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Abstract

Motivated by the bus escape routing problem in printed circuit boards, we study
the following rectangle escape problem: given a set S of n axis-aligned rectangles inside
an axis-aligned rectangular region R, extend each rectangle in S toward one of the four
borders of R so that the maximum density over the region R is minimized. The density
of each point p ∈ R is defined as the number of extended rectangles containing p. We
show that the problem is hard to approximate to within a factor better than 3/2
in general. When the optimal density is sufficiently large, we provide a randomized
algorithm that achieves an approximation factor of 1+ε with high probability improving
over the current best 4-approximation algorithm available for the problem. When the
optimal density is one, we develop an exact algorithm that finds an optimal solution
efficiently. We also provide approximation algorithms and inapproximability results
for a restricted version of the problem where rectangles are allowed to escape toward
only a subset of directions.

Keywords Rectangle escape; Approximation algorithms; Randomized rounding;
NP-completeness; Inapproximability

1 Introduction

In this paper, we revisit the rectangle escape problem [5], motivated by a closely related
escape routing problem in printed circuit boards. The problem is formally defined as follows:
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Figure 1: An instance of the rectangle escape problem. The input rectangles are shown in
dark gray, and their projections are shown in light gray.

Problem 1 (Rectangle Escape Problem (REP)). Given an axis-parallel rectangular region R,
and a set S of n axis-parallel rectangles inside R, extend each rectangle in S toward one of
the four borders of R, so that the maximum density over R is minimized, where the density
of a point p ∈ R is defined as the number of extended rectangles containing p.

To extend a rectangle in S, we simply project it onto one of the four borders of R. The
bounding box of the rectangle and its projection is called an “extended rectangle”. Note
that each extended rectangle contains the area of its original rectangle. An example of the
rectangle escape problem is illustrated in Figure 1. In this example, the maximum density
over the region, which is equal to the maximum number of extended rectangles that overlap
at any point is 2. Not that, by our definition of extended rectangles, the density of the points
inside the original rectangles is at least one in any solution.

The study of the rectangle escape problem is motivated by the escape routing problem
in printed circuit boards (PCBs). The objective in the escape routing problem is to route
nets from their pins to the boundary of the enclosing component. The problem has been
extensively studied in the literature (see, e.g., [3, 4, 5, 6, 7, 9, 10, 11, 12]). In industrial
applications, nets are usually grouped into buses, and the nets from each bus are preferred
to be routed together. In this model, the routing of a bus is obtained by projecting the
bounding box of the bus onto one of the four sides of the bounding component. An example
is illustrated in Figure 2. The main objective is to find a bus routing in which the maximum
number of overlaps at any point is minimized. This is equivalent to the rectangle escape
problem, as defined in Problem 1.

The rectangle escape problem is known to be NP-hard [5]. The decision version of the
problem, which we call k-REP, is defined as follows:

Problem 2 (k-REP). Given an instance of the rectangle escape problem and an integer
k ≥ 1, determine whether any routing is possible with a density of at most k.

It is known that the k-REP problem is NP-complete, even for k = 3 [5]. The best current ap-
proximation algorithm for the optimization version of the problem is due to Ma and Wong [5]
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Figure 2: An example of the bus escape routing problem. The routing is obtained by
projecting the bounding box of the bus pin cluster onto the component boundary.

that achieves an approximation factor of 4, using a deterministic linear programming (LP)
rounding technique.

For a special case when the optimal density is 1 (i.e., when all chips can be routed with
no conflict), the problem can be solved exactly using polynomial-time algorithms available
for the related maximum disjoint subset problem [1, 3].

Our results. In this paper, we obtain some results on the rectangle escape problem, a
summary of which is listed below.

• We show that the k-REP problem is NP-complete for any k ≥ 2. Given that the
problem is polynomially solvable for k = 1, this fully settles the complexity of the
problem for all values of k. An important implication of this result is that the rectangle
escape problem is hard to approximate to within any factor better than 3/2, unless
P = NP.

• Despite the fact that the problem is hard to approximate to within a constant factor
when the optimal density is low, we present a randomized algorithm that achieves an
approximation factor of 1+ε with high probability, when the optimal density is at least
cε log n, for some constant cε. This improves, for instances with high density, upon the
current best algorithm of Ma and Wong [5] that guarantees an approximation factor
of 4 for all instances. Our algorithm is based on a randomized rounding technique
applied to a linear programming formulation of the problem.

• For the 1-REP problem, we present a new algorithm that solves the problem exactly in
O(n4) time, improving upon the previous solution based on the O(n6)-time algorithm
of Kong et al. [3] for the maximum disjoint subset problem1. Our algorithm can indeed
solve the following more general optimization version of the 1-REP problem: given an
instance of the rectangle escape problem, find a maximum-size subset of rectangles in
S that can be routed disjointly.

1 After the appearance of the preliminary version of this paper, an improved O(n4)-time algorithm is
provided in [1] for the maximum disjoint subset problem. The algorithm provided in this paper is still simpler
than that of [1].
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Figure 3: A reduction from 3-SAT to 2-REP.

• We study a restricted version of the REP problem, in which all rectangles are allowed
to escape only toward a fixed subset of directions. In particular, we consider the
bidirectional REP problem, in which rectangles can only escape toward two adjacent
borders of R. We show how this version can be used to approximate the original REP
problem, and present some inapproximability results for this restricted version.

2 Hardness Result

We first show that the k-REP problem is NP-complete, for any k ≥ 2. As a corollary, we
show that the rectangle escape problem is hard to approximate to within any factor better
than 3/2, unless P = NP. Our hardness result holds even in a more restricted setting where
the input rectangles are all disjoint.

Theorem 1. The k-REP problem is NP-complete for any k ≥ 2, even if all input rectangles
are disjoint.

Proof. We prove by reduction from 3-SAT. The reduction is similar to that of [5], but requires
some non-trivial modifications to handle the special case of k = 2, and also, to work in a
more restricted setting where all rectangles are disjoint. Given an instance of 3-SAT, we
create an instance of 2-REP as follows. Fix a rectangular region R. We partition R into four
(virtual) sub-regions, labeled with top, left, variables, and clauses, as shown in Figure 3.
Then, we start building a set of rectangles S inside R as follows. We first add one long
rectangle to the right side of the variables region, and three long rectangles to the left, right,
and bottom sides of the clauses region, as shown in Figure 3. The following rectangles are
then added to S.
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• For each variable xi, we add a pair of “variable rectangles” vi and v̄i along each other
to the variables region in such a way that no two rectangles from different variables
can be stabbed by a single horizontal or vertical line.

• For each clause Cj, we add three “literal rectangles” in a horizontal row in the clauses
region. Each literal rectangle is placed beneath a variable rectangle corresponding to
the literal appeared in the clause. Note that no two literal rectangles intersect, and no
two of them can be stabbed by a vertical line.

• For each variable, we add a “block gadget” to the left region, directly to the left of
the corresponding variable row. Each gadget is composed of five smaller rectangles
in a cross-shape arrangement, as shown in Figure 3. Likewise, for each literal in each
clause, we add a block gadget to the top region directly above the corresponding
literal rectangle. If a literal appears in no clause, we add a block gadget above the
corresponding variable rectangle in the top region. The block gadgets are placed in a
way that no two rectangles from different gadgets can be stabbed by a single horizontal
or vertical line.

Now, we claim that the answer to the constructed instance of 2-REP is yes if and only if
the corresponding 3-SAT instance is satisfiable. First, suppose that the answer to the 2-REP
is yes, i.e., there is a proper routing of rectangles with a density of at most 2. We show that
there is a satisfying assignment for the 3-SAT instance, in which a literal is set to true (resp.,
false), if the corresponding variable rectangle is routed rightward (resp., downward). To
show this, first observe that for each variable vi, the two variable rectangles vi and v̄i cannot
be routed simultaneously to the right, because otherwise, they will cause a density of 3 on
the rectangle located to the right side of the variables region. Moreover, for each gadget in
the top and the left region, the density over at least one of the gadget rectangles is more
than one, and hence, in a proper routing of rectangles, no variable rectangle can be routed
neither to the top, nor to the left side.

For each clause, observe that none of its three literal rectangles can escape upward because
of the block gadgets in the top region, and no two of them can escape simultaneously to
neither left nor right, because of the rectangles put on the left and the right sides of the
clauses region. Therefore, at least one literal rectangle from each clause must be routed
downward. Furthermore, notice that if a variable rectangle escapes downward, none of the
literal rectangles below it can be routed downward, because of the rectangle put at the
bottom side of the clauses region.

Now, given a proper routing of the 2-REP instance, we set variable vi in the 3-SAT in-
stance to 1 if rectangle vi escape to the right, otherwise, we set it to 0. Note that rectangles
for vi and v̄i cannot simultaneously escape to the right, so this assignment is feasible. More-
over, for each clause, at least one of its literal rectangles, say xi, must escape downward,
meaning that its corresponding variable xi is set to 1 for sure, and thus the clause is satis-
fied. Therefore, the 3-SAT instance is satisfiable. The opposite side can be proved using the
same exact mapping, and taking into account the fact that there is a proper routing for the
top and the left gadget rectangles, in which they do not interfere with the rectangles in the
variables and the clauses regions. This completes the NP-completeness proof for k = 2.
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Figure 4: Constructing an instance of k-REP from four instances of (k − 1)-REP.

To show NP-completeness for k > 2, we use a recursive construction. Let Rk−1 be an
instance of (k− 1)-REP. We construct an instance Rk of k-REP by putting a large rectangle
Q in the middle, and four instances of Rk−1 around Q, as shown in Figure 4. The four
instances are placed in a way that no horizontal or vertical line can simultaneously stab
any two of them. Now, suppose that Rk has a proper routing of density k. In this routing,
Q escapes to one of the four directions, and hence, one of the Rk−1 instances must have a
proper routing of density k − 1. Therefore, the corresponding 3-SAT instance is satisfiable
by induction.

For the opposite side, we show by induction that given a satisfiable instance of k-SAT, the
answer to the corresponding Rk is yes. To this end, we strengthen the induction hypothesis
as follows: given a satisfiable instance of k-SAT, there is a routing for the corresponding
Rk such that (i) the density over Rk is at most k, (ii) the density over the top border of
Rk is at most k − 1, and (iii) the density over the other borders of Rk is at most 1. It can
be easily verified that this is true for k = 2. Namely, given a satisfiable instance of 3-SAT,
we route the rectangles in the corresponding R2 as follows: we route all variable and literal
rectangles to either left, right, or down, as explained before. For each block gadget, we route
the squares in the middle and the bottom of the gadget leftward, and route the other squares
upward. Finally, we route the long rectangles on the left and the right sides of clauses region
downward, the long rectangle on the bottom side of clauses region rightward, and the long
rectangle on the right side of variables region upward. This routing guarantees that the
maximum density over all borders of the region is at most 1. Now, assume that for k ≥ 2,
the rectangles in the four Rk−1 instances of Rk can be routed under the above conditions.
Namely, for each of the Rk−1 instances, the density over the top border is at most k− 2, and
the density over the other borders is at most 1. It is easy to see that the maximum density
over the initial location of Q is at most k. Therefore, if Q escapes upward, the resulting
routing for Rk satisfies the above three conditions.

As a corollary of Theorem 1, we obtain the following inapproximablity result.

Theorem 2. For any α < 3/2, there is no α-approximation algorithm for the rectangle
escape problem, even if all input rectangles are disjoint, unless P = NP.

Proof. Suppose by way of contradiction that there is an algorithm with an approximation
factor of α < 3/2. If we run this algorithm on an instance of the rectangle escape problem
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with an optimal density of 2, the algorithm must return a solution with density less than
3/2 × 2, which is at most 2 due to the integrality of the density. Such an algorithm solves
the 2-REP problem exactly, which is a contradiction.

3 An Exact Algorithm for Unit Density

In this section, we present a dynamic programming algorithm that solves the 1-REP prob-
lem optimally in O(n4) time. This is an improvement upon the previous solution due to
Kong et al. [3] that requires O(n6) time. Our algorithm is also simpler than the O(n4)-time
algorithm provided in [1] for a more general problem of finding a maximum disjoint subset
of boundary rectangles. Our algorithm indeed solves the following optimization problem,
which we call maximum disjoint routing.

Problem 3 (Maximum Disjoint Routing). Given an instance of the rectangle escape problem
with disjoint rectangles, find the maximum number of rectangles that can be routed disjointly,
i.e., with unit density.

It is easy to observe that any algorithm for Problem 3 can also solve 1-REP: we first find
the maximum number of rectangles that can be routed disjointly, and check if this number
is equal to n. Note that in the above definition, the initial locations of unescaped rectangles
are also important: an escaped rectangle cannot collide with any other rectangle, even if
that rectangle is not escaped.

Let R1, . . . , Rn be the input rectangles, sorted in decreasing order of the y-coordinates
of their bottom sides. For a rectangle Ri, the direction d ∈ {left, right, up, down} is said to
be free if by escaping toward that direction, Ri does not collide with any other rectangle in
its initial place. Note that the freeness of direction d for Ri is independent of the escaping
direction of other rectangles. Furthermore, we define the set {v1, . . . , vk} (k ≤ 2n) as the
set of all vertical lines obtained by extending the vertical sides of the rectangles, sorted from
left to right.

To solve Problem 3, we first solve two simpler cases in which the escaping directions
are only vertical. Given integers 0 ≤ i ≤ n and 1 ≤ l, r ≤ k, we define the following two
subroutines:

• One-Direction(i, l, r): returns the maximum number of rectangles among R1, . . . , Ri

that are between vl and vr and can be routed upward in unit density.

• Two-Directions(i, l, r): returns the maximum number of rectangles amongR1, . . . , Ri

that are between vl and vr and can be routed either upward or downward in unit den-
sity.

For each triple (i, l, r), the value of bothOne-Direction(i, l, r) andTwo-Directions(i, l, r)
can be calculated by the following simple greedy algorithm. For each rectangle Rj (1 ≤ j ≤ i)
between vl and vr, find a free direction upward (and downward, depending on the subprob-
lem). If such direction exists, route R through that direction. Note that routing a rectangle
vertically poses no additional restriction on other rectangles in these two subproblems. Next,
we define the following additional subproblem.
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Figure 5: Illustrating Problem 4.

Problem 4 (No-Left-Escape). Given integers 0 ≤ i ≤ n and 1 ≤ b, l, r ≤ k, No-Left-
Escape(i, b, l, r), is defined as the maximum number of rectangles among R1, . . . , Ri which
can be routed in unit density under the following restrictions:

• only rectangles to the right of vb are allowed to escape,

• no rectangle is allowed to escape leftward, and

• only rectangle between vl and vr are allowed to escape downward.

See Figure 5 for an illustration. To find the value of No-Left-Escape(i, b, l, r) recursively,
we consider all possible actions for Ri. The first possible action for Ri is not to escape at
all. In this case, the solution is equal to the solution of No-Left-Escape(i− 1, b, l, r). The
other possible three actions for Ri are listed below. In what follows, we assume that the
considered direction is free for Ri, and that Ri is allowed to escape through that direction
according to the problem restrictions described above. Otherwise, we simply rule out that
direction from the possible actions of Ri. Let vα and vβ be the vertical lines obtained by
extending the left and the right sides of Ri, respectively.

• Downward IfRi escapes downward, the maximum number of rectangles amongR1, . . . , Ri−1

that can escape is equal to No-Left-Escape(i − 1, b, l, r), since routing Ri imposes
no new restriction on R1, . . . , Ri−1.

• Upward If Ri escapes upward, one additional restriction must be considered: rect-
angles not to the right of vβ cannot escape rightward. Therefore, by the problem
definition, each rectangle between vb and vβ can only escape upward or downward. As
such, escaping the maximum number of rectangles between vb and vβ can be solved
independently using subroutines One-Direction and Two-Directions, depending
on the position of vl and vr. The rectangles to the right of vβ form another subproblem,
whose optimal answer is No-Left-Escape(i− 1, β, l, r).

• Rightward By escaping rightward, one more restriction is posed to other rectangles:
for any 1 ≤ j < i, Rj can escape downward if its initial place is not only to the left
of vr, but is also to the left of vα. It means that if initial position of Rj is not to the
left of vmin{r,α}, it cannot be routed downward. Therefore, the optimum answer for
R1, . . . , Ri−1 in this case is No-Left-Escape(i− 1, b, l,min{r, α}).
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Algorithm 1 Max-Route(i, l, r)

1: if i = 0 then

2: return 0

3: ansn ← Max-Route(i− 1, l, r)

4: ansd ← ansu ← ansl ← ansr ← 0

5: α, β ← indices of the vertical lines through the left and the right sides of Ri, respectively.

6: if down is feasible for Ri then

7: ansd ← Max-Route(i− 1, l, r) + 1

8: if left is feasible for Ri then

9: ansl ← Max-Route(i− 1,max{l, β}, r) + 1

10: if right is feasible for Ri then

11: ansr ← Max-Route(i− 1, l,min{r, α}) + 1

12: if up is feasible for Ri then

13: ansu ← No-Right-Escape(i− 1, α, l, r) + No-Left-Escape(i− 1, β, l, r) + 1

14: return max{ansn, ansd, ansu, ansl, ansr}

The No-Right-Escape is analogously defined, and can be solved similarly. Now, we have
all ingredients necessary to solve Problem 3. Indeed, we solve the following more general
problem:

Problem 5 (Max-Route). Given integers 0 ≤ i ≤ n and 1 ≤ l, r ≤ k, find the maximum
number of rectangles among R1, . . . , Ri that can be routed in unit density under the following
restriction: if a rectangle is not between vl and vr, it is not allowed to escape downward.

The procedure Max-Route(i, l, r) defined in Algorithm 1 solves the problem as follows. We
consider all possible actions for Ri. Except for escaping upward, all remaining actions can
be solved like the previous problems. When Ri escapes upward, it is enough to calculate the
sum of No-Left-Escape(i− 1, β, r, l) and No-Right-Escape(i− 1, α, r, l), since routing
rectangles to the left of vα and routing rectangles to the right of vβ are two independent
subproblems.

Lemma 1. Problem 5 can be solved in O(n4) time.

Proof. To solve this problem, consider a dynamic-programming version of Max-Route al-
gorithm. First, using a greedy algorithm, solve the One-Direction and Two-Directions
problems for any tuple (i, l, r), and store them in a table. This can be done in O(n4) time.
Then, by the definition of problem 4, we can solve No-Left-Escape and No-Right-
Escape independently using dynamic programming. Note that in dynamic programming,
the value of each tuple (i, b, l, r) can be obtained in O(1) time from four previously-calculated
values as described above. Putting all together, by using the description of Problem 5, each
value of Max-Route(i, l, r) can be obtained from the previously-calculated values of this
function, or solutions of No-Left-Escape and No-Right-Escape. This can be done in
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Figure 6: The grid cells for an instance of the rectangle escape problem.

O(1) time assuming that the previous values are stored in a table. Thus, using a dynamic
programming algorithm, Problem 5 can be solved in O(n4) time and space.

The following theorem summarizes the result of this section.

Theorem 3. 1-REP can be solved in O(n4) time.

Proof. Observe that the answer to 1-REP is yes iff the answer to Problem 5 for (n, 1, k) is
equal to n, where k is the index of the rightmost vertical line. The running time therefore
follows from Lemma 1.

4 A Randomized Approximation Algorithm

As noted in Section 2, the rectangle escape problem is NP-hard, even when the optimal
density is 2. Therefore, it is natural to look for approximation algorithms for the problem.
The current best approximation algorithm is due to Ma and Wong [5], which achieves an
approximation factor of 4. The algorithm is based on a deterministic rounding of an in-
teger programming formulation of the problem. In this section, we show that a standard
randomized rounding technique [8] applied to the same integer programming formulation of
the problem, yields an approximation factor of 1 + ε, when the optimal density is at least
cε log n, for some constant cε.

The integer programming formulation of the problem is as follows. Let S = {r1, . . . , rn}
be the set of input rectangles inside a region R. We build a grid on top of R by extending
each side of the rectangles in S into a line (see Figure 6). This partitions R into a set C of
O(n2) grid cells, where the density over each cell is fixed.

For each rectangle ri, we define four 0-1 variables xi,l, xi,r, xi,u, and xi,d, corresponding to
the four directions left, right, up, and down, respectively. For a direction λ ∈ {l, r, u, d}, we
set xi,λ = 1 if ri is escaped toward direction λ, otherwise, xi,λ = 0. Since any rectangle ri can
escape toward only one direction, we have the constraint xi,l+xi,r +xi,u+xi,d = 1. For each
grid cell c ∈ C, let Pc = {(i, λ) | ri passes c if it goes toward direction λ}. Note that if cell c
is contained in ri, then (i, λ) ∈ Pc for all directions λ. Let Z be the maximum density over
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Algorithm 2 Randomized-Rounding

1: find an optimal solution x∗ to the LP relaxation (1)

2: route each ri to direction λ according to the probability distribution x∗
i,λ

the region R. Then, for each grid cell c ∈ C we can add the constraint
∑

(i,λ)∈Pc
xi,λ ≤ Z.

Now, the problem can be formulated as the following integer program.

minimize Z (1)

subject to
∑

(i,λ)∈Pc

xi,λ ≤ Z ∀c ∈ C

xi,l + xi,r + xi,u + xi,d = 1 ∀ 1 ≤ i ≤ n

xi,l, xi,r, xi,u, xi,d ∈ {0, 1} ∀ 1 ≤ i ≤ n

The randomized rounding algorithm for the rectangle escape problem is provided in Algo-
rithm 2. The algorithm works as follows. We first relax the integer program to a linear
program by replacing the constraints xi,λ ∈ {0, 1} with 0 ≤ xi,λ ≤ 1, and solve the linear
programming relaxation to obtain a solution x∗ with objective value Z∗. Then, we ran-
domly route each rectangle to exactly one direction by interpreting the value of x∗

i,λ as the
probability of routing ri toward direction λ.

Theorem 4. Algorithm 2 is a (1 + ε)-approximation algorithm for the rectangle escape
problem with high probability, when Z∗ ≥ 9/ε2 lnn.

Proof. For each cell c, let Dc be the density of c in the solution returned by the algorithm.
Define the random variables Xi,λ, where Xi,λ = 1 if rectangle ri is routed toward direction λ
by the algorithm, and Xi,λ = 0 otherwise. Then, we have Dc =

∑
(i,λ)∈Pc

Xi,λ. Therefore,

E[Dc] =
∑

(i,λ)∈Pc

E[Xi,λ]

=
∑

(i,λ)∈Pc

Pr{Xi,λ = 1}

=
∑

(i,λ)∈Pc

x∗
i,λ (by line 2 of algorithm)

≤ Z∗. (by LP constraint)

Moreover, for each cell c, the variables Xi,λ for all (i, λ) ∈ Pc are independent. To see this,
notice that there are two types of variables contributing to the density of c. If c is contained
in a rectangle ri, then Xi,λ, for all directions λ, pass through c. In this case, we can replace
these four variables in the constraint of c by just a number 1, since one and exactly one of
these variables will be 1 in any optimal solution of LP. If c is not contained in ri, then (i, λ)
contributes to the density of c for at most one value of λ, since no two directions of ri can
pass through c simultaneously. Therefore, after substituting the first type of variables in the
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constraint of cell c by 1, all other variables Xi,λ for all (i, λ) ∈ Pc are independent, due to
the fact that the direction of rectangles are chosen independently.

We can now use Chernoff bound to show that Dc is close to Z∗ with high probability. We
use the following statement of Chernoff bound: If X1, . . . , Xn are independent 0-1 random
variables, X =

∑
Xi, E[X] ≤ U , and 0 ≤ ε ≤ 1, then Pr {X ≥ (1 + ε)U} ≤ e−Uε2/3. Since

E[Dc] ≤ Z∗, by Chernoff bound we have

Pr {Dc ≥ (1 + ε)Z∗} ≤ e−Z∗ε2/3.

The solution produced by our algorithm has density maxc {Dc}. Since there are at most
(2n)2 grid cells, assuming Z∗ ≥ cε lnn for some constant cε > 0, we get

Pr {max
c
{Dc} ≥ (1 + ε)Z∗} ≤

∑
c

Pr {Dc ≥ (1 + ε)Z∗}

≤ (2n)2 × n−cεε2/3

= 4n2−(cεε2/3).

Therefore, for a proper constant cε ≥ 9/ε2, the probability that the solution returned by
our algorithm is greater than (1 + ε)Z∗ is at most 4

n
. Taking into account that Z∗ ≤ OPT,

it shows that our algorithm has an approximation factor of 1 + ε with high probability if
Z∗ ≥ cε lnn.

5 Bidirectional Rectangle Escape

There are applications in which some of the directions may not be available for routing the
components. For these applications, it is natural to consider a restricted version of the REP
problem, in which rectangles are allowed to escape only toward a fixed subset of directions. In
particular, we consider the bidirectional REP problem, in which rectangles can only escape
toward two adjacent sides of R. We assume, w.o.l.g., that these two directions are right
and down. A motivation for considering such restricted instances is their potential usage in
approximating the REP, as demonstrated in the following lemma.

Lemma 2. Any algorithm for bidirectional REP yields a 3-approximation for the REP prob-
lem.

Proof. Let A be an exact algorithm for the bidirectional REP problem. Given an instance
S of the REP problem, we run A on S and return the solution. We show that the output
of A is a 3-approximation. For a set T ⊆ S, we denote by dens(T ) the minimum density by
which we can route the rectangles in T toward two adjacent borders, say, right and bottom.

Consider an optimal solution for the REP problem on the set S, with density opt(S). Let
Sℓ, Sr, Su, and Sd denote the subset of rectangles in S escaped in the optimal solution toward
left, right, up, and down, respectively. We construct a bidirectional solution by routing
Sr ∪ Sℓ toward right, and routing Sd ∪ Su toward down. The density of this solution is at
most dens(Sr∪Sd)+dens(Su)+dens(Sℓ) ≤ 3 ·opt(S), showing that the approximation factor
of A is at most 3. To see that this approximation factor is tight, consider a REP instance
illustrated in Figure 7. The optimal density for this instance is 1, while its corresponding
bidirectional REP instance has density 3.
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(a) A REP instance (b) Corresponding BREP instance

Figure 7: A tight example for approximating REP using bidirectional REP.

The decision version of bidirectional REP, denoted by bidirectional k-REP, is defined analo-
gous to the k-REP problem. In the following, we show that the bidirectional k-REP problem,
despite being restricted to only two adjacent directions, is still NP-complete.

Theorem 5. The bidirectional k-REP problem is NP-complete for any k ≥ 3.

Proof. Given an instance of 3-SAT, we construct an instance of bidirectional 3-REP similar
to the construction used in the proof of Theorem 1 with the following differences. The top
and the left regions are not required any more and are omitted. The long rectangle at the
bottom of clauses region, as well as the long rectangle at the right side of variables region
are both duplicated (see Figure 8). The long rectangle at the left side of clauses region
is also omitted, as no rectangle can escape to the left. Now, it is easy to verify that a
similar argument stated in the proof of Theorem 1 holds here: the answer to the constructed
bidirectional 3-REP is yes if and only if the given 3-SAT instance is satisfiable.

For k > 3, we construct an instance of bidirectional k-REP using a similar recursive
construction described in Figure 4. We only omit the left and the top instances of Rk−1,
because the middle rectangle Q can only escape toward right or down.

As a corollary of Theorem 5, we obtain the following inapproximability result.

Theorem 6. The bidirectional REP problem admits no α-approximation for any α < 4/3,
unless P = NP.

Proof. Suppose by way of contradiction that there is an α-approximation algorithm with
α < 4/3 for the bidirectional REP problem. If we run this algorithm on an instance with
optimum density 3, it returns a solution with density less than (4/3) × 3, which has to be
3. Thus, we can use such an algorithm to solve bidirectional 3-REP exactly in polynomial
time, contradicting the NP-completeness of the problem for k = 3.

Since bidirectional REP is NP-complete, it is natural to look for approximation algo-
rithms for it. The following theorem provides a factor-2 approximation.

Theorem 7. There is a 2-approximation algorithm for the bidirectional REP problem.
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Variables Region

v1 v̄1

v2 v̄2

vn v̄n

Clauses Region

x̄1 ∨ x̄2 ∨ xn

x̄1 ∨ x2 ∨ x̄n

Figure 8: Reduction from 3-SAT to bidirectional 3-REP.

Proof. We write a linear program similar to what we used for the REP problem. For each
rectangle ri, we define two 0-1 variables xi,r and xi,d specifying whether ri escapes to the
right or down, respectively. Moreover, let C and Pc be the same sets defined in Section 4.
Now, the bidirectional REP problem can be formulated as the following integer program.

minimize Z (2)

subject to
∑

(i,λ)∈Pc

xi,λ ≤ Z ∀c ∈ C

xi,r + xi,d = 1 ∀ 1 ≤ i ≤ n

xi,r, xi,d ∈ {0, 1} ∀ 1 ≤ i ≤ n

We can now use a deterministic rounding technique as follows. We first relax the integer
program (2) to a linear program by letting each 0/1 variable to get a real value between 0
and 1. We then solve the linear programming relaxation to obtain a solution x∗, yielding an
objective value Z∗. Now, for each rectangle ri, if x

∗
i,r > x∗

i,d, we set xi,r = 1, meaning that ri
escapes toward right, otherwise, we set xi,d = 1 to escape ri toward down. Since one of the
two variables corresponding to each rectangle has value at least 1/2, the obtained solution
has a density of at most 2Z∗, and hence, it is a 2-approximation.

We demonstrate a class of instances for the bidirectional REP problem, that shows a lower
bound of 1.77 on the integrality gap of the linear program defined above. This implies that
any approximation algorithm which is based on the relaxation of the linear program (2)
cannot yield an approximation factor better than 1.77.

Consider a structure Sn which is recursively defined as follows. Each Sn is an instance of
the bidirectional REP problem whose optimal solution has value n. S1 is just a single square,
and its optimal solution is obviously 1. Sn is composed of a big square and two instances of
Sn−1 which are put to the right and bottom of this square, as shown in Figure 9.

The following lemma shows a lower bound of 2 on the min-max density of points in Sn.
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Sn−1

Sn−1

(a) The recursive structure of Sn (b) An illustration for S4

Figure 9: The proposed structure with a large integrality gap.

S1 S2 S3 S4 S5 S6 S7 S8 S9

ILP solution 1 2 3 4 5 6 7 8 9
LP solution 1 1.5 2 2.5 3 3.517 4.035 4.556 5.07

Integrality gap 1 1.33 1.5 1.6 1.67 1.70 1.73 1.75 1.77

Table 1: The integrality gap for Sn

Lemma 3. The min-max density of points in Sn is at least n.

Proof. We prove this by induction on n. For the base case, when n = 1, the statement is
clearly true. Now, suppose that the min-max density for Sn−1 is at least n−1 (n > 1). Then,
there is no way for the big square in Sn (see Figure 9a) to escape other than passing through
a point with density at least n− 1. Therefore, the min-max density of Sn is at least n.

By letting all rectangles escape downward, we obtain a solution with maximum density of
n. Therefore, the integral solution of Sn is exactly n. The optimal solution for the bidirected
version of LP (2) is computed using a computer program, and the results are reported in
Table 1. The results prove a lower bound of 1.77 on the integrality gap. A larger integrality
gap can be obtained by increasing n, however, it does not seem to reach the upper bound 2.

6 Conclusions

In this paper, we provided some new insights into the rectangle escape problem. In par-
ticular, we presented a lower bound of 3/2 on the approximability of the rectangle escape
problem, and a (1 + ε)-approximation algorithm for the problem when the optimal density
is sufficiently large. Several intriguing questions remain open. The main question is whether
an approximation factor better than 4 is possible for the problem in general case. Finding
approximation factors better than 2 (resp., 3) for the restricted 2-sided (resp., 3-sided) ver-
sion of the problem is also interesting. The complexity of bidirectional k-REP for k = 2, as
well as the complexity of bidirectional k-REP when the escape directions are opposite are
also open.
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