
Fault-Tolerant Spanners in Networks with Symmetric
Directional Antennas∗

M. A. Abam† F. Baharifard‡ M. S. Borouny† H. Zarrabi-Zadeh†

Abstract

Let P be a set of points in the plane, each equipped with a directional antenna that
covers a sector of angle α and range r. In the symmetric model of communication, two
antennas u and v can communicate to each other, if and only if v lies in u’s coverage
area and vice versa. In this paper, we introduce the concept of fault-tolerant spanners
for directional antennas, which enables us to construct communication networks that
retain their connectivity and spanning ratio even if a subset of antennas are removed
from the network. We show how to orient the antennas with angle α and range r to
obtain a k-fault-tolerant spanner for any positive integer k. For α ≥ π, we show that
the range 13 for the antennas is sufficient to obtain a k-fault-tolerant 3-spanner. For
π/2 < α < π, we show that using range 6δ + 19 for δ = ⌈4/| cosα|⌉, one can direct
antennas so that the induced communication graph is a k-fault-tolerant 7-spanner.

Keywords: Wireless network, Directional antenna, Fault-tolerance, Geometric spanner

1 Introduction

Omni-directional antennas, whose coverage area are often modelled by a disk, have been
traditionally employed in wireless networks. However, in many recent applications, omni-
directional antennas have been replaced by directional antennas, whose coverage region can
be modelled as a sector with an angle α and a radius r (also called transmission range), where
the orientation of antennas can vary among the nodes of the network. The point is that by
a proper orientation of directional antennas, one can generate a network with lower radio
wave overlapping and higher security than the traditional networks with omni-directional
antennas [6].

There are two main models of communication in networks with directional antennas. In
the asymmetric model, each antenna has a directed link to any node that lies in its coverage
area. In the symmetric model, there exists a link between two antennas u and v, if and only
if u lies in the coverage area of v, and v lies in the coverage area of u. The symmetric model
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of communication is more practical, especially in networks where two nodes must handshake
to each other before transmitting data [8].

In this paper, we consider the symmetric model for communication in directional anten-
nas, and study two properties of the communication graphs: k-connectivity and spanning
ratio. A network is k-connected if it remains connected after removing or destroying any
k − 1 of its nodes. Furthermore, if after some failure of nodes, it still has some desirable
properties, we say that the network is fault-tolerant. Therefore, the fault-tolerance property
is more general than the connectivity. A network is called a spanner, if there is a short path
between any pairs of nodes, within a guaranteed ratio to the shortest paths between those
nodes in an underlying base graph. This ratio is called the stretch factor. A fault-tolerant
spanner has the property that when a small number of nodes fail, the remaining network still
contains short paths between any pair of nodes. (See [16] for an overview of the properties
of geometric spanner networks.)

Related Work. The problem of orienting directional antennas to obtain a strongly
connected network was first studied by Caragiannis et al. [7] in the asymmetric model. They
showed that when α < 2π/3, the problem of determining the minimum radius to achieve
connectivity is NP-hard, and presented a polynomial time algorithm for α ≥ 8π/5 with
optimal radius. The problem was later studied for other values of α, and approximation
algorithms were provided for minimizing the transmission range of connected networks [3,
9]. However, the communication graphs obtained from these algorithms could have a very
large stretch factor, such as O(n), compared to the original unit disk graph (i.e., the omni-
directional graph of radius 1). Therefore, subsequent research was shifted towards finding a
proper orientation such that the resulting graph becomes a t-hop spanner [6, 13]. In a t-hop
spanner, the number of hops (i.e., links) in a shortest link path between any pair of nodes
is at most t times the number of hops in the shortest link path between those two nodes in
the base graph, which happens to be a unit disk graph in this case.

The connectivity of communication graphs in the symmetric model was first studied by
Ben-Moshe et al. [5] in a limited setting where the orientation of antennas were chosen from
a fixed set of directions. Carmi et al. [8] later considered the general case, and proved that
for α ≥ π/3, it is always possible to orient antennas so that the induced graph is connected.
In their presented algorithm, the radius of the antennas were related to the diameter of the
nodes. Subsequent work considered the stretch factor of the communication graph. Aschner
et al. [4] studied the problem for α = π/2 and obtained a symmetric connected network with
radius 14

√
2 and a stretch factor of 8, assuming that the unit disk graph of the nodes is

connected. Tran et al. [19] also studied the case α = π/2, and proved its NP-hardness when
the objective is to determine an orientation of the antennas with a minimum radius such that
the induced symmetric communication graph is connected. They also presented an algorithm
to improve the radius from 14

√
2 to 9 for this case. Recently, Dobrev et al. [10] proved that

for α < π/3 and radius one, the problem of determining the existence of an orientation that
ensures a connected network is NP-hard. They also showed how to construct spanners for
various values of α ≥ π/2. A summary of the current records for the radius and the stretch
factor of the communication graphs in the symmetric model is presented in Table 1.

The problem of k-connectivity in wireless networks has been also studied in the literature,
mostly for omni-directional networks [14, 15], where the objective is to assign transmission
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Table 1: Summary of the previous results for netwroks with symmetric directional antennas.
In all these results, the unit disk graph of the nodes (antennas) is assumed to be connected.
Here, δ =

√
3− 2 cosα(1 + 2 sin α

2
).

Angle of Antenna Stretch Factor Radius Ref.

π/2 − 9 [19]

π/2 8 14
√
2 [4]

π/2 7 33 [11]

5 718

π/2 ≤ α < 2π/3 9 10 [10]

2π/3 ≤ α < π − 5

2π/3 ≤ α < π 6 6

α ≥ π − max(2, 2 sin α
2
+ 1)

α ≥ π 3 max(2, 2 sin α
2
+ δ)

range such that the network can sustain fault nodes and remain connected. The stretch
factor of the constructed network is also studied in some limited settings. In [12], a setting
is studied where antennas are on a unit segment or a unit square, and a sufficient condition
is obtained on the angle of directional antennas so that the energy consumption of the k-
connected networks is lower when using directed rather than omni-directed antennas. In [18],
a tree structure is built on directed antennas, and a fault-tolerance property is maintained
by adding additional links to tolerate failure in limited cases, namely, when only a node or
a pair of adjacent nodes fail.

Our Results. In this paper, we study the problem of finding fault-tolerant spanners in
networks with symmetric directional antennas. The problem is formally defined as follows.
Given a set P of n points in the plane, place antennas with angle α and radius r on P , so
that the resulting communication graph is a k-fault-tolerant t-spanner. A graph G on the
vertex set P is a k-fault-tolerant t-spanner, if after removing any subset S ⊆ P of nodes
with |S| < k, the resulting graph G \ S is a t-spanner of the unit disk graph of P . In the
rest of the paper, we assume that the unit distance is sufficiently large to ensure that the
unit disk graph of P is k-connected. To the best of our knowledge, this is the first time that
fault-tolerance is studied in networks with symmetric directional antennas.

We show that for any α ≥ π, we can place antennas with angle α and radius 9, such that
the resulting communication graph is k-connected. Moreover, we show that by increasing the
radius to 13, we can guarantee that the resulting graph is a k-fault-tolerant 3-spanner. When
π/2 < α < π, we consider two cases depending on whether the distribution of antennas is
sparse or dense. We prove that for sparse distribution, we can place antennas with angle α
and radius 4δ + 13, where δ = ⌈4/| cosα|⌉, such that the resulting communication graph is
k-connected and then by increasing the radius to 6δ+19, have a k-fault-tolerant 7-spanner.
Moreover, for dense distribution, we prove that our algorithm yields a k-fault-tolerant 4-
spanner using radius δ. Our results are summarized in Table 2.
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Table 2: Summary of our results for netwroks with symmetric directional antennas. In these
results, the unit disk graph of the nodes is assumed to be k-connected. Here, δ = ⌈4/| cosα|⌉.

Angle of Antenna Stretch Factor Radius Ref.

α ≥ π – 9 Theorem 1

α ≥ π 3 13 Theorem 2

π/2 < α < π (sparse) – 4δ + 13 Theorem 3

π/2 < α < π (sparse) 7 6δ + 19 Theorem 4

π/2 < α < π (dense) 4 δ Theorem 4

We recall that the k-connectivity of the unit disk graph is assumed in the rest of the
paper. In other words, we compared the radius and stretch factor of our k-connected direc-
tional network to those of a k-connected omni-directional network. While this assumption is
reasonable, it is possible to relax it, and only assume the connectivity of the unit disk graph,
which is the minimum requirement assumed in the related (non-fault-tolerant) work. If we
replace the k-connectivity assumption with 1-connectivity, the radius and stretch factor of
our constructed network is increased by a factor of k, as discussed in Section 5.

2 Preliminaries

Let P be a set of points in the plane, and G be a graph on the vertex set P . For two
points p, q ∈ P , we denote by δG(p, q) the shortest hop (link) distance between p and q in
G. Throughout this paper, the length of a path in a graph refers to the number of edges on
that path. For two points p and q in the plane, the Euclidean distance between p and q is
denoted by ∥pq∥.

Let B(c, r) denote a (closed) disk of radius r centered at c. We define A(c, r) ≡ B(c, r)−
B(c, r−1) to be an annulus of width 1 enclosed by two concentric circles of radii r−1 and r,
centered at c. Note that by our definition, A(c, r) is open from its inner circle, and is closed
from the outer circle.

A graph G is k-connected, if removing any set of at most k−1 vertices leaves G connected.
Given a point set P , we denote by UDG(P ) the unit disk graph defined by the set of disks
B(p, 1) for all p ∈ P . We say that P is k-connected, if UDG(P ) is k-connected. Let
G = UDG(P ). A graph H on the vertex set P is a t-spanner of G, if for any two vertices u
and v in G, we have δH(u, v) ≤ t · δG(u, v). We say that the subgraph H ⊆ G is a k-fault-
tolerant t-spanner of G, if for all sets S ⊆ P with |S| < k, the graph H \ S is a t-spanner of
G \ S.

Fact 1. Let G and H be two k-connected graphs, and E be a set of edges between the vertices
of G and H. If E contains a matching of size k, then the graph G ∪H ∪ E is k-connected.

Fact 2. Let G be a k-connected graph, and v be a new vertex adjacent to at least k vertices
of G. Then G+ v is k-connected.
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Lemma 1. Let P be a k-connected point set, and r be a positive integer. If |P | ≥ rk, then
for any point p ∈ P , B(p, r) contains at least rk points of P .

Proof. Fix a point p, and let q be the furthest point from p in P . If ∥pq∥ ≤ r, then
P ⊆ B(p, r), and we are done. Otherwise, consider the annuli Ai = A(p, i) for 1 ≤ i ≤ r+1,
and let A0 = {p}. Each Ai must be non-empty, because otherwise, p is disconnected from
q in UDG(P ). Now, we claim that each Ai, for 1 ≤ i ≤ r, contains at least k points.
Otherwise, if |Ai| < k for some 1 ≤ i ≤ r, then removing the points of Ai disconnects Ai−1

from Ai+1, contradicting the fact that P is k-connected.

3 Antennas with α ≥ π

In this section, we present our algorithm for orienting antennas with angle at least π. The
main ingredient of our method is a partitioning algorithm which we describe below. The
same partitioning will be used later in Section 4.

3.1 Partitioning Algorithm

The partitioning algorithm is illustrated in Algorithm 1. The algorithm receives as input a
point set P , a point p ∈ P , and a positive integer r. It recursively builds a graph H that
induces a partitioning on P , as described in Lemma 2.

Algorithm 1 Partition(P, p, r)

1: add vertex p to graph H
2: P = P \B(p, 2r)
3: while ∃q ∈ P ∩B(p, 2r + 1) do
4: Partition(P, q, r)
5: add edge (p, q) to graph H

Lemma 2. Let P be a k-connected point set, p be an arbitrary point of P , and |P | ≥ kr
for a positive integer r. Let H = (V,E) be the graph obtained from Partition(P, p, r). For
each v ∈ V , we define Qv = P ∩ B(v, r). Moreover, we define Fv to be the set of all points
in P \ ∪u∈VQu closer to v than any other point in V (ties broken arbitrarily). Then the
followings hold:

(a) H is connected, and for each edge (u, v) ∈ E, 2r < ∥uv∥ ≤ 2r + 1.

(b) P is partitioned into disjoint sets Qv and Fv.

(c) Qv has at least kr points, for all v ∈ V .

(d) Fv is contained in B(v, 2r), for all v ∈ V .
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Figure 1: A partitioning obtained by Algorithm 1. The induced graph H is shown by dark
edges. Groups and free points are represented by shaded and gray regions, respectively.

Proof. (a) The graph H built by the algorithm is clearly connected, as each new vertex
created by calling Partition in line 4 is connected in line 5 to a previous vertex of H.
Moreover, lines 2 and 3 of the algorithm enforce that any two adjacent vertices in H
have distance between 2r and 2r + 1.

(b) The sets Fv are disjoint by their definition. The sets Qv are also disjoint, because any
two vertices in H have distance more than 2r by line 2 of the algorithm.

(c) This is a corollary of Lemma 1.

(d) This is clear from lines 2 and 3 of the algorithm.

We call each set Qv a group, and the points in Fv the free points associated to the group
Qv (see Figure 1). We call v the center of Qv. Two groups Qu and Qv are called adjacent
groups, if there is an edge (u, v) in the graph H.

Runtime. To find points inside the disks B(p, 2r) and B(p, 2r+1), we use a circular range
searching data structure by Afshani and Chan [2] that preprocesses the input set P of n
points in O(n log n) expected time so that for any query disk, all k points of P inside the
disk can be reported in O(log n+ k) time. Whenever we delete a point from set P in line 2
of the algorithm, we do not remove it from the data structure, and only mark it as deleted.
Since the radii of the query disks in the algorithm are at most 2r+1, and their centers are at
least 2r apart (for a positive integer r), each point of P lies in at most O(1) query disks, and
hence, the amortized time for processing each point is O(log n/k+1) = O(log n). Therefore,
the whole partitioning algorithm takes O(n log n) expected time.

3.2 Orienting Antennas

Here we show how to place antennas with angle at least π on a point set P , so that the
resulting communication graph is k-connected, with a guaranteed stretch factor. In the rest
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Figure 2: The orientation of antennas with angle π in Qv ∪ Fv.

of this section, we describe our method for α = π. However, the method is clearly valid for
any larger angle.

Theorem 1. Given a k-connected point set P with at least 2k points in the plane, we
can place antennas with angle π and radius 9 on P , such that the resulting communication
network is k-connected.

Proof. We run Algorithm 1 with r = 2 on the point set P to obtain the graph H = (V,E).
For each v ∈ V , let Qv and Fv be the sets defined in Lemma 2. Since r = 2, each set Qv

has at least 2k points. We partition Qv by a horizontal line ℓv into two equal-size subsets Uv

and Dv, each of size at least k, where points in Uv (resp., in Dv) are all above (resp., below)
ℓv. (Points on ℓv can be placed in either Uv or Dv.) Now, we orient antennas in Dv upward,
and antennas in Uv downward. Moreover, we orient antennas in Fv upward if they are below
ℓv, and downward if they are above or on ℓv (see Figure 2).

Let Gπ be the communication graph obtained by the above orientation, where the radius
of each antenna is set to 4r + 1 = 9. Since each node in Dv has distance at most 2r to any
node in Uv, Qv forms a complete bipartite graph, with each part having size at least k, and
hence, it is k-connected. Now, we show that the graph on Q = ∪Qv is k-connected. Note
that the distance between the centers of any two adjacent groups Qu and Qv is at most 2r+1,
and the farthest points in the groups have distance at most 4r + 1. By setting the radius of
antennas to 4r+1, either all members of Du connect to all members of Uv, or all members of
Uu connect to all members of Dv. So there is a matching of size k between any two adjacent
groups, and hence, Q is k-connected by Fact 1. Since Fv is contained in B(v, 2r), the farthest
points in Qv ∪Fv are at distance 4r, and hence, each node in Fv connects to at least k nodes
in Qv. Therefore, the whole communication graph is k-connected by Fact 2.

Theorem 2. Given a k-connected point set P with at least 2k points in the plane, we can
place antennas with angle π and radius 13 on P , such that the resulting communication
network is a k-fault-tolerant 3-spanner.

Proof. We use the same orientation described in the proof of Theorem 1. Now, we show that
by setting radius of antennas to 6r + 1 = 13, the resulting graph Gπ is a k-fault-tolerant
3-spanner. Fix a set S ⊆ P with |S| < k. We show that for any edge (p, q) ∈ UDG(P ) \ S,
there is a path between p and q in Gπ\S of length at most 3. For each v ∈ V , let Tv = Qv∪Fv,
and let ℓv be the horizontal line that equipartitions Qv into sets Du and Uv. Suppose p ∈ Tu
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and q ∈ Tv. Assume w.l.o.g. that ℓu is below or equal to ℓv. Since ∥pq∥ ≤ 1, the centers of
Qu and Qv are at most 4r + 1 apart. Therefore, by setting the radius to 6r + 1, we have a
matching of size k between Du and Uv in Gπ. Moreover, since ∥pq∥ ≤ 1, the distance between
nodes in Qu and Fv (resp., Qv and Fu) is at most 6r + 1. We distinguish the following four
cases based on the order of points and lines on the y-axis. Here, for a point p = (px, py) and
a horizontal line ℓ : y = b, we say that p ≤ ℓ (resp., p > ℓ) if py ≤ b (resp., py > b).

• p ≤ ℓu and q ≤ ℓv. Since |S| < k, there is a vertex w ∈ Uv \ S such that p and q are
both connected to w. Therefore, δG(p, q) = 2 in this case.

• p ≤ ℓu and q > ℓv. Since |S| < k, there is an edge (w, x) ∈ (Du \ S, Uv \ S). Now, the
path ⟨p, x, w, q⟩ is a path of length 3 in G.

• p > ℓu and q > ℓv. Since |S| < k, there is a vertex w ∈ Du \ S such that p and q are
both connected to w. Therefore, δG(p, q) = 2 in this case.

• p > ℓu and q < ℓv. This case is analogous to the second case.

Runtime. To orient the antennas in Qv and Fv, we just need to sort the points to
determine their position about ℓv’s, and hence, the orientation can be done in O(n log n)
time. Combined with the partitioning algorithm, the whole runtime is O(n log n).

4 Antennas with π/2 < α < π

We now consider a more challenging case where the goal is to orient the antennas with angle
π/2 < α < π on a point set P , so that the resulting communication graph is k-connected.
Let δ = ⌈4/| cosα|⌉. We distinguish two cases based on the distribution of P on the plane.
P is called α-sparse if the diameter of P (i.e., the distance of the farthest pair of points in
P ) is at least δ. Otherwise, P is called α-dense.

Algorithm Sketch. We first sketch the whole algorithm, and then go into details of each
part. The algorithm is almost similar to the one given in the previous section for α = π.
We run Algorithm 1 with r = δ + 3 on the point set P to obtain the graph H = (V,E). For
each v ∈ V , let Qv and Fv be the sets defined in Lemma 2. We orient antennas in Qv ∪ Fv

such that the resulting graph is k-connected. We then make the radius of the antennas
large enough, so that for any two adjacent groups Qu and Qv, their union (and consequently
Q = ∪Qv) becomes k-connected.

Observation 1. If P is α-dense, then H = (V,E) is a single vertex.

Lemma 3. If P is α-sparse, then the diameter of P ∩B(p, δ+1) is at least δ, for any p ∈ P .

Proof. Let (q, q′) be the farthest pair of points in P . If both q and q′ are contained in
B(p, δ + 1), we are done. Otherwise, at least one of q and q′ (say q) is outside B(p, δ + 1).
Since UDG(P ) is connected, A(p, δ + 1) must contain some point t of P . Since t is inside
B(p, δ + 1) and ∥tp∥ > δ, the diameter of P ∩B(p, δ + 1) is at least δ.
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Figure 3: Illustrating the proof of Lemma 4.

We start explaining how to make each Qv k-connected. We define γ-cone to be a cone with
angle γ. Let σ(c) be an γ-cone with apex c and let σ̄(c) be the reflection of σ(c) about c.
We first state a proposition from [17] and a new lemma, to be used in our construction.

Proposition 1 ([17]). Given a set P of points in the plane, there exist orthogonal lines h1

and h2 that equipartition P , i.e., none of the four quadrants obtained by lines h1 and h2 has
more than n/4 of the points of P .

Lemma 4. If for some point c, γ-cones σ(c) and σ̄(c) each contains at least m points, then
there exist (γ/2)-cones σ(c′) and σ̄(c′) for some point c′, each containing at least m/2 points.

Proof. Let h1 and h2 be the lines passing through the sides of σ(c). Let h be a line parallel
to the bisector of σ(c) that partitions points inside σ(c) into two equal-size subsets (see
Figure 3). Therefore, regions R1 and R2 contain m/2 points. One of the regions R3 and R4

(say R3) contains at least m/2 points. Therefore, if R3 (resp., R4) contains at least m/2
points, the cone created by h1 (resp., h2) and h is the desired cone.

Now, we present the lemma that our algorithm relies on.

Lemma 5.

(a) If the diameter of Qv is at least δ, then there is a (2α − π)-cone σ(c) for some point c
on the plane such that σ(c) and σ̄(c) each contains at least 2k points of Qv.

(b) If the diameter of Qv is less than δ but Qv contains at least 8k · π/(2α− π) points, then
there is a (2α− π)-cone σ(c) for some point c on the plane such that σ(c) and σ̄(c) each
contains at least 2k points of Qv.

Proof. (a) We claim that there are two points p and q in P with distance at least δ such
that disks with radius 2 centered at p and q are fully contained in B(v, δ + 3). If the
points defining the diameter of Qv are inside B(v, δ + 1), based on the Lemma 3 the
claim is simply true. Otherwise, there is a point outside B(v, δ + 1), and hence there
should be a point w in A(v, δ+1). By setting p = v and q = w, the claim is clearly true.
This claim with Lemma 1 implies that each of these two disks contains at least 2k points
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Figure 4: Illustrating the first case in Lemma 5.

of Qv. Consider the two interior common tangents of these disks with the intersection
point c and angle β (see Figure 4). It is simple to see sin(β/2) ≤ 2/(δ/2). This implies
β ≤ (2α − π) (note that δ = ⌈4/| cosα|⌉). Therefore, we can locate an (2α − π)-cone
σ(c) and its reflection σ̄(c) at c such that both cones contain at least 2k points of Qv.

(b) Since Qv contains at least 8k · π/(2α − π) points, we can apply Proposition 1 and get
two orthogonal lines h1 and h2 such that each quarter created by h1 and h2 contains
2k · π/(2α− π) points. For 3π/4 ≤ α < π (or equivalently π/2 ≤ 2α− π < π), we know
π/(2α− π) ≥ 1, and therefore each quarter contains at least 2k points. Then it suffices
to set σ(c) to be the (2α − π)-cone containing one of the four quarters where c is the
intersection of h1 and h2. For π/2 < α < 3π/4 (or equivalently 0 < 2α − π < π/2), we
can apply Lemma 4, (log2 (2 · π/(2α− π))) − 1 times to get the desired angle and 2k
points in the desired cone.

We recall that if P is α-sparse, the diameter of each set Qv is at least δ. If P is α-dense, we
only have one set Qv and then we only need the extra assumption that P contains at least
8k · π/(2α− π) points, in order to use the lemma in our algorithm.

Orienting Qv ∪ Fv. Let σ(c) be the (2α− π)-cone obtained in Lemma 5. Let ℓ1 and ℓ2 be
the lines passing through the sides of σ(c) (and σ̄(c) as well), and let ℓ be the bisector of the
angle 2π − 2α whose sides are ℓ1 and ℓ2 (see Figure 5 to get more intuition). We define and
depict four types of orienting antennas with angle α in Figure 5 naming O1, O2, O3 and O4.
In each type, each side is parallel to one of the lines ℓ1, ℓ2, and ℓ.

Backbone Antennas. We select 2k point of Qv ∩ σ(c) and arbitrarily partition them
into two sets Dv and Uv of size k. Similarly, we select 2k point of Qv ∩ σ̄(c) and arbitrarily
partition them into two sets D̄v and Ūv of size k. We use typesO1, O2, O3, andO4 for orienting
antennas in Dv, Uv, D̄v, and Ūv, respectively. We call each of these four sets a backbone set.
Regardless of the antennas radii, this orientation holds the following properties:

• Each antenna in Dv ∪ Uv covers each antenna in D̄v ∪ Ūv, and vice versa.

• Each point in the plane is covered by all antennas in one of the backbone sets.
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Figure 5: Cones σ(c) and σ̄(c), and four orientations with angle α.

To orient antenna p in Qv ∪Fv other than backbone antennas, we detect which backbone
set covers p (i.e., p is visible from all antennas in the backbone set). Let Oi be the orientation
type used to orient the backbone set. We orient p with type Ōi where Ōi is the reflection of
Oi about its apex. Figure 6 depicts how to orient antennas depending on their subdivisions
induced by ℓ1, ℓ2, and ℓ.

`
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σ(c)

σ̄(c)

O1

O2
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Qv

Figure 6: The orientation of antennas with angle π/2 < α < π in Qv ∪ Fv

Radius. If P is α-dense, we set the radius to δ, as the distance of any two antennas is at
most δ and hence, the induced graph is k-connected. For the α-sparse set P , we need that
any two visible backbone antennas u′ and v′ from two adjacent groups Qu and Qv cover each
other. Since their distance is at most ∥u′u∥+ ∥uv∥+ ∥vv′∥ ≤ 4(δ+3)+ 1, we set the radius
to 4δ + 13.

k-Connectivity. For any v ∈ V , the distance between two points in Qv is at most 2(δ+3).
So, by setting the radius to 4δ+13 the induced graph over (Dv ∪Uv, D̄v ∪ Ūv) is definitely a
complete bipartite graph with each part having size more than k and hence it is k-connected.
Moreover, by this radius, any antenna in Qv ∪ Fv other than the backbone antennas has a
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direct connection with at least k backbone antennas as the distance between this antenna
and the backbone antennas is at most 3(δ + 3). All these simply imply that the induced
graph over Qv ∪ Fv is k-connected by Fact 2.

Here, we need to show that the connection of two adjacent groups Qv and Qu remains safe
even if k − 1 antennas are destroyed. We partition the backbone antennas in Qv (similarly
in Qu) into k sets Si

v (i = 1, . . . , k) of size 4, each containing one antenna from the sets Dv,
Uv, D̄v, and Ūv. We know each point in the plane is visible from one member of Si

v, and
moreover, two sets Si

v and Si
u can be separated by a line. This together with the following

proposition implies that there are two backbone antennas p ∈ Si
v and q ∈ Si

u which are visible
to each other, and hence, with the radius specified for antennas, they are in the coverage
area of each other.

Proposition 2 ([4]). Let A and B be two sets containing 4 antennas with angle at least
π/2. Suppose both A and B cover the entire plane regardless of the antennas radius. If there
exists a line ℓ that separates A and B, then by setting the radius unbounded, the network
induced by A ∪B is connected.

The above discussion shows that by radius 4δ+13, there are at least k distinct links between
the backbone antennas of two adjacent groups Qv and Qu. Therefore, even if k− 1 antennas
are destroyed, the connection between Qv and Qu remains safe and by Fact 1, the induced
communication graph is k-connected. So, we have the following theorem:

Theorem 3. Suppose P is a k-connected point set in the plane, and α is a given angle in
the range (π/2, π). Let δ = ⌈4/| cosα|⌉ and P is α-sparse. Then, we can place antennas
with angle α and radius 4δ + 13 on P , such that the resulting communication network is
k-connected.

Now, we prove that the induced graph for α-dense points, in addition to being k-
connected, is also k-fault-tolerant 4-spanner. Moreover, we show that for α-sparse points, by
increasing the radius to 6δ+19 the resulting communication graph becomes k-fault-tolerant
7-spanner.

Lemma 6. Suppose p, q ∈ Qv ∪ Fv and q is a backbone antenna. The points p and q are
connected to each other via at most three links, even if k − 1 antennas are destroyed.

Proof. Assume w.l.o.g. that q ∈ Dv. We know p is visible from all members of one backbone
set. This backbone set can be either Dv, Uv, D̄v, or Ūv. If this backbone set is either Dv, D̄v

or Ūv, we reach q from p with at most two links. Otherwise, with 3 links we can get q from p.
Since each backbone set has k members and any member of Dv ∪Uv is visible from D̄v ∪ Ūv

and vice versa, the proof works even if at most k − 1 antennas are destroyed.

Graph H = (V,E) has only one vertex if P is α-dense. Therefore, using Lemma 6 we can
simply show that any two points are in connection with each other via at most 4 links even
if k − 1 antennas are destroyed. Note that any antenna is either a backbone antenna or
directly connected to a backbone antenna. Next we assume that P is α-sparse.

Suppose p ∈ Qu ∪ Fu, q ∈ Qv ∪ Fv and ∥pq∥ ≤ 1. Since ∥pq∥ ≤ 1, the centers of Qu and
Qv are at most 4δ + 13 apart. Therefore, by setting the radius to 6(δ + 3) + 1, we have a
matching of size k between the backbone antennas of Qu and Qv.
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This together with Lemma 6 implies that for any two antennas p ∈ Qv∪Fv and q ∈ Qu∪Fu

with ∥pq∥ ≤ 1, there is a connection via at most 7 links.

Stretch Factor. Let p and q be two arbitrary points in P , and let x0 = p, x1, . . . , xt = q
be the shortest link path between p and q in UDG(P ) \ S, where S is the fault set with size
at most k − 1. Since ∥xixi+1∥ ≤ 1, either there exists v ∈ V such that xi, xi+1 ∈ Qv ∪ Fv, or
there exist two points u, v ∈ V such that xi ∈ Qv ∪Fv and xi+1 ∈ Qu∪Fu, and there exists a
matching of size k between the backbone antennas of Qu and Qv (as just mentioned above).
This shows that in the communication graph obtained by our algorithm, each link (xi, xi+1)
either exist or is replaced by a path of length at most 4 in the α-dense set P , and a path of
length at most 7 in the α-sparse set P . Therefore, our resulting graph is a 4-spanner and a
7-spanner for the α-dense set P and the α-sparse set P , respectively.

Putting all this together, we get the main theorem of this section.

Theorem 4. Suppose P is a k-connected point set in the plane, and α is a given angle in
the range (π/2, π). Let δ = ⌈4/| cosα|⌉. Then, the followings hold:

• If P is α-sparse, we can place antennas with angle α and radius 6δ + 19 on P , such
that the resulting communication network is a k-fault-tolerant 7-spanner.

• If P is α-dense and contains at least 8k · π/(2α − π) points, we can place antennas
with angle α and radius δ on P , such that the resulting communication network is a
k-fault-tolerant 4-spanner.

Runtime. For orienting the antennas, we must first determine whether the point set P is
sparse or dense. This can be done by computing the diameter in O(n log n). Furthermore,
due to the following description, the total running time of orienting the antennas in both
cases is O(n log n).

• In α-sparse case, for any v ∈ V , by computing the diameter of Qv or selecting the
points in A(v, δ + 1), we can choose p and q with distance at least δ and then finding
(2α− π)-cone and detecting the location of points to this cone can be done in O(1).

• In α-dense case, we first apply Proposition 1, which can be done in O(n log n) time [17].
We then apply Lemma 4 O(log n) times, each spending O(n) time. Therefore, the total
running time is O(n log n).

5 Conclusions

In this paper, we introduced the concept of fault-tolerant spanners in networks with sym-
metric directional antennas, and presented the first algorithms for placing antennas with
angles α > π/2, so that the resulting communication graph is a k-fault-tolerant t-spanner,
for small stretch factors t ≤ 7. We compared the radius and stretch factor of our k-connected
directional network to those of a k-connected omni-directional network. If we replace the
k-connectivity assumption for the input set with a relaxed 1-connectivity one, the radius of
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antennas implied by Lemma 1 is multiplied by k, and hence, the radius and stretch factor of
our constructed network is increased by a factor of k. For instance, on a point set whose unit
disk graph is 1-connected, our algorithm constructs a k-fault-tolerant spanner with radius
13k and stretch factor 3k. A natural open problem is to find fault-tolerant spanners with
smaller radius and/or stretch factors. The case π/3 ≤ α ≤ π/2 is also open for further
investigation.
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