
Almost Optimal Massively Parallel Algorithms for k-Center
Clustering and Diversity Maximization

Alireza Haqi

Sharif University of Technology

Tehran, Iran

alireza.haqi@sharif.edu

Hamid Zarrabi-Zadeh

Sharif University of Technology

Tehran, Iran

zarrabi@sharif.edu

ABSTRACT
Clustering and diversification are two central problems with vari-

ous applications in machine learning, data mining, and information

retrieval. The k-center clustering and k-diversity maximization are

two of the most well-studied and widely-used problems in this

area. Both problems admit sequential algorithms with optimal ap-

proximation factors of 2 in any metric space. However, finding

distributed algorithms matching the same optimal approximation

ratios has been open for more than a decade, with the best current al-

gorithms having factors at least twice the optimal. In this paper, we

settle this open problem by presenting constant-round distributed

algorithms for k-center clustering and k-diversity maximization

in the massively parallel computation (MPC) model, achieving an

approximation factor of 2 + ε in any metric space for any constant

ε > 0, which is essentially the best possible considering the lower

bound of 2 on the approximability of both these problems. Our al-

gorithms are based on a novel technique for approximating vertex

degrees and finding a so-called k-bounded maximal independent

set in threshold graphs, using only a constant number of MPC

rounds. Other applications of our general technique is also implied,

including an almost optimal (3 + ε)-approximation algorithm for

the k-supplier problem in any metric space in the MPC model.

CCS CONCEPTS
• Theory of computation → Massively parallel algorithms;
Facility location and clustering; • Information systems→ Infor-
mation retrieval diversity.

KEYWORDS
k-center clustering, diversity maximization, maximal independent

set, massively parallel algorithms.

ACM Reference Format:
Alireza Haqi and Hamid Zarrabi-Zadeh. 2023. Almost Optimal Massively

Parallel Algorithms for k-Center Clustering and Diversity Maximization

. In Proceedings of the 35th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’23), June 17–19, 2023, Orlando, FL, USA. ACM, New

York, NY, USA, 9 pages. https://doi.org/10.1145/3558481.3591077

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9545-8/23/06. . . $15.00

https://doi.org/10.1145/3558481.3591077

1 INTRODUCTION
Given a set P of n points in a metric space, the objective in k-
center clustering is to find a k-subset of P , called centers, so as

the maximum distance of any point in P to its closest center is

minimized. The objective in k-diversity maximization (also known

as remote-edge diversitymaximization) is to find ak-subset of P such

that the minimum pairwise distance in the subset is maximized.

The k-center clustering and k-diversity maximization problems

are known to be NP-hard [16, 24]. A simple greedy algorithm, called

GMM, yields a 2-approximate solution to the k-center problem [16].

The algorithm repeatedly picks as center a point furthest away

from the centers already chosen. Interestingly, the output of GMM

provides a 2-approximate solution to k-diversity maximization as

well [24]. No polynomial-time algorithm with an approximation

factor better than 2 is possible for any of these two problems, unless

P = NP [17, 24].

Motivated by applications in massive data processing, we con-

sider distributed versions of k-center clustering and k-diversity
maximization. In particular, we focus on the massively parallel com-

putation (MPC) model, which is a standard abstraction of modern

parallel frameworks, such as MapReduce, Hadoop, and Spark [20].

In this model, the input data is initially partitioned among a set of

machines, each having a local memory. At each round, machines

can perform polynomial computations on their local memory, and

send messages to other machines, which are delivered at the begin-

ning of the next round. The total size of messages sent and received

by each machine at each round must not exceed the size of its local

memory. It is generally desired to keep the number of rounds as

small as possible, preferably a constant.

1.1 Our Contribution
In this paper, we study the k-center clustering and k-diversity max-

imization problems in the MPC model, and provide several new

results as described below.

• We provide a massively parallel algorithm for the k-center
problem in any metric space, with an almost optimal ap-

proximation factor of 2 + ε . This greatly improves the best

previously-known approximation factor of 4 available for

the problem [22]. Our algorithm runs in a constant number

of rounds, and requires Õ (mk) communication per machine,

wherem is the number of machines.

• We also present a massively parallel algorithm for the k-
diversity maximization problem in any metric space, achiev-

ing an almost optimal approximation factor of 2 + ε in con-

stant MPC rounds. This significantly improves the best cur-

rent approximation factor of 6 available for the problem [19].

Our algorithm uses Õ (mk) communication per machine.

https://doi.org/10.1145/3558481.3591077
https://doi.org/10.1145/3558481.3591077

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Alireza Haqi and Hamid Zarrabi-Zadeh

• For the k-supplier problem, which is a generalization of k-
center, we present a massively parallel algorithm achieving

an approximation factor of 3 + ε , which is essentially the

best possible, considering the lower bound of 3 proved on

the approximability of this problem [18].

Our algorithms are based on a novel technique for computing a

so-called k-bounded maximal independent set (MIS). Intuitively, a

k-bounded MIS is a maximal independent set whose size is bounded

from above by a parameter k . This concept is crucial for designing
memory/communication efficient MPC algorithms for a variety of

problems. As a byproduct of our main results, we also provide the

following general tools:

• We present an algorithm for computing a k-bounded MIS in

a threshold graph in a constant number of MPC rounds. Our

algorithm contains several novel and non-trivial ingredients,

including vertex degree approximation, vertex pruning, and

round compression.

• We also present a novel degree-approximation algorithm

that approximates the degrees of each vertex in a threshold

graph to within a factor of 1±ε . To achieve this, we partition
vertices of the graph into heavy and light subsets, based

on a random sample taken from the vertices. Afterward, we

estimate the degree of the heavy vertices within a 1±ε factor
w.h.p., while calculating the exact degrees for light vertices.

All our algorithms have constant rounds and use Õ (mk) com-

munication per machine. Considering the initial space needed for

storing the input n points, the memory required by each machine

is Õ (n/m +mk). This memory requirement matches the best cur-

rent coreset-based algorithms for k-center clustering [22] and k-
diversity maximization [19], within a multiplicative factor of log(n).
Note that each machine has a sublinear space in our model, other-

wise, a single machine could see the whole points and run a local

algorithm. Therefore, we assume that the number of machines is

nγ , for some γ > 0, to accommodate the whole input data.

1.2 Related Work
In 1985, Gonzales [16] presented his elegant algorithm for the k-
center problem with an approximation factor of 2. Ravi et al. [24]

proved that the same algorithm, which they call GMM, provides an

approximation factor of 2 for the k-diversity maximization problem

as well. Using a different parameter pruning approach, Hochbaum

and Shmoys [18] presented another 2-approximation algorithm for

the k-center problem that relies on finding maximal independent

sets in pruned squared graphs. To handle datasets with noisy points,

Charikar et al. [8] presented a 3-approximation algorithm for the

k-center problem, when at most z input points can be ignored.

The MPC model has received considerable attention over the

past decade, since its introduction by Karloff et al. [20]. In particular,

efficient algorithms are provided in this model for several important

graph problems, including graph connectivity, matching, coloring,

independent sets, and clustering (see, e.g., [2, 5, 7, 12, 14, 15, 25]).

For the k-center clustering problem in the MPC model, Ene

et al. [11] were the first to present a constant-round algorithm

achieving an approximation factor of 10 using O (knε) memory

per machine, for any ε > 0. Subsequently, Malkomes et al. [22]

presented a two-round MPC algorithm for k-center that achieves

an improved approximation factor of 4, using O (
√
nk) memory

per machine. Their algorithm was based on running GMM on the

union of a set of composable-coresets obtained again using GMM

in each machine. To deal with noisy data, they also presented a 13-

approximation MPC algorithm for k-center with outliers. Several

other variants of k-center clustering are studied in the MPC model

(see e.g., [3, 4, 6, 9]).

There are several algorithms for diversity maximization in the

MPC model as well. In particular, the composable-coreset frame-

work was first introduced by Indyk et al. [19] in the context of di-

versity maximization. They presented a two-round MPC algorithm

for computing a 3-composable coreset for k-diversity maximization,

yielding a 6-approximation algorithm for the problem in the MPC

model, using O (
√
nk) memory per machine. They also considered

other measures for diversity maximization, including remote-clique,

that aims for maximizing the sum of pairwise distances in the k-
subset. Improved MPC algorithms are provided for remote-clique

diversity maximization using the notion of randomized composable

coresets [1, 13, 23].

2 PRELIMINARIES
Let (U ,d) be a metric space, and V ⊆ U be an input point set

of size n. We assume that the distance between any two points

in the space can be obtained in O (1) time. Let m be the number

of machines. In our algorithms, we assume that the input set V
is initially partitioned into m subsets V1, . . . ,Vm , each stored in

one of the machines. For a real value τ > 0, we denote by Gτ a

threshold graph on the vertex set V such that two vertices u,v ∈ V
are adjacent inGτ if and only if d (u,v) ≤ τ . Note that the adjacency
of two vertices in a threshold graph can be determined inO (1) time

by our distance oracle.

For a vertex v in a graph G, we denote by NG (v) the set of

vertices in G adjacent to v . Whenever the graph G is clear from

the context, we simply write N (v) instead of NG (v). We define our

new notion of k-bounded MIS as follows.

Definition 1. Given a graph G = (V ,E), a vertex set S ⊆ V is
called a k-bounded MIS if either S is a maximal independent set of
size at most k or S is an independent set of size exactly k .

2.1 Diversity
Given a point set S in a metric space, the diversity of S , denoted
by div(S), is the minimum pairwise distance in S , i.e., div(S) =
minp,q∈S d (p,q). The k-diversity of S , denoted by divk (S), is the
maximum diversity over all k-subsets of S , i.e.,

divk (S) = max

Q ⊆S, |Q |=k
div(Q).

The k-diversity function is monotone, i.e., if Q ⊆ S , then divk (Q) ≤
divk (S), for any 1 ≤ k ≤ |Q |.

2.2 GMM Algorithm
The following simple greedy algorithm, called GMM, computes

a 2-approximation to both k-center and k-diversity problems in

any metric space [16, 24]. The algorithm repeatedly picks a point

furthest away from the set of points already chosen.

Almost Optimal Massively Parallel Algorithms for k -Center Clustering and Diversity Maximization SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Algorithm 1 GMM(S)

1: Let T = {an arbitrary point in S }.
2: while |T | < k do
3: Let p be a point in S maximizing d (p,T).
4: T = T ∪

{
p
}
.

5: end while
6: Return T .

If r denotes the minimum pairwise distance in the set T =
GMM(S), then the following two properties, known as anti-cover
properties, hold:
• ∀p ∈ T : d (p,T \

{
p
}
) ≥ r

• ∀p ∈ S : d (p,T) ≤ r

2.3 Chernoff Bounds
We use the following statement of Chernoff bound in this paper.

Theorem 2 ([10]). Let X1, . . . ,Xn be independent random vari-
ables taking values in [0, 1]. Define X =

∑n
i=1 Xi and let µ = E[X].

Then, for any ε ∈ [0, 1], we have

Pr[X ≤ (1 − ε)µ] ≤ exp

(
−ε2µ

2

)
, (1)

and

Pr[X ≥ (1 + ε)µ] ≤ exp

(
−ε2µ

3

)
. (2)

3 (2 + ε)-APPROXIMATION MPC ALGORITHM
FOR k-DIVERSITY

In this section, we present a (2+ε)-approximation algorithm for the

k-diversity problem in the MPC model, assuming that a constant-

round MPC algorithm is available for the k-bounded MIS. The

pseudo-code of our algorithm is presented in Algorithm 2. The

algorithm starts by finding a constant-factor approximation to k-
diversity on the input set, and then finds the largest threshold for

which a k-bounded MIS of size k exists in the corresponding thresh-

old graph. We show in Theorem 3 that the returned k-bounded MIS

provides a (2 + ε)-approximation to k-diversity.

Algorithm 2 (2 + ε)-Approximation MPC Diversity Maximization

1: Let Ti = GMM(Vi) and ri = div(Ti), for 1 ≤ i ≤ m.

2: Compute S = GMM(T =
⋃m
i=1Ti), and let r0 = div(S).

3: Let r = max0≤i≤m {ri }, and let Q be the k points realizing r .
4: Define τi = r · (1 + ε)

i
, for i = 0, 1, . . . , t = log

1+ε (4) + 1.
5: LetM0 = Q , andMi be a k-bounded MIS in Gτi , for 0 < i ≤ t .
6: Find an index j such that |Mj | = k and |Mj+1 | < k .
7: ReturnMj .

Theorem 3. Algorithm 2 computes a (2+ ε)-approximation to the
k-diversity maximization problem in any metric space in O (log 1

ε)
MPC rounds, for any constant ε > 0.

Proof. LetO =
{
o1, . . . ,ok

}
be an optimal solution tok-diversity

and let r∗ = div(O). We first show that the value r computed in

line 3 of the algorithm is a 4-approximation to r∗. LetCi be a ball of

radius r∗/4 centered at oi , for 1 ≤ i ≤ k . If eachCi contains a point
ti ∈ T , then the set

{
t1, . . . , tk

}
has diversity at least r∗/2, and hence,

running GMM onT yields a 4-approximation. Otherwise, one of the

balls, sayCj , contains no point fromT . Suppose that oj is contained
in machine i . Then, by anti-cover property, ri ≥ d (oj ,Ti) ≥ r∗/4.
Therefore, maxi {ri } is a 4-approximation in this case. In any case,

r is a 4-approximation to r∗, which means r ≤ r∗ ≤ 4r .
Now, let j be an index such that |Mj | = k and |Mj+1 | ≤ k − 1.

Note that such an index exists, because |M0 | = k and |Mt | < k for

t = log
1+ε (4) + 1, as τt > 4r ≥ r∗. Clearly,Mj is a feasible solution

with diversity τj , because any two points in Mj have distance at

least τj . Moreover,Mj+1 is a maximal independent set of size less

than k . Consider the balls of radius τj+1 around the points inMj+1.

Any point in V is contained in at least one of the balls, otherwise,

Mj+1 could be extended by a point outside the balls, contradicting

its maximality. Therefore, by the pigeonhole principle, there are

at least two points o1,o2 ∈ O contained in the same ball of radius

τj+1. Thus, by triangle inequality, d (o1,o2) ≤ 2τj+1, which implies

div(O) ≤ 2τj+1 = 2(1 + ε)τj . As such, r
∗ ≤ 2(1 + ε)τj , which yields

the approximation factor of the algorithm. Note that an index j
with |Mj | = k and |Mj+1 | < k can be found via a binary search in

O (log 1

ε) rounds. □

As a side product, lines 1–3 of Algorithm 2 provide a simple

two-round 4-approximation algorithm for the k-diversity problem,

improving upon the current two-round 6-approximation MPC al-

gorithm available via composable coresets [19].

4 APPROXIMATING VERTEX DEGREES
Our massively parallel algorithm for computing k-bounded MIS

relies on knowing the (approximate) vertex degrees in a threshold

graph. In this section we present an algorithm that approximates

the degree of each vertex to within a factor of 1 ± ε . The main

idea behind our algorithm is to sample vertices in each machine

with probability p = 1/m, and then send sampled vertices of each

machine to all other machines. After the sampling phase, the al-

gorithm takes the number of vertices in the sample adjacent to

each vertex as an estimate of its actual degree, when multiplied by

p. This works for vertices of high degree. However, this estimate

might not be accurate enough for low-degree (light) vertices. As

such, the algorithm switches to computing the degree of light ver-

tices exactly. The extra cost for computing the exact degree of light

vertices can be only afforded if the number of light vertices is not

too high. Fortunately, we can show that if there are too many such

light vertices, then an independent set of size k can be extracted

directly from the light vertices.

The pseudo-code of our algorithm is provided in Algorithm 3.

In this algorithm, δ is a constant which will be fixed later in our

analysis. For any vertexv ∈ V , we denote by d (v) the degree ofv in

the input graph, and by di (v) the number of vertices inVi adjacent
to v , where Vi is the set of vertices stored in machine i . As such,
d (v) =

∑m
i=1 di (v). Note that in threshold graphs, the adjacency of

any two vertices can be determined by the distance oracle, if the

value of the threshold is known. We partition graph vertices into

light and heavy as follows:

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Alireza Haqi and Hamid Zarrabi-Zadeh

Algorithm 3MPC Degree Approximation

1: Each machine i takes a sample Si by picking any vertex of Vi
with probability p = 1/m.

2: Each machine sends its sampled set to all other machines.

3: Let S =
⋃m
i=1 Si . (S is available to all machines.)

4: Let L be the set of all light vertices in all machines.

5: if |L| > 2δ mk ln(n) then
6: Compute an independent set of size k in L and terminate.

7: else
8: Each machine sends its light vertices to all other machines.

9: Each machine i sends di (v) for each light vertexv to others.

10: for each vertex v ∈ Vi in machine i do
11: Set pv =

∑m
i=1 di (v), if v is light.

12: Set pv =
1

p · |N (v) ∩ S |, if v is heavy.

13: end for
14: end if

Definition 4. Given a sample S ⊆ V , we call a vertex v ∈ V
heavy w.r.t. S , if |N (v) ∩ S | ≥ δ ln(n), and light otherwise.

The following two lemmas show that if the number of light ver-

tices is too large, then an independent set of size k can be extracted

directly from the light vertices.

Lemma 5. For all light vertices v ∈ V , d (v) < 2δ m ln(n) w.h.p.

Proof. Fix a vertex v . Let X = |N (v) ∩ S |. Note that X is the

sum of d (v) independent Bernoulli random variables, with E[X] =

p · d (v). By Chernoff bound (Theorem 2) we have

Pr[X ≤ (1 − γ)E[X]] ≤ e
−γ 2E[X]

2 .

Suppose by contrary that d (v) ≥ 2δ m ln(n). Then, E[X] ≥ p ·
(2δ m lnn) = 2δ lnn. Now, using Chernoff bound with γ = 1

2
we

have

Pr[X ≤ δ lnn] ≤ n
−δ
4 ≤

1

n3
,

for all δ ≥ 12. Therefore, with probability at least 1 − 1/n3, if v is a

light vertex, then d (v) < 2δ m ln(n). Since there are at most n light

vertices, the inequality d (v) < 2δ m ln(n) holds for all light vertices
with probability at least 1 − 1/n2. □

Lemma 6. If the number of light vertices exceeds 2δ m ln(n), then
we can find an independent set of size k w.h.p. in O (1) rounds using
Õ (mk) total communication.

Proof. We do as follows. Each machine first sends the number

of its light vertices as a single integer number to the central ma-

chine. The central machine computes the value ρ = (2δ m ln(n))/|L|,
where |L| is the total number of light vertices in all machines, and

sends ρ to each machine. Each machine then sends ρ fraction of its

light vertices to the central machine. Let P be the set of light vertices

received by the central machine. We can now run the greedy algo-

rithm locally on P to find a maximal independent set. By Lemma 5,

d (v) < 2δ m ln(n) for all vertices in P w.h.p. Therefore, at each

iteration of the greedy algorithm, at most 2δ m ln(n) vertices of P
are removed. Thus, the greedy algorithm has at least

|P |

2δm lnn
= k

iterations w.h.p. The lemma statement follows. □

The light vertices are thus handled properly. In the following, we

provide (1 ± ε) approximation for the heavy vertices.

Lemma 7. For all heavy vertices v ∈ V , d (v) > δ
2
m ln(n) w.h.p.

Proof. Fix a vertexv . LetX = |N (v)∩S |. We know that E[X] =

p · d (v) =
d (v)
m . By Chernoff bound (Theorem 2) we have

Pr[X ≥ (1 + γ)E[X]] ≤ e
−γ 2E[X]

3 .

Suppose by contrary that d (v) ≤ δ
2
m lnn. Therefore, by setting

γ = δm lnn
d (v) − 1, we have

Pr[X ≥ (1 + γ)E[X]] = Pr[X ≥ δ lnn] ≤ e
−γ 2d (v)

3m .

Since
δm lnn
d (v) ≥ 2, we have γ = δm lnn

d (v) − 1 ≥
δm lnn
2d (v) . Therefore,

γ 2
d (v)

m
≥

δ2m ln
2 n

4d (v)
≥

δ lnn

2

,

where the last inequality holds since d (v) ≤ δ
2
m lnn. Plugging into

the Chernoff bound, we get

Pr[X ≥ δ lnn] ≤ e
−δ lnn

6 ≤ n
−δ
6 ≤ 1/n3,

for all δ ≥ 18. Since there are at mostn heavy vertices, the inequality

d (v) ≥ δ
2
m lnn holds for all heavy vertices with probability at least

1 − 1/n2. □

Lemma 8. For every heavy vertex v , 1

p |N (v) ∩ S | approximates
d (v) within a factor of 1 ± ε w.h.p.

Proof. Fix a heavy vertex v , and let X = |N (v) ∩ S |. We have

E[X] = p ·d (v) ≥ δ
2
ln(n) by Lemma 7 w.h.p. Now, Chernoff bound

implies

Pr[X ≤ (1 − ε)E[X]] + Pr[X ≥ (1 + ε)E[X]] ≤ e
−ε2E[X]

2 + e
−ε2E[X]

3

≤ 2n−ε
2δ /6,

which is at most 2/n2 for all δ ≥ 12/ε2. □

Theorem 9. There is a constant-round MPC algorithm that ap-
proximates the degree of each vertex in a threshold graph to within a
factor of 1 ± ε , or returns an independent set of size k , w.h.p., using
Õ (mk) communication per machine.

Proof. Consider Algorithm 3. If there are too many light ver-

tices in the graph, then by Lemma 6, the algorithm returns an

independent set of size k , w.h.p. Otherwise, by Lemma 8, the algo-

rithm correctly approximates the degree of each vertex to within

a factor of 1 ± ε , w.h.p. If the first case happens, we can keep the

communication within Õ (mk) as follows: each machine sends the

number of its light vertices to the central machine, and the central

machine computes the value ρ = 2δ mk ln(n)/|L|, where |L| is the
total number of light vertices. Eachmachine then sends ρ fraction of
its light vertices to the central machine, making a set of 2δ mk ln(n)
light vertices, from which the central machine extracts an indepen-

dent set of size k . This guarantees that the total number of vertices

sent to the central machine is Õ (mk) in this case. In the second case,

Almost Optimal Massively Parallel Algorithms for k -Center Clustering and Diversity Maximization SPAA ’23, June 17–19, 2023, Orlando, FL, USA

Algorithm 4Massively Parallel k-Bounded MIS

1: MIS← ∅
2: while G , ∅ and |MIS| < k do
3: Compute a (1 ± ε)-approx. pv of d (v) for each vertex v .
4: If ak-boundedMIS is found in line 3, return it and terminate.

5: Each machine i takes m samples S1i , . . . , S
m
i , where each

sample contains any vertex v ∈ Vi with probability
1

2pv .

6: if
∑
v ∈V

1

2pv > 10k lnn then ▷ pruning step

7: Let Tj = trim(
⋃m
i=1 trim(S

j
i)), for 1 ≤ j ≤ m.

8: Return a k-subset of largest Tj and terminate.

9: end if
10: Send all samples S

j
i to the central machine.

11: for j = 1, . . . ,m do (in central machine)

12: Let Sj = (
⋃m
i=1 S

j
i) ∩V (G).

13: ComputeMj = trim(Sj).
14: AddMj to MIS.

15: RemoveMj ∪ N (Mj) from G.
16: end for
17: Central machine sends MIS to other machines.

18: Each machine removes MIS ∪ N (MIS) from its vertices.

19: end while
20: Return a k-subset of MIS.

there are Õ (mk) light vertices in total. Therefore, the total number

of vertices sent/received by each machine is Õ (mk). □

5 FINDING k-BOUNDED MIS
In this section, we provide our massively parallel algorithm for

finding a k-bounded MIS in a threshold graph. The pseudo-code of

our algorithm is presented in Algorithm 4. At each round of the

algorithm, each machine i computes a (1 ± ε)-approximation pv
of d (v) for each vertex v ∈ Vi . It then takesm samples S1i , . . . , S

m
i

independently at random, where each vertex v ∈ Vi appears in any

of the samples with probability 1/2pv . Each machine then sends

all its sampled sets (after a size limit check) to the central machine.

The central machine takes independent sets from union of sampled

sets in order, and updates G respectively. The algorithm continues

until either G becomes empty, or an independent set of size k is

found.

Given a set S of vertices in G, we find an independent set in S
using the following function, which is a local variant of the Luby’s

algorithm [21]:

trim(S) = {v ∈ S : pv > pu for all u ∈ N (v) ∩ S }.

In the following, we analyze the correctness and the round com-

plexity of our algorithm. To simplify the analysis, we henceforth

fix the precision of the degree approximation algorithm to ε = 1/6.

Lemma 10. Let S be a set containing any vertexv of a graphG with
probability 1

2pv , where pv ≥ (1 − ε)dG (v). Then trim(S) contains

any vertex v of G with probability at least 1

5pv .

Proof. Let M = trim(S), and let v be an arbitrary vertex in G.
The probability thatv is contained inM can bewritten conditionally

as follows:

Pr[v ∈ M] = Pr[v ∈ S] · Pr[v ∈ M : v ∈ S].

To obtain a lower bound on Pr[v ∈ M : v ∈ S], we upper bound
Pr[v < M : v ∈ S]. The event that a vertex v ∈ S is not in M can

only occur if it adjacent to a vertex u with pu ≥ pv . Therefore,

Pr[v < M : v ∈ S] ≤
∑

u ∈N (v),
pu ≥pv

1

2pu
≤

dG (v)

2pv
≤

1

2(1 − ε)
,

which is at most
3

5
by setting ε = 1

6
. Therefore, Pr[v ∈ M] ≥

1

2pv ·
(
1 − 3

5

)
= 1

5pv . □

To express how much a vertex v tends to be removed from G
during the algorithm, we define a function λ which intuitively

indicates the probability that a vertex is removed by its neighbors.

Definition 11. We define a function λ : V 7→ R as follows:

λ(v) =
∑

u ∈N (v)

1

2pu
.

Moreover, for a subset Z ⊆ N (v), we define

λZ (v) =
∑
u ∈Z

1

2pu
.

The following lemma provides a lower bound on the probability

of removing a vertex v depending on the value of its function λ(v).

Lemma 12. After each iteration of the for loop in Algorithm 4, a
vertex v is removed with probability at least min(

λ (v)
10
, 1
25
).

Proof. Let G0 be the graph G at the beginning of the current

round, and let G j be the graph G at the beginning of iteration j of
the for loop. By line 3 of the algorithm, we have pv ≥ (1− ε)dG0

(v)
for all v . Note that the pv values do not change during the whole

iterations of a round. However, since neighbors of a vertex can

be only removed during iterations, we have dG j (v) ≤ dG0
(v), and

the inequity pv ≥ (1 − ε)dG j (v) still holds for all v and for all j.
Moreover, the set Sj at the beginning of each iteration j can be seen

as a sample taken directly from vertices ofG j , where each vertex v

of G j is contained in Sj with probability
1

2pv .

Now, fix an iteration j of the for loop, and consider a vertex v in

G j . Let E be the event that v is removed from the graph in line 15

of the algorithm. We give a lower bound on the probability of E
based on the value of λ(v). We consider the following two cases.

Case 1: λ(v) ≤ 1

10
. The probability of removing v is at least as

large as the probability that a neighbor of v joinsMj . Hence,

Pr[E] ≥
∑

w ∈N (v)

Pr[w ∈ Mj] −
∑

u,w ∈N (v)
u,w

Pr[w ∈ Mj and u ∈ Mj].

But, the event of joining a point to Mj is contained in the event

of joining the point to Sj . Thus the second term of RHS is upper

bounded by the probability that both points are contained in Sj .
Therefore,

Pr[E] ≥
∑

w ∈N (v)

Pr[w ∈ Mj] −
∑

u,w ∈N (v)
u,w

Pr[w ∈ Sj and u ∈ Sj].

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Alireza Haqi and Hamid Zarrabi-Zadeh

By Lemma 10, we have∑
w ∈N (v)

Pr[w ∈ Mj] ≥
∑

w ∈N (v)

1

5pw
.

Moreover, since sampling points in Sj are independent form each

other, we have Pr[w ∈ Sj and u ∈ Sj] =
1

2pw ·
1

2pu . Therefore,

Pr[E] ≥
∑

w ∈N (v)

1

5pw
−

∑
u,w ∈N (v)

u,w

(
1

2pw
·

1

2pu

)

≥
∑

w ∈N (v)

1

pw

*.
,

1

5

−
∑

u ∈N (v)

1

4pu

+/
-

≥
∑

w ∈N (v)

1

pw

(
1

5

−
λ(v)

2

)

= 2λ(v)

(
1

5

−
λ(v)

2

)
≥

3λ(v)

10

,

where the last inequality is implied by plugging λ(v) ≤ 1

10
into the

last parenthesis.

Case 2: λ(v) > 1

10
. In this case, we show that a subset Z ⊆ N (v)

can be found such that
1

10
≤ λZ (v) ≤

1

5
, or we have a single vertex

w ∈ N (v) satisfying pw ≤ 5. If there is a vertex w ∈ N (v) such
that pw ≤ 5, then Pr[E] ≥ Pr[w ∈ Mj] ≥

1

5pw ≥
1

25
, and we

are done. Otherwise, we can find a subset Z ⊆ N (v) such that

1

10
≤ λZ (v) ≤

1

5
, by greedily removing a vertex with highest

weight from N (v) as long as λZ (v) >
1

5
.

Using the same analysis as in the previous case, but just us-

ing λZ (v) instead of λ(v), we conclude that Pr[E] ≥ 2λZ (v) (
1

5
−

1

2
λZ (v)). Since the function x (1 − 5x

2
) is concave, its minimum

in any interval is attained at one of the endpoints. In particular,

the minimum of the function over the interval [
1

10
, 1
5
] is attained

at x = 1

10
, giving a value of

3

40
which is less than

1

10
. It yields

Pr[E] ≥ 1

25
in this case. □

Note that in line15 of the algorithm, we only need to remove

Mj ∪ N (Mj) from a local copy ofG that only consists of all sample

points received from the machines in the current round, whose total

size is Õ (mk) by our pruning step. Removing the points globally

from G is actually performed in lines 17-18 of the algorithm.

We can now use Lemma 12 to prove the round complexity of our

algorithm in the following theorem.

Theorem 13. Algorithm 4 terminates inO (1γ) rounds w.h.p., when
m = nγ .

Proof. We first show that after each round of Algorithm 4, the

number of edges of the graph decreases by a factor of
1

5
m

1

2 w.h.p.

Fix a round of the algorithm, and let λj (v) denote the value of λ(v)
in the jth iteration of the for loop in that round. Note that for any

vertex v , λj (v) is decreasing in j , as the neighbors of v can be only

removed during iterations. If λm (v) ≥ m
−1
2 , then the probability

that v is not removed afterm iterations is at most∏
1≤j≤m

(
1 −min

(
3λj (v)

10

,
1

25

))
≤

∏
1≤j≤m

e
−min

(
3λj (v)

10
, 1

25

)

≤ e
−3T ·m

−1
2

10 = e
−3T

1

2

10 ≤ e−2 ln(n) =
1

n2
,

where the last inequality holds for allm ≥ 45 ln
2 n. Therefore, for

each remaining vertex v , we have λm (v) ≤ m
−1
2 w.h.p.

Now, consider the graph G = (V ,E) afterm iterations. Denote

by N+ (v) the set of neighbors u of v such that pu ≤ pv . Note
that |E | ≤

∑
v ∈V |N

+ (v) |, as each edge is counted at least once

in the right-hand side. Moreover, we have λm (v) ≥
|N + (v) |
2pv . If

G0 = (V0,E0) denote the initial graph just before the for loop starts,

we have

|E | ≤
∑
v ∈V
|N+ (v) | ≤ 2

∑
v ∈V

pvλm (v)

≤ 2(1 + ε)
∑
v ∈V0

d (v)m−
1

2

= 2

(
1 +

1

6

)
(2 · |E0 |)m

− 1

2 ≤ 5m−
1

2 |E0 |.

Since the number of edges decreases by a factor of
1

5
m

1

2 = 1

5
n
γ
2

w.h.p. in each round, the algorithm terminates inO (1γ) rounds with

high probability. □

The total size of samples taken by the machines may exceed

Õ (mk). As such, the algorithm performs a check before sending the

samples to the central machine and runs a pruning step if required.

The following theorem describes how this pruning step keeps the

total sample size within a desired range.

Theorem 14. If the total number of sampled points exceeds Õ (mk),
then the pruning step returns an independent set of size k w.h.p.

Proof. Let Sj =
⋃m
i=1 S

j
i and X = |Sj |. Since each vertex v is

added to Sj with probability
1

2pv , we have E[X] =
∑
v ∈V

1

2pv . Note

that E[X] is the same for all samples Sj , 1 ≤ j ≤ m. We consider

the following two cases.

Case 1. E[X] ≤ 10k ln(n): By Chernoff bound, we have

Pr[X ≥ (1 + γ)E[X]] ≤ e
−γ 2E[X]

3

Setting γ =
20k ln(n)
E[X]

− 1 yields

Pr[X ≥ 20k ln(n)] ≤ e
−(20k ln(n)−E[X])2

3E[X] ≤ e
−(10k ln(n))2

3E[X]

≤ e−
10

3
k ln(n) ≤

1

n2
.

Therefore, in this case, the size of Sj is at most 20k ln(n) w.h.p., and

hence, all samples together have size 20mk ln(n) = Õ (mk). Hence,
no pruning is done by the algorithm in this case.

Case 2. E[X] ≥ 10k ln(n): Let Mj = trim(Sj) and Y = |Mj |.

We will show that Y ≥ k w.h.p. in this case, meaning that Mj
contains an independent set of size k . Note that Mj is a subset of

Tj = trim(
⋃m
i=1 trim(S

j
i)), defined in the algorithm. This is because

any vertex contained is Mj is necessarily contained in Tj , since
a vertex is removed by the trim function only if it is connected

Almost Optimal Massively Parallel Algorithms for k -Center Clustering and Diversity Maximization SPAA ’23, June 17–19, 2023, Orlando, FL, USA

to a vertex of larger weight. Therefore, proving Y ≥ k implies

that |Tj | ≥ k as well. Hence, we focus on proving the probability

of Y ≥ k . Recall that for each vertex v ∈ V , Pr[v ∈ Sj] =
1

2pv
and Pr[v ∈ Mj] ≥

1

5pv by Lemma 10. Therefore, E[Y] ≥ 2

5
E[X].

Moreover, since X ≥ Y , we have Pr[Y ≥ 5E[Y]] ≤ Pr[X ≥ 2E[X]].
By applying Chernoff bound on X we get:

Pr[X ≥ 2E[X]] ≤ e
−E[X]

3 ≤ e−k ln(n) ≤
1

n
.

Now, we rewrite the expected value of Y as follows:

E[Y] ≤ Pr[Y <
1

4

E[Y]] ·
1

4

E[Y] (3)

+ Pr[
1

4

E[Y] ≤ Y < 5E[Y]] · 5E[Y]

+ Pr[Y ≥ 5E[Y]] · n,

where for each range, the probability of Y being in the range

is multiplied by the largest possible value of Y in that range. If

Pr[
1

4
E[Y] ≤ Y < 5E[Y]] < 1

10
, then by inequality (3), we have:

E[Y] < 1 ·
1

4

E[Y] +
1

10

· 5E[Y] +
1

n
· n =

3

4

E[Y] + 1 < E[Y],

which is a contradiction. Therefore, Pr[
1

4
E[Y] ≤ Y < 5E[Y]] ≥ 1

10
,

which implies Pr[Y < 1

4
E[Y]] ≤ 9

10
, and hence Pr[Y < k] ≤ 9

10
, as

E[Y] ≥ 2

5
E[X] ≥ 4k . By taking 10 ln(n) independent sample Sj , as

in the pruning step of the algorithm, the probability Pr[Y < k] is
reduced to 1/n. Therefore,Y ≥ k w.h.p. in this case, and we are done.

Note that in line 7 of the algorithm, whenever trim(S
j
i) has size

more than k , we can return a k-subset of it directly and terminate.

This ensures that each of the sets

⋃m
i=1Tj has sizeO (mk). Therefore,

the total communication in the pruning step is Õ (mk). □

We summarize the main result of this section in the following

theorem.

Theorem 15. There is a constant-round MPC algorithm that com-
putes a k-bounded MIS with high probability using Õ (mk) communi-
cation and Õ (n/m +mk) memory per machine.

Proof. There are three possibilities for Algorithm 4 to terminate.

The first two cases guarantee an independent set of size k (lines 4

and 8 of the algorithm), and the third case guarantees the output

of the algorithm to be a maximal independent set. Therefore, the

algorithm returns a k-bonded MIS in any case.

At each round, the communication used by each machine in the

degree approximation and the pruning step is Õ (mk) by Theorems

9 and 14. Moreover, the total size of samples sent to the central

machine is Õ (mk) by our pruning step (Theorem 14). Considering

the initial space needed for storing the input n points, the memory

required by each machine is Õ (n/m +mk). The round complexity

of the algorithm is implied by Theorem 13. □

6 OTHER APPLICATIONS OF k-BOUNDED
MIS

In this section, we show how our MPC algorithm for the k-bounded
MIS can be used to obtain improved algorithms for other problems

in the MPCmodel. In particular, we provide a (2+ε)-approximation

algorithm for the k-center problem and an almost optimal (3 + ε)-
approximation algorithm for the k-supplier problem in any metric

space in the MPC model.

6.1 A (2 + ε)-Approximation MPC Algorithm
for k-Center

Given two point sets X and Y in a metric space, we define

r (X ,Y) = max

x ∈X
d (x ,Y).

The objective in the k-center problem is to find a subset C ⊆ V
of size k minimizing r (V ,C). We first prove the following lemma

regarding the GMM algorithm.

Lemma 16. If T = GMM(S), then r (S,T) ≤ divk+1 (S).

Proof. Let p be a point in S maximizing d (p,T), and let r =
d (p,T) = r (S,T). Note that T ∪

{
p
}
is a set of k + 1 points with

diversity r . Moreover, divk+1 (T∪
{
p
}
) ≤ divk+1 (S) bymonotonicity

of the diversity function. Hence, r ≤ divk+1 (S). □

Now, we provide a (2+ ε)-approximation MPC algorithm for the

k-center problem. The pseudo-code of our algorithm in presented

in Algorithm 5. Recall that Gτ denotes a graph on the input set V
such that two vertices u,v ∈ V are adjacent if d (u,v) ≤ τ .

Algorithm 5 (2 + ε)-Approximation MPC k-Center

1: Let Ti = GMM(Vi) and T =
⋃m
i=1Ti .

2: Compute Q = GMM(T).
3: Let r = r (V ,Q).
4: Define τi = r/(1 + ε)

i
, for i = 0, . . . , t = log

1+ε (4) + 1.
5: LetM0 = Q , and letMi be a (k + 1)-bounded MIS in graphGτi ,

for 0 < i ≤ t .
6: Find an index j such that |Mj | ≤ k and |Mj+1 | = k + 1.
7: ReturnMj .

Theorem 17. Algorithm 5 computes a (2 + ε)-approximation to
the k-center problem in any metric space inO (log 1

ε) MPC rounds, for
any constant ε > 0. using Õ (mk) communication and Õ (n/m +mk)
memory per machine, wherem is the number of machines.

Proof. Let C∗ =
{
c1, . . . , ck

}
be an optimal k-center solution

with radius r∗. We first show that the value r computed in line 3 of

the algorithm is a 4-approximation to r∗. Note that divk+1 (V) ≤ 2r∗.
This is because in any (k + 1)-subset of V , at least two points

are covered by the same center in C∗, and hence, their distance

is at most 2r∗. Now, fix a point v in machine i . By Lemma 16,

r (Vi ,Ti) ≤ divk+1 (Vi). Therefore, there is a point t ∈ Ti such that

d (v, t) ≤ divk+1 (Vi) ≤ divk+1 (V) ≤ 2r∗. Moreover, by Lemma 16,

r (T ,Q) ≤ divk+1 (T). Therefore, for any point t ∈ T , there is a point
q ∈ Q such that d (t ,q) ≤ divk+1 (T) ≤ divk+1 (V) ≤ 2r∗. Hence,

d (v,q) ≤ d (v, t) + d (t ,q) ≤ 2r∗ + 2r∗ = 4r∗.

Thus, r is a 4-approximation to r∗, i.e., r/4 ≤ r∗ ≤ r .
Now, let j be an index such that |Mj | ≤ k and |Mj+1 | = k + 1.

Note that such an index exists, because |M0 | = k and |Mt | = k+1. If
|Mt | ≤ k , thenMt is a maximal independent set in Gτt , and hence,

it is a k-center solution with radius τt , which is a contradiction,

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Alireza Haqi and Hamid Zarrabi-Zadeh

because τt < r/4 ≤ r∗. Clearly, Mj is a k-center solution with

radius τj , since any point inV \Mj has distance at most τj fromMj .

Moreover,Mj+1 containsk+1 points of pairwise distance more than

τj+1. By the pigeonhole principle, two points ofMj+1 are covered

by the same center in C∗. Therefore, r∗ ≥ 1

2
τj+1 =

1

2
τj/(1 + ε).

Thus, τj ≤ 2(1 + ε)r∗, which yields the approximation factor of the

algorithm. Note that an index j with |Mj | ≤ k and |Mj+1 | = k + 1

can be found via a binary search in O (log 1

ε) rounds. □

6.2 An MPC Algorithm for k-Supplier
In thek-supplier problem, we are given a set S of suppliers (facilities)
and a set C of customers, and the objective is to select k suppliers

such that the maximum distance between customers and suppliers

is minimized. In other words, the objective is to find a subsetQ ⊆ S
of size k minimizing r (C,Q).

In the following, we provide a constant-round MPC algorithm

for the k-supplier problem, achieving an approximation factor 3+ ε ,
which is essentially the best possible, considering the lower bound

of 3 proved on the approximability of this problem [18]. Hereafter,

we assume that each machine i stores a subsetCi ⊆ C of customers,

and a subset Si ⊆ S of suppliers. The pseudo-code of our algorithm

in presented in Algorithm 6. In this algorithm, the graphGτ denotes

a graph on the set of customers, C , such that two vertices in the

graph are adjacent if their distance is at most τ .

Algorithm 6 (3 + ε)-Approximation MPC k-Supplier

1: Let Ti = GMM(Ci) and T =
⋃m
i=1Ti .

2: Compute Q = GMM(T).
3: Let r = r (C,Q) + r (Q, S).
4: Define τi = (r/9) · (1 + ε)i , for i = 0, 1, . . . , t = log

1+ε (9).
5: LetMt = Q , and letMi be a (k + 1)-bounded MIS in G2τi , for

0 ≤ i < t .
6: Find the smallest index j such that |Mj | ≤ k and r (Mj , S) ≤ τj .
7: If no such j exists, then set j = 0.

8: Return a subset of S realizing r (Mj , S) ≤ τj .

Theorem 18. Algorithm 6 computes a (3 + ε)-approximation to
the k-supplier problem in any metric space in O (log 1

ε) MPC rounds
using Õ (mk) communication and Õ (n/m+mk) memory per machine,
wherem is the number of machines.

Proof. Let S∗ =
{
s1, . . . , sk

}
be an optimal solution to the k-

supplier problem with radius r∗ = r (C, S∗). We first show that the

value r computed in line 3 of the algorithm is a 9-approximation to

r∗. Let Pi be the set of customers closest to si , for 1 ≤ i ≤ k , and let
pi be an arbitrary point in Pi . Then the set

{
p1, . . . ,pk

}
provides a

valid instance to the k-center of C with radius at most 2r∗, since
each pi covers Pi with radius at most 2r∗. Therefore, if r̂ denotes
the radius of an optimal k-center solution on the set C , we have
r̂ ≤ 2r∗. On the other hand, as we proved in Theorem 17, Q is a 4

approximation to the k-center of C , i.e., r (C,Q) ≤ 4r̂ . Therefore,

r (C,Q) + r (Q, S) ≤ 4r̂ + r∗ ≤ 8r∗ + r∗ = 9r∗.

Note that r (C,Q) and r (Q, S) can be computed in two rounds as

follows: The central machine sendsQ to all machines. Eachmachine

i then computes r (Ci ,Q) and r (Q, Si) locally, and send the two

values to the central machine. The central machine can then find

r (C,Q) = maxi r (Ci ,Q) and r (Q, S) = maxi r (Q, Si). Hence. we
can obtain in constant round a value r such that r/9 ≤ r∗ ≤ r .

Now, let j be an index such that two conditions |Mj | ≤ k and

r (Mj , S) ≤ τj are satisfied, but either |Mj−1 | ≤ k or r (Mj−1, S) ≤ τj
is violated. Clearly,Mj is a solution tok-center with radius 2τj , since
any point in V \ Mj has distance at most τj from Mj . Moreover,

every point inMj can be covered by a point from S which is at most

τj apart. Therefore, there is a subset of suppliers of size at most k
covering customers with radius at most 2τj + τj = 3τj . Note that
Mt satisfies both conditions |Mt | ≤ k and r (Mt , S) ≤ r , because
Mt covers C with radius at most r , and r (Mt ,C) + r (Mt , S) = r by
algorithm.

We consider the following two cases. The first case is when the

inequalityMj−1 ≤ k is violated. Here, there is an independent set

of size at least k + 1 in C2τj−1 . Thus, r
∗ ≥ τj−1, since no supplier

can cover two elements of such independent set. Based on the two

satisfied inequalities for index j, we can find k suppliers covering

customers with radius at most 3τj ≤ 3r∗ (1 + ε).
In the second case, when r (Mj−1, S) > τj−1, we necessarily have

r∗ > τj−1, since there is a customer which cannot be covered by any

supplier with radius less than τj−1. With a similar argument, we

have a solution covering customers with radius 3 · τj ≤ 3r∗ · (1+ ε).
Note that if such an index j exists, we can find it via a binary

search in O (log(1ε) rounds. Otherwise, M0 covers all customers

with radius 3r/9. Since r is a 9 approximation to r∗, r/3 is a 3-

approximation to r∗, which completes the proof. □

7 CONCLUSION
In this paper, we presented almost optimal MPC algorithms for two

classic problems of k-center clustering and k-diversity maximiza-

tion. Our algorithms are based on a novel technique for computing a

so-called k-bounded maximal independent set in a threshold graph,

using only a constant number of MPC rounds. Our algorithm for

the k-bounded MIS is interesting on its own, as it can be used for

designing MPC algorithms for several other problems. For instance,

we have been able to use the k-bounded MIS successfully to obtain

an almost optimal approximation algorithm for the k-supplier prob-
lem, and also, a constant-factor approximation to the minimum

dominating set in graphs with bounded neighborhood indepen-

dence, both in constant number of MPC rounds. Our massively

parallel algorithm for approximating vertex degrees in a thresh-

old graph seems interesting as well, as a primitive for designing

algorithm for other graph-related problems in the MPC model.

REFERENCES
[1] S. Abbasi Zadeh, M. Ghadiri, V. Mirrokni, and M. Zadimoghaddam. Scalable

feature selection via distributed diversity maximization. In Proc. 32nd AAAI
Conference on Artificial Intelligence, 2017.

[2] S. Assadi, X. Sun, and O.Weinstein. Massively parallel algorithms for finding well-

connected components in sparse graphs. In Proc. 38th ACM Sympos. Principles of
Distributed Computing, pages 461–470, 2019.

[3] M. Bateni, A. Bhaskara, S. Lattanzi, and V. Mirrokni. Distributed balanced clus-

tering via mapping coresets. In Proc. 27th Annu. Conf. Neural Info. Proc. Systems,
pages 2591–2599, 2014.

[4] M. Bateni, H. Esfandiari, M. Fischer, and V. Mirrokni. Extreme k -center clustering.
In Proc. 35th AAAI Conference on Artificial Intelligence, pages 3941–3949, 2021.

[5] S. Behnezhad, S. Brandt, M. Derakhshan, M. Fischer, M. Hajiaghayi, R. M. Karp,

and J. Uitto. Massively parallel computation of matching and mis in sparse graphs.

Almost Optimal Massively Parallel Algorithms for k -Center Clustering and Diversity Maximization SPAA ’23, June 17–19, 2023, Orlando, FL, USA

In Proc. 38th ACM Sympos. Principles of Distributed Computing, pages 481–490,
2019.

[6] M. Ceccarello, A. Pietracaprina, and G. Pucci. Solving k-center clustering (with

outliers) in MapReduce and streaming, almost as accurately as sequentially. Proc.
VLDB Endow., 12(7):766âĂŞ778, 2019.

[7] Y.-J. Chang, M. Fischer, M. Ghaffari, J. Uitto, and Y. Zheng. The complexity

of (∆ + 1) coloring in congested clique, massively parallel computation, and

centralized local computation. In Proc. 38th ACM Sympos. Principles of Distributed
Computing, pages 471–480, 2019.

[8] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facil-

ity location problems with outliers. In Proc. 12th ACM-SIAM Sympos. Discrete
Algorithms, pages 642–651, 2001.

[9] V. Cohen-Addad, F. Mallmann-Trenn, and D. Saulpic. A massively parallel

modularity-maximizing algorithm with provable guarantees. In Proc. 41st ACM
Sympos. Principles of Distributed Computing. 2022.

[10] B. Doerr. Probabilistic tools for the analysis of randomized optimization heuristics.

In Theory of evolutionary computation, pages 1–87. Springer, 2020.
[11] A. Ene, S. Im, and B. Moseley. Fast clustering using MapReduce. In Proceedings

of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 681–689, 2011.

[12] A. Epasto, M.Mahdian, V.Mirrokni, and P. Zhong. Massively parallel and dynamic

algorithms for minimum size clustering. In Proc. 2022 ACM-SIAM Sympos. Discrete
Algorithms, pages 1613–1660, 2022.

[13] A. Epasto, V. Mirrokni, and M. Zadimoghaddam. Scalable diversity maximization

via small-size composable core-sets (brief announcement). In Proc. 31st ACM
Sympos. Parallel Algorithms Architect., pages 41–42, 2019.

[14] M. Ghaffari, C. Grunau, and C. Jin. Improved mpc algorithms for mis, matching,

and coloring on trees and beyond. arXiv preprint arXiv:2002.09610, 2020.

[15] M. Ghaffari, C. Jin, and D. Nilis. A massively parallel algorithm for minimum

weight vertex cover. In Proc. 32nd ACM Sympos. Parallel Algorithms Architect.,
pages 259–268, 2020.

[16] T. F. Gonzalez. Clustering tominimize themaximum intercluster distance. Theoret.
Comput. Sci., 38:293–306, 1985.

[17] D. S. Hochbaum and D. B. Shmoys. A best possible heuristic for the k -center
problem. Mathematics of operations research, 10(2):180–184, 1985.

[18] D. S. Hochbaum and D. B. Shmoys. A unified approach to approximation algo-

rithms for bottleneck problems. 33(3):533–550, 1986.

[19] P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mirrokni. Composable core-sets for

diversity and coverage maximization. In Proc. 33rd ACM Sympos. Principles of
Distributed Computing, pages 100–108, 2014.

[20] H. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for MapReduce.

In Proc. 21st ACM-SIAM Sympos. Discrete Algorithms, pages 938–948. SIAM, 2010.

[21] M. Luby. A simple parallel algorithm for the maximal independent set problem.

SIAM J. Comput., 15(4):1036–1053, 1986.
[22] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger, and B. Moseley. Fast

distributed k -center clustering with outliers on massive data. Advances in Neural
Information Processing Systems, 28, 2015.

[23] V. Mirrokni and M. Zadimoghaddam. Randomized composable core-sets for

distributed submodular maximization. In Proc. 47th Annu. ACM Sympos. Theory
Comput., pages 153–162, 2015.

[24] S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and special case algorithms

for dispersion problems. Operations Research, 42(2):299–310, 1994.
[25] G. Yaroslavtsev and A. Vadapalli. Massively parallel algorithms and hardness

for single-linkage clustering under lp distances. In International Conference on
Machine Learning, pages 5600–5609. PMLR, 2018.

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	2.1 Diversity
	2.2 GMM Algorithm
	2.3 Chernoff Bounds

	3 (2+)-Approximation MPC Algorithm for k-Diversity
	4 Approximating Vertex Degrees
	5 Finding k-Bounded MIS
	6 Other Applications of k-Bounded MIS
	6.1 A (2+)-Approximation MPC Algorithm for k-Center
	6.2 An MPC Algorithm for k-Supplier

	7 Conclusion
	References

