابت ارزش را اعلام کنند که در گل نیاز به فضای ۱(۲) است که نمایی است و فضای زیادی می‌خواهد.

حال روش‌های دیگری را برابر نامیش ثابت ارزش برابر بازی‌کنن مطرح می‌کنیم که به فضای کمتری نیاز داشته باشد:

\[1 \]

Bidding Language
رده نفر فقط می‌تواند یک تابع ارزش (S^*, V^*) را به ازای یک مجموعه بیان کند.

در صورتی‌که آنگاه هر زیرمجموعه‌ای از اجتماع هر دو مجموعه می‌تواند

یانگر یک تابع ارزش باشد که مقدار این تابع برابر است با مجموع توابع ارزش مجموعه‌های حاضر در S.

$$(v \text{ OR } u)(S) = \max_{R \subseteq S, R \cap S = \emptyset} v(R) + u(T)$$

مثال:

$$(\{a, b\}, 3) \text{ OR } (\{c, d\}, 5)$$

$V(\{a, b\}) = 3$
$V(\{c, d\}) = 5$
$V(\{a, b, c, d\}) = 8$

$$(v \text{ XOR } u)(S) = \max(v(S), u(S))$$

مثال:

$$(\{a, b\}, 3) \text{ XOR } (\{c, d\}, 5)$$

$V(\{a, b\}) = 3$
$V(\{c, d\}) = 5$
$V(\{a, b, c, d\}) = 5$

مثال:

$\text{ نمایش تابع ارزش برای } v(S) = \sum_{j \in S} v(\{j\})$:

$((1, p_1) \text{ OR } (2, p_2)) \text{ OR } ... \text{ OR } (m, p_m))$
نمایش تابع ارزش برای (v({j}))
\[\text{XOR} \hspace{1cm} \text{OR} \hspace{1cm} v(S) = \max_{j \in S} v({j}) \]

\[((1, p_1)) \text{XOR}((2, p_2)) \text{XOR} \ldots \text{XOR}((m, p_m)) \]

تابع فوق را توان با هم نمایش داد.
\[v(S) = \max_{j \in S} v({j}) \]

مثال:

\[\text{XOR} \hspace{1cm} \text{OR} \hspace{1cm} v(S) = \max_{j \in S} v({j}) \]

\[((1, p_1)) \text{XOR}((2, p_2)) \text{XOR} \ldots \text{XOR}((m, p_m)) \]

تابع فوق را توان با هم نمایش داد.
\[v(S) = \max_{j \in S} v({j}) \]

\[((1, p_1)) \text{XOR}((2, p_2)) \text{XOR} \ldots \text{XOR}((m, p_m)) \]